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Figure 1. Ascomycota species in this study. (A) A phylogenetic tree of the 15 Ascomycota species in the study. Dark blue: respiro-fermentative; red:
respiratory; green: obligate respiratory; light blue: intermediate between respiro-fermentative and respiratory. Star: a Whole Genome Duplication event
(WGD). (B) Growth rate (log(OD)g, y axis) of each species over time (y axis) during growth in the novel rich medium used in this study (see ‘Materials and

methods’).
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Figure 2. Growth of species in published and novel growth media. (A) Performance of species in our optimized medium vs YPD medium, a common
medium for S. cerevisiae. Shown are normalized saturation coefficients (log,(ODyg) during a 24-hr growth period, a measure of accumulated biomass) of
each species ('Media tests’ under ‘Materials and methods’) in our panel (rows) in three media (columns). (B) Choosing ‘physiologically comparable’ time
points. Our experiments compare ‘physiologically analogous’ time points across all species (see ‘Materials and methods’). For example, shown is the
growth curve (x axis: time, minutes; y axis: growth rate, in log,(ODqy) and glucose levels (g/L, blue) and ethanol levels (g/L, orange) for the relative slow
growing species S. pombe (left) vs the growth curve for the faster growing C. glabrata (right). Biological samples from each species were taken at the
time points indicated by arrows. The Log phase time point (shown in red) used as the reference for microarray analysis.
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Figure 2—figure supplement 1. Phenotypic characterization of each species. Shown are the growth curves (log,(ODg), purple), glucose levels
(g/L, blue) and ethanol levels (g/L, orange) of two biological replicates for each species. Species name is noted on top of each panel. Y. lipolytica did not
Figure 2—figure supplement 1. Continued on next page
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Figure 2—figure supplement 1. Continued on next page

consume glucose despite a normal sigmoidal growth curve (left), presumably due to a preference to consume lipids as a carbon source. When the
duration of the experiment was extended (right), this species consumed the glucose in the medium. Biological samples from each species were taken at
the time points indicated by arrows at Lag, Log, Late log (LL), diauxic shift (DS), post-shift (PS) and plateau (P). The Log phase time point (shown in red)
used as the reference for microarray analysis.

DOI: 10.7554/eLife.00603.007
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Figure 3. Divergence in global expression profiles correlates with phylogenetic distance. (A) A comparative transcriptional compendium during growth
on glucose. Shown are transcriptional profiles measured for each species (tree, top), at six time points (columns) during growth on glucose: Lag, Late
Log, Diauxic Shift, Post Shift and Plateau (left to right). Genes (rows) are matched based on orthology and clustered (‘Materials and methods’). Red:

Figure 3. Continued on next page
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Figure 3. Continued

induced; blue: repressed; white: no change; grey: ortholog absent in species. (B)-(F) Correlation in expression decreases with phylogenetic distance.
Shown are scatter plots relating—for each pair of species—their estimated phylogenetic distance (y axis) and the correlation between their matching
global expression profile (x axis) at a matching physiological time point (noted on top). The legend shows the clade to which the pair belongs (if the
same) or ‘other’ (if from different clades). Branch length was scaled by the maximum branch length to range from 0 to 1. (B) Lag, (C) Late Log (LL),

(D) Diauxic Shift (DS), (E) Post Shift (PS), (F) Plateau (PLAT). The line in each plot is the least squares fit. (G) Shown is the average Pearson’s correlation
between pairs of species of the global expression profiles for each physiological time point.

DOI: 10.7554/eLife.00603.008
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Figure 3—figure supplement 1. Conservation of growth-rate regulated gene expression. (A) Expression of growth genes across species. Shown are the

expression profiles across all species (major columns) and time points (lag to plateau) for gene orthologs (rows) whose expression was previously

Figure 3—figure supplement 1. Continued on next page
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positively (257) and negatively (368) correlated with growth rate (at 1.5 standard deviation) in S. cerevisiae by Brauer et al. (2008). Heatmap is laid out as
in Figure 3. (B)-(F) Correlations in expression profiles are maintained when growth genes are excluded. Shown are scatter plots relating—for each pair
of species—their estimated phylogenetic distance (Y axis) and the correlation between their matching global expression profile with the growth-rate
regulated genes removed (X axis) at a matching physiological time point (noted on top). The legend shows the clade to which the pair belongs (if the
same) or ‘other’ (if from different clades). Branch length was scaled by the maximum branch length to range from 0 to 1. (B) Lag; p<1.14 x 107, (C) Late
Log (LL); p<2.45 x 1074, (D) Diauxic Shift (DS); p<1.5 x 1072, (E) Post Shift (PS); p<8.22 x 10-%, (F) Plateau (PLAT); p<2.69 x 10-%°. The line in each plot is
the least squares fit.

DOI: 10.7554/eLife.00603.010
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Figure 4. Arboretum reconstruction of expression module evolution (Analysis 1). (A) Five expression modules
identified by Arboretum in the transcriptional response to glucose depletion. Each row corresponds to a species
(tree, left) and each major column to a module (1-5, labels top). Module labels are color coded by the regulation of
Figure 4. Continued on next page
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Figure 4. Continued

the module’s genes following depletion, as noted on top, from bright blue (Module 1) for strong repression to
bright red (Module 5) for strong induction. Each module’s height is proportional to the number of genes in the
module. The five columns in each module are the expression levels at lag (L), late log (LL), diauxic shift (DS),
post-shift (PS), and plateau (P) relative to mid-log phase. Red: induced; blue: repressed; white: no change. (B)—(F)
Module assignments in all extant and ancestral species (see Figure 5B for ancestral node assignment). Each matrix
corresponds to the genes in one of the five modules in the LCA (A14) (B: Module 1; C: Module 2; D: Module 3; E:
Module 4; F: Module 5), and shows the module assignment of these genes in each of the extant and ancestral
species from S. cerevisiae (leftmost column) to the LCA (rightmost column). The biological functions listed at the
top of each module are representative labels chosen based on Gene Ontology terms enriched in all species in that
module (Supplementary file 1). The range of FDR p values and fraction of genes in each module are as follows:
Module 1: Ribosome biogenesis, p<5.28 x 10 to 1.25 — 107", fraction 37.3-61.6%. Module 2: cell division,
p-value<3.51 x 10°% to 4.52 x 10°%, fraction 9-33.6%. Module 3: cell morphogenesis, p<4.64 x 107 to 4.95 x 10°%,
fraction 6.5-81%. Module 4: mitochondrial, p<3.20 x 10-% to 4.90 x 10-%, fraction 2.4-37.9%, proteasome,

p<3.85 x 10°% to 3.97 x 10°%, fraction 1.6-15%. Module 5: respiration p<4.77 x 10-%2 to 4.8 x 10-%, fraction
32.6-58.9%; response to stress, p<4.75 x 1079 to 4.86 x 10°%, fraction 2.6-13.7%. Module assignment in each
species is marked by a color code, as in the top of panel A (bright blue: Module 1; light blue: Module 2; white:
Module 3; pink: Module 4; red: Module 5). Species are ordered by post-fix ordering (left-child, right-child and
parent) of the species tree, as marked on the legend (bottom). Black bars indicate points of phylogenetically
coherent divergence in expression of orthologous genes, as discussed in the text.

DOI: 10.7554/eLife.00603.011
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Figure 5. Conservation of modular organization. (A) Module transition matrices. Shown are examples of transition matrices estimated by Arboretum for
two species (S. cerevisiae, top and S. pombe, bottom). Each matrix specifies, for each module in each child species (columns), the probability with which
a gene conserved its module assignment in that species’ immediate ancestor (rows), or was reassigned to another module. Columns: modules of the
child species, rows: modules of the ancestor species. Probabilities are color coded from black (1) to white (0). Strong diagonal elements indicate high
conservation with the immediate ancestor. The AMCl is calculated as the mean of the diagonal entries. (B) The Ancestral Module Conservation Index
(AMCI). Shown is the AMCI, ranging from 0: least conserved (white circles) to 1: most conserved (black circles), for each extant and ancestral species.
Tree is drawn to scale and species are color coded by carbon lifestyle as in Figure 1A. (C) AMCI decreases with increased phylogenetic distance. Shown
is a scatter plot of the relationship, for each extant (grey) and ancestral (black) species, between its phylogenetic distance to its immediate ancestor
Figure 5. Continued on next page
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(branch length, y axis) and its AMCI (x axis). Branch length is scaled by the maximum value to range between 0 and 1. The correlation between branch
length and AMCl is —0.68 (p<1.13 —x 1074). The regression line is plotted. (D) and (E) Expansion and contraction of modules. Shown are the mean
Module Contraction Index (MCI, D) and mean Module Expansion Index (MEI, E) for each Arboretum module (x axis), based on the proportion of genes
that respectively leave or join each module at each phylogenetic point. Blue and red indicate the modules from Arboretum runs with only no duplicates

(no paralogs) and including duplicates (with paralogs), respectively. Error bars were estimated from five Arboretum runs with different initializations.
DOI: 10.7554/eLife.00603.013
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Figure 6. Conservation and rewiring of coherent functions across modules. Shown are expression (left), Arboretum module assignments (middle) and a
cartoon of the phylogenetic transition (right) for gene sets with coherent phylogenetic patterns. Each expression matrix is formatted as in Figure 3A, and each
module assignment matrix as in Figure 4B-F. (A) Cell cycle genes, (B) mating and meiosis related genes, (C) mitochondrial genes, (D) oxidative

Figure 6. Continued on next page
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Figure 6. Continued

phosphorylation genes, (E) amino acid and purine metabolism genes. Each module shows all the genes with a given phylogenetic pattern, and their
labels (e.g., mitochondrial) were manually generated based on enrichment of GO terms.
DOI: 10.7554/¢Life.00603.014
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Figure 6—figure supplement 1. Enrichment of Sfp1 binding sites. (A) in the promoters of genes with specific
functions. Shown are the negative logarithm of the p value (red intensity) for a test of enrichment (see 'Materials
and methods’) of the Sfp1 motif in the promoters of genes for mitochondrial, purine and amino acid metabolism
and oxidative phosphorylation functions (rows), across the 15 species (columns). (B) Shown is the enrichment of the
Sfp1 binding sites (FDR < 0.05) in Arboretum Module 1 (‘growth module’).

DOI: 10.7554/¢Life.00603.015
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Figure 7. Continued on next page
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Figure 7. Continued

of the KS-test (y axis) used to test if the genes in a given set (mitochondrial genes, A, and oxidative phosphoryla-
tion genes, B) have a significantly lower nucleosome occupancy at their 5’'NFRs than that of all genome genes in
each of 13 species (x axis) with nucleosome positioning data from Tsankov et al. (2010) and Xu et al. (2012).

(C) Evolutionary repositioning of binding sites for key amino acid TFs relative to NFRs. For each of 13 species
(columns, tree), shown are the enrichment (yellow) or depletion (blue) in NFRs of binding sites for several amino
acid and purine metabolism TFs (rows) whose sites are depleted from NFRs in post-WGD species and enriched in
pre-WGD species. The intensity of the color is proportional to the z-score estimated for each regulator from the
fraction of all its binding sites that are in the NFR. Each row is centered by its mean value (see ‘Materials and
methods’).

DOI: 10.7554/eLife.00603.016
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Figure 8. Purine and amino acid metabolic pathways are linked to carbon metabolism. (A) Shown are the set of metabolic reactions in S. cerevisise
associating purine biosynthesis and salvage and amino acid metabolism with carbon metabolism, and two key transcriptional regulators (left).
Mitochondrial genes link respiration to purine metabolism. Glycolysis is linked to purine salvage by the metabolic intermediate 3-P-glycerate. De novo
purine metabolism is linked to the pentose shunt through ribulose-5-phosphate. The genes in red are induced post-shift in S. cerevisiae and other
post-WGD species, but their orthologs are repressed in pre-WGD species. Both Schizosaccharomyces species have three copies of ZWF1 (purple) that
are strongly induced. (B) Shown are the major carbon pathways involved in the fermentation or respiration of glucose and their interconnectivity. Both
WGD and other duplicate genes in each pathway are indicated. The genes in red are induced post-shift in S. cerevisiae and most of the other post-WGD
species while those in green are repressed similar to their pre-duplication orthologs. Differences in trans regulators may further contribute to the
reassignment of their targets between modules. While many of the regulators of glucose repression in S. cerevisiae are present across the phylogeny
(Flores et al., 2000), the regulation of some has changed at the WGD and at the ancestor of the Schizosaccharomyces, consistent with the reassign-
ment of their targets. For example, the glucose repressing MIG genes and the TUP1-CYC8 complex are strongly repressed following glucose depletion
in most post-WGD species, whereas some respiration activators are strongly induced (CAT8 and HAP2,4,5 and SIP2 post-WGD, HAP2, MOT3, and SIP2
in S. pombe, data not shown). We observed no such changes in the expression of known regulators of amino acid and purine metabolism (data not
shown). In some cases, duplication of key regulators followed by reassignment to a new module may have further contributed to new regulatory
functions. For example, TPKT and TPK3 are two WGD-derived paralogs encoding catalytic subunits of PKA, a major regulator of carbohydrate metabo-
lism and stress responses (Zaman et al., 2008). TPK1 in strongly induced in the sensu stricto species, as is the single TPK gene in the
Schizosaccharomyces. TPK3 is repressed in those species, conserving the expression pattern of its ortholog in all the respiratory pre-duplication species
(data not shown).
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Figure 9. Arboretum reconstruction of expression module evolution in the presence of paralogous genes (Analysis
2). (A) Five expression modules identified by Arboretum in the transcriptional response to glucose depletion, when
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Figure 9. Continued

paralogous genes are included in the run. Each row corresponds to a species (tree, left) and each major column to
a module (1-5, labels top). Modules labels are color coded by the regulation of the module’s genes following
depletion, as noted on top, from bright blue (Module 1) for strong repression to bright red (Module 5) for strong
induction. Each module’s height is proportional to the number of genes in that module. The five columns in each
module are the expression levels at lag (L), late log (LL), diauxic shift (DS), post-shift (PS), and plateau (P) relative to
mid-log phase. Red: induced; blue: repressed; white: no change. (B)—(F) Module assignments of all extant and
ancestral species. Each matrix corresponds to the genes in one of the five modules in the LCA (B: Module 1; C:
Module 2; D: Module 3; E: Module 4; F: Module 5), and shows the module assignment of these genes in each of
the extant and ancestral species from S. cerevisiae (leftmost column) to the LCA (rightmost column). The biological
functions listed at the top of each module are general classifiers based on Gene ontology terms enriched in all
species in that module (Supplementary file 2). The range of FDR p values and fraction of genes in each module
are as follows: Module1: ribosome biogenesis, p<1.07 = 102 to 1.56 x 107"2, fraction 32-53%. Module2: cell
division, p<3.13 x 107 to 4.69 x 107%, fraction 10.2-32%. Module 3: cell morphogenesis, p<4.48 x 10" to

4.56 x 10°%, fraction 22-78.7%. Module 4: mitochondrial, p<2.47 x 10-% to 3.36 x 10-%, fraction 2.3-36.2%;
proteasome, p<2.7 x 10 to 5.48 x 10°%, fraction 1.3-13.1%. Module 5: respiration, p<4.2 x 10 to0 4.43 x 10°%,
fraction 34.9-55%. Module assignment in each species is marked by a color code, as in the top of panel a (bright
blue: Module 1, light blue: Module 2, white: Module 3, pink: Module 4, red: Module 5). Species are ordered by
post-fix ordering (left-child, right-child and parent) of the species tree, as marked on the legend (bottom).
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Figure 10. Regulatory evolution of paralogous genes. (A) Paralogous genes contribute to regulatory divergence. Shown in a scatter plot of the AMCI
values for each extant (blue) and ancestral (red) species as estimated by Arboretum in a run without paralogs (Analysis 1) (y axis) vs a run with paralogs
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Figure 10. Continued

(x axis). Inclusion of paralogous genes lowers the AMCI, especially at the WGD and Schizosaccharomyces ancestors (arrows). (B) Enrichment of
paralogous genes among reassigned genes. Shown is for each species (ancestral and extant) the fold enrichment (F) of paralogs (circle size) among
genes reassigned at that species. Only points at which there are significantly more paralogs that switch than expected by chance are shown
(Hyper-geometric p<0.05). Circles are colored by the phylogenetic point of gene duplication (cyan: A13, black: A11, purple: A10, blue: A9, white: WGD
ancestor A5). (C) Four possible regulatory fates of paralogous genes following duplication, relative to their immediate pre-duplication ancestor. Left:
cartoon gene trees (left) and illustrative examples from our analysis (right) representing the module assignment (circles) of each paralog and their
pre-duplication ortholog in each extant and ancestral species. Module assignment is color coded as in Figure 3 (Bright blue, light blue, white, pink, red
from Module 1 to 5, respectively). Star: gene duplication. Lightning rod: gene loss. (1) Conserved: both paralogs (UTP5 and UTP9) conserve the ancestral
assignment (Module 1); (2) Neo-functionalization: one paralog (URA7) maintains the ancestral assignment (Module 1) and the other (URAS) is assigned to
a different module (Module 5); (3) Asymmetric divergence: both paralogs (EUGT, PDI1) are reassigned to distinct modules (Module 3, Module 4) than the
ancestral one (Module 5). (4) Symmetric divergence: both paralogs (SER3, SER33) are reassigned to the same module (Module 5), distinct from the
ancestral one (Module 1). (C) Cumulative distribution of module reassignment of genes before and after their duplication. Because after duplication
there are two paralogs, each with its own re-assignment value, we compare the minimum (red, p<1 x 10°%), maximum (green, p<1 x 107%), and average
(black, p<1 x 107'8) of the number of re-assignments after duplication, with the re-assignments before duplication (blue). (D) Scatter plots showing for
each gene its degree of module reassignment before duplication (x axis) vs the average degree of module reassignment of the two paralogs after
duplication (y axis). All module reassignments for a gene are normalized by the number the species in which the gene is present (‘Materials and
methods’).
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Figure 11. Similar evolutionary patterns in glucose depletion and heat shock. (A) Increased re-assignment of paralogous genes. Box-plots showing the
fraction of module re-assignments for genes from orthogroups with duplication events (Duplicate, left) and without duplication events (Singleton, right).
Red plus: outliers that are 2.7 SD from the mean. (B) Enriched re-assignment of paralogous genes at different phylogenetic points. Shown are the fold
enrichment of paralogous genes among all the reassigned genes (red, scale bar) at different phylogenetic points (rows) for duplicates that arose at
Figure 11. Continued on next page
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Figure 11. Continued

different ancestors (columns) for heat shock (left) and glucose depletion (right). The number in each cell represents the number of paralogous genes that
arose at a given phylogenetic point (column) and were reassigned at a phylogenetic point (row). Numbers and fold enrichment are marked only at points
with significantly more paralogs that are reassigned than expected by chance (Hypergeometric p<0.05). (C)—(F) correlation in expression decreases with
phylogenetic distance. Shown are scatter plots relating—for each pair of species—their estimated phylogenetic distance (y axis) and the mean correla-
tion between their matching global expression profiles (x axis) at matching time points (labeled on top). Legend shows the clade to which the pair
belongs (if the same) or ‘other’ (if from different clades). Branch length was scaled by the maximum branch length to range from 0 to 1. The line is the
least squares fit. The Pearson correlation coefficient is shown on top (C: p<2.88 x 1075, D: p<2.86 x 107°; E: p<0.018; F: p<0.19). (G) Module divergence
scales with phylogenetic distance. Shown is a scatter plot of the relationship, for each extant (blue) and ancestral (red) species, between its phylogenetic
distance to its immediate ancestor (branch length, y axis) and its AMCI (x axis). Branch length is scaled by the maximum value to range between 0 and 1.
The correlation between branch length and AMCI is shown at top (p<0.033).
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Figure 12. Regulatory evolution of paralogous genes in glucose depletion and heat shock. (A)—~(D) several regulatory fates of paralogous genes
following duplication, relative to their immediate pre-duplication ancestor in each of glucose depletion and heat shock. For each condition shown are
cartoon gene trees (left) and illustrative examples from our analysis (right) representing the module assignment (circles) of each paralog and their
pre-duplication ortholog in each extant and ancestral species. Module assignment is color coded as in Figure 3 (Bright blue, light blue, white, pink and
red from Module 1 to 5, respectively). Star: gene duplication. Lightning rod: gene loss. (A) Conserved: both paralogs (UTP5 and UTP9) conserve the
ancestral assignment (Module 1) in both responses; (B) Neo-functionalized, one paralog: one paralog (URA?7) maintains the ancestral assignment
(Module 1) and the other (URAS) is assigned to a different module (Module 5) in both responses; (C) Neo-functionalized, both paralogs: both paralogs
(POR1, POR2) are reassigned to distinct modules than the ancestral one, but in different ways in each response. (D) Sub-functionalization: In glucose
depletion, one paralog (RFX1) maintains the ancestral assignment (Module 2) and the other (OG1201) is reassigned (Module 3). This pattern is reversed
in heat shock. (E) Number of paralogs pairs in each of the classes.
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Figure 13. The per gene probability of Arboretum module assignments. (A). Shown are the fraction of genes (y axis) that are assigned to the most likely
module with probability of at least 0.5, 0.7 or 0.9 in each species (x axis). (B). Shown are the fraction of genes (y axis) whose probabilities of the second
most likely assignment is less 30%, 50%, or 70% of the most likely assignment, that is g/p<x% where q is the probability of the second most likely
assignment and p is the probability of the most likely assignment.
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Figure 14. Variance captured in Arboretum modules as a function of the number of modules. Shown are the mean and standard deviation of the
coefficient of determination for each species, one per plot. Mean and standard deviation were calculated for different random initializations of
Arboretum runs. Coefficient of determination (y axis) was measured for different values of the number of modules (x axis).
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Figure 14—figure supplement 1. Mean expression of Aboretum modules as a function of different k values. Each plot is the mean expression profile of
a module. Each row corresponds to different k's and each column corresponds to a species.
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