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Figure 1. A receptor-optimized molecular descriptor approach has strong predictive power to find new ligands. (A) Schematic of the cheminfomatics
pipeline used to identify novel ligands from a larger chemical space. (B) Plot of mean APoA values for 19 Drosophila Ors calculated using various
methods including a previously identified set (Haddad et al., 2008). (C) Receiver-operating-characteristic curve (ROC) representing computational
validation of ligand predictive ability of the Or-optimization approach. (D) Hierarchical cluster analysis of the 109 odorants of the training set using
Or-specific optimized descriptor sets to calculate distances in chemical space for odorant receptors with strong activators (green), and odorant receptors
with no strong activators (yellow).
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Figure 1—figure supplement 1. Analysis of APoA curves for individual odor receptors. Plots of the mean APoA values obtained from various molecular
descriptor methods demonstrates that optimized descriptor subsets generate highest values. Previous = 32 Dragon descriptors selected in Haddad et
al. (2008). Molecular descriptor methods were compared using the 109 compounds that were previously tested in (Hallem and Carlson, 2006).
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Figure 1—figure supplement 2. Pharmacophores of active compounds for individual Ors. Hierarchical cluster identical to Figure 1D. Known odorant
activity scale is indicated using independent color gradient scales. Horizontal black bars underneath cluster indicate part of active cluster, a subset of
which were used to generate pharmacophores using the Ligand Scout program (shown underneath each Or in two orientations). Yellow = hydrophobic
region, red = Hydrogen-bond acceptor, green/red = Hydrogen-bond donor or acceptor depending upon pH.
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Figure 2. Electrophysiology validates that odorant receptor-optimized molecular descriptors can successfully identify new ligands for Drosophila. Mean
increase in response of neurons to 0.5-s stimulus of indicated odors (1072 dilution) predicted for each associated Or. Dashed lines indicate the activator
threshold (50 spikes/s). AH: Or85b (ab3B) = flies lack expression of Or22a in neighboring neuron, thus all observed neuron activation is unambiguously

caused by Or85b. N = 3, error bars = s.e.m.
DOI: 10.7554/eLife.01120.008
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Figure 3. Predicted receptor-odor interactions are highly specific. (A) Plot of activity (Top) for electrophysiologically tested receptor-odor interactions.
(Bottom) Plot indicating locations of predicted receptor-odor combinations (green) and same odorants tested in non-target receptor-odor combinations
(gray). (B) Plot of percentage of activating odors (>50 spikes/s) considering all activating or inactive odors (>0 spikes/s) across ranking bins for all odors
tested using electrophysiology.
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Figure 4. Analysis of receptor—odor relationships and breadth of tuning. (A) Hierarchical clusters created from
Euclidean distance values between Drosophila Ors calculated using: (left to right) shared optimized descriptors;
known activity to training set odors (Hallem and Carlson, 2006); overlap across top 500 predicted ligands; and
Phylogenic tree of receptors (Hallem and Carlson, 2006). Sub clusters shaded with colors or bars. (B) Frequency
distribution of compounds from the >240K library within the top 15% distance from highest active plotted to

generate predicted breadth of tuning curves. Green arrows indicate relative distance of the furthest known
activating compound determined by electrophysiology.
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Figure 5. Analysis of predicted natural odor sources and cross activation. (A) (Left) The numbers of compounds
present in the collected volatile library according to source. (Right) The numbers and sources of predicted ligands
for the 19 Drosophila odor receptors/neurons within the top 500 predicted compounds. (B) Comparison of plots for
percentage of receptors that are: (top left) activated by percentage of known odors from training set (Hallem and
Carlson, 2006); (bottom left) predicted to be activated by Natural compound library; (top right) predicted to be
activated from >240K library; and (bottom right) activated by ligands for 10 shared Ors in this study vs activated by
comparable actives previously tested (Hallem and Carlson, 2006).
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Figure 6. Predicted odor space and network view of odor coding. (A) Expansion of the peripheral olfactory code in
this study: large increase in numbers of identified activators and inhibitors. The different sized circles represent the
approximate ratio of numbers of previously known ligands (top circles), predicted ligands based on a cutoff of the
top 500 predicted compounds per receptor and corrected to the validation success rate (lower, diffuse circles). (B)
Drosophila receptor-odor network. Each known interaction (>50 spikes/s) from this and previous studies (Hallem
and Carlson, 2006) is linked by a purple edge. Predicted receptor-odor network (top 500 hits) are linked by
light-grey edges. All compounds are represented as small black circles and Ors are represented as large colored
circles matching the colors used in (Figure 4A).
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