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Figure 1. A3A suppresses retrotransposition of distinct LINEs, but does not specifically inhibit L1 endonuclease activity. (A) LINE schematics: L1.3, TG21,

and L1SM encode two ORFs (ORF1 and ORF2, outlined in black and red, respectively). ZfL2-2 contains one ORF (outlined in red). Indicated are the

endonuclease (EN) and reverse transcriptase (RT) domains in the respective ORFs. All elements are tagged in their 3'UTRs with the mneol (NEO) indicator

cassette. The percent nucleotide identity of TG21, L1SM, and ZfL2-2 to human L1.3 is indicated below each schematic. Black arrowheads indicate

repeated monomeric sequences in the 5" UTRs of TG¢21, L1SM, and ZfL2-2. (B) A3A inhibits retrotransposition of distinct LINEs: shown is the effect of
wild-type A3A (white bars), deaminase-deficient A3A_C106S (gray bars), and B-arrestin (B-arr) control (black bars) on LINE retrotransposition. The x-axis
indicates the LINE element. The y-axis indicates percent retrotransposition; in each case the B-arr control is set to 100%. Data were normalized using a

circular NEO expression cassette as detailed in Figure 1—figure supplement 1A. Data are expressed as the mean percent retrotransposition derived

from three independent experiments consisting of two technical replicates each, with error bars representing the standard deviation among all six

technical replicates. (C) Retrotransposition assays in 4364a (wild-type CHO cells (left)) and XR-1 (XRCC4-deficient CHO cells (right)): the x-axis indicates
experiments conducted with the A3A or B-arr expression vector. The y-axis indicates percent retrotransposition; for each reaction the B-arr control is set
to 100%. Gray bars indicate retrotransposition of wild-type L1 (pAD2TE1) and black bars indicate the L1 EN mutant (pAD136). Data were normalized using
the circular NEO control (Figure 1—figure supplement 1A). Data are shown as the mean percent retrotransposition derived from three independent

experiments consisting of two or three technical replicates each, with error bars representing the standard deviation among all eight technical replicates.
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Figure 1—figure supplement 1. Additional Control Experiments.
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Figure 2. Recombinant A3A (rA3A) deaminates L1 cDNAs in vitro. (A) LEAP assay rationale: L1 RNP preparations consisting of the L1 RNA (gray),

L1 ORF1p (white ovals), and L1 ORF2p (blue oval) are incubated with a 3' RACE primer consisting of a unique adapter sequence that contains a single
cytidine (red) followed by an oligo dT sequence (black lettering). After reverse transcription (blue arrow), the resultant L1 cDNAs (blue line) are PCR
amplified using primers specific to the engineered L1 and the unique adapter sequence (green arrows). (B) Recombinant A3A has deaminase activity in
vitro: twofold serial dilutions (500 ng—15.62 ng) of WT rA3A (left panel) or deaminase-deficient rA3A_C106S (right panel) were incubated with a fluores-
cein isothiocyanate (FITC) labeled single-strand DNA oligonucleotide containing a single cytidine residue. The products were treated with recombinant

Figure 2. Continued on next page
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Figure 2. Continued

uracil DNA glycosylase (UDG) and NaOH and then were resolved by gel electrophoresis. A control reaction was included without recombinant protein
(marked Oligo). (C) Recombinant A3A does not inhibit L1 RT activity: control LEAP reactions with RNP preparations from Hela cells transfected with

WT (pDK101), RT- (pDK135), or EN- (pJJH230A/L1.3) human L1s (upper gel). HelLa indicates untransfected Hela cells; no RNP indicates control reactions
lacking RNPs. Increasing amounts of rA3A (ng) did not significantly affect LEAP activity. Samples containing a deaminase-deficient rA3A_C106S, a heat
killed rA3A (HK), or without LEAP products (H,O) served as controls. MMLV RT reactions (lower gel) confirm the integrity of purified RNA isolated from
RNP preps used in the LEAP assay. Notably, the increased size of the EN- RNP RT products is due to a higher molecular weight product generated from
pJJH230A/L1.3, which contains an mblastl indicator cassette instead of an mneol indicator cassette. Size standards (bp) are indicated at the left of the
gel. (D) Sequence characterization of LEAP Products: shown is the (+) strand sequence of the LEAP product. Guanosine nucleotides are indicated in red.
Black stars and numbers indicate the frequency of G-to-A mutations (corresponding to C-to-U mutations in the minus (=) strand L1 cDNA) that occurred
on (+) strand L1 cDNA. Blue circles indicate other nucleotide changes. The blue A, indicates the LEAP product poly (A) tail. Blue underlining indicates
the L1 3" end PCR primer. Green underlining indicates the LEAP adapter (5np1) sequence. Top panel: LEAP products generated under the following
conditions: no rA3A protein, 100 ng of wild-type rA3A, 100 ng of deaminase-deficient rA3A_C106S. Bottom panel: LEAP products generated under the
following conditions in the presence of RNase H: no rA3A protein, 100 ng of wild-type rA3A, 100 ng of deaminase-deficient rA3A_C106S. One hundred
products were characterized for each condition.
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Figure 2—figure supplement 1. Control Experiments with Recombinant A3A.
DOI: 10.7554/eLife.02008.006
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Figure 2—figure supplement 2. A3A Deamination Events in LEAP products.
DOI: 10.7554/eLife.02008.007
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Figure 2—figure supplement 3. Distribution of deamination events per LEAP product.
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Figure 2—figure supplement 4. Summary of LEAP products generated in the presence of rA3A and RNase H.
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Figure 3. UGI expression alleviates A3A-mediated inhibition of L1 retrotransposition and allows detection of deaminated L1 retrotransposition events.
(A) Experimental strategy: cells (Hela, upper left, or U20S, upper right) were co-transfected with the indicated expression plasmids and assayed for

L1 retrotransposition (bottom left branch) or insertion analysis (bottom right branch). (B) UGI expression alleviates A3A-mediated retrotransposition
inhibition: the x-axis indicates the co-expression vector. The y-axis depicts the efficiency of L1 retrotransposition. Shown are results of experiments in the
presence (black bars) or absence (gray bars) of UGI. The results were normalized as in Figure 1—figure supplement 1A. Data are expressed as the
mean percent retrotransposition derived from three independent experiments consisting of two technical replicates each, with error bars representing
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Figure 3. Continued

the standard deviation among all six technical replicates. (C) DNA sequencing results: the left column indicates the engineered L1 sequence. The top
row indicates sequence changes observed in recovered L1 insertions; n indicates the number of characterized retrotransposition events. The total
retrotransposed sequence observed (in bp) includes the L1 sequence and the mneol/ColET cassette. (D) An L1 insertion harboring mismatched TSDs:
The pre- (empty) and post- (filled) L1 integration sites are shown. The truncation point (bp 5483) and structure of the engineered retrotransposed L1 are
indicated. Deamination of single-strand genomic DNA in the pre-integration site (red rectangle) leads to inexact TSDs in the post-integration site

(red lettering/rectangles). (E) Stable UGI expression alleviates A3A-mediated L1 inhibition: The x-axis indicates the U20S cell line. The y-axis depicts the
efficiency of L1 retrotransposition. Shown are the effects of wild-type A3A (white bars), A3A-C106S (gray bars), and B-arrestin (B-arr, black bars) control on
L1 retrotransposition. Data were normalized to controls conducted with a circular NEO expression vector (Figure 3—figure supplement 1 B-C). Data
are expressed as the mean percent retrotransposition derived from three independent experiments consisting of two technical replicates each, with
error bars representing the standard deviation among all six technical replicates. (F) DNA sequencing results: The left column indicates the engineered
L1 sequence. The top row indicates sequence changes observed in recovered L1 insertions; n indicates the numbers of characterized retrotransposition
events. The total retrotransposed sequence observed (in bp) includes the L1 sequence and the mneol/ColE1 cassette.
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Figure 3—figure supplement 1. Additional Control Experiments.
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Figure 3—figure supplement 2. Summary of L1 retrotransposition events generated in U20S_UGI cells in the

presence of B-arrestin.
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Figure 3—figure supplement 3. Summary of L1 retrotransposition events generated in U20S_UGI cells in the

presence of A3A_C106S.
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Figure 3—figure supplement 4. Summary of L1 retrotransposition events generated in U20S_UGI cells in the

presence of A3A.
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Figure 3—figure supplement 5. The L1.3 G-5390-A mutation decreases L1 retrotransposition efficiency.
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Figure 4. A model for A3A-mediated inhibition of L1 retrotransposition. The left side of the Figure shows

L1 integration reactions that occur via TPRT. The right side of the Figure shows the predicted structures of the
resultant L1 retrotransposition events. Shown are transiently exposed single-strand genomic DNA regions that
ultimately give rise to target site duplications (TSDs: orange lines), the L1 RNA (red line), the L1 cDNA (blue line),
and the A3A protein (green oval). UGI expression (red stop sign) can inhibit UNG activity. (A) Deamination of the
L1 cDNA: in the presence of cellular RNase H, A3A-mediated deamination of the L1 (=) strand cDNA (blue
lettering) in the presence of UG leads to C-to-T mutations on the L1 non-coding strand and G-to-A mutations on
the L1 (+) coding strand. (B) Deamination of the 5" flanking top-strand genomic DNA: in the presence of UGI,
deamination of the transiently exposed single-strand 5’ flanking genomic DNA (top orange line) during TPRT
results in C-to-T changes in the 5" TSD relative to the 3' TSD. (C) Deamination of the 3’ flanking bottom-strand
genomic DNA: in the presence of UGI, deamination of transiently exposed single-strand 3’ flanking genomic DNA
during TPRT, in principle, is predicted to result in a G-to-A change in the 3' TSD relative to the 5" TSD.
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