
elifesciences.org

Neher et al. eLife 2014;3:e03568. DOI: 10.7554/eLife.03568	 1 of 12

Predicting evolution from the shape of genealogical trees

Richard A Neher, et al.

Figures and figure supplements

http://elifesciences.org/
http://dx.doi.org/10.7554/eLife.03568


Genomics and evolutionary biology

Neher et al. eLife 2014;3:e03568. DOI: 10.7554/eLife.03568	 2 of 12

﻿

Figure 1. Genealogies in adapting populations. (A and 
B) illustrate the genealogy of two successive samples 
embedded into the (Malthusian) fitness distribution of 
the population indicated in grey. In absence of 
adaptive mutations, fitness declines due to a changing 
environment or accumulation of deleterious mutations. 
Only one lineage (thick line) persists from first sample 
to second sample. (A) Evolution proceeds via rare large 
effect mutations (dashed arrows) that occur in a 
population with little fitness variance. All individuals are 
roughly equally likely to pick up the large effect 
mutation, rendering evolution unpredictable from 
sequence data alone. (B) Conversely, if adaptation is 
due to many small effect mutations, the successful 
lineage (thick) is always among the most fit individuals. 
Being able to predict relative fitness therefore enables 
to pick a progenitor of the future population.
DOI: 10.7554/eLife.03568.003
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Figure 2. Inferring fitness from genealogical trees. (A) The inference algorithm is based on branch propagators 
associated with each branch of the reconstructed tree (middle). Branch propagators characterize the fitness 
distribution of child nodes given the fitness of the ancestral node (left). The internal node 2 would have higher 
marginal fitness estimate (right) than node 1, as node 2 has more children. The inferred distribution of the fitness of 
the external node 3 has broadened along the branch from node 2. (B–D) Analysis of simulated data. Panel B shows 
for a typical example that inferred fitness is well correlated with the true fitness with a rank correlation coefficient 
ρ=0:56. This correlation increases with increasing mutation rate as shown in panel C for 100 simulated data sets 
each (boxes cover the interquartile range, red lines indicate the median). Panel D shows that the sequence with the 
highest inferred fitness tends to be similar to the population 200 generations in the future. Both axis show the 
average Hamming distance to the future population between the predicted and the post-hoc optimal sequence on 
the y and x-axis, respectively, for 100 simulated data sets. Both distances are relative to the average distance 
between the present and future population. Parameters: N =20000, nA =0:08, Γ=0:2, u=0:064 (B,D).
DOI: 10.7554/eLife.03568.004
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Figure 2—figure supplement 1. Predictability increases with genetic diversity. The prediction performance 
quantified by the rank correlation coefficient between the inferred and true fitness increases with pairwise diversity. 
Large Γ is superior at small pairwise distances, which corresponds to a regime of few large effect mutations. Smaller  
Γ does better in at large pairwise distance where fitness variation is spread among many loci.
DOI: 10.7554/eLife.03568.005

Figure 2—figure supplement 2. Prediction from continuously sampled sequences. Same as Figure 2B–D, but 
with continuous sampling of 200 simulated sequences over 100 generations, as opposed to one sample from 
exactly one time point. Panels B&C shows that the rank correlation does not suffer when sampled continuously, at 
least at moderate or large mutation rates. Genetic distance of the predicted strain to future population behaves 
similarly. Parameters: N = 20000, ω = 0.01, Γ = 0.2 and  u = 0.064.
DOI: 10.7554/eLife.03568.006
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Figure 3. Local tree length as a fitness ranking. Rank correlation between the true fitness and the LBI λiðτÞ is shown 
as a function of pairwise diversity in the sample. Different curves correspond to different neighborhood sizes τ, 
which is measured in units of the average pairwise distance.
DOI: 10.7554/eLife.03568.007
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Figure 3—figure supplement 1. The LBI predicts progenitor sequences. Sequences with the highest LBI in the 
sample tend to be close to the progenitor of future populations. The measure Δ shows the distance of the 
predicted sequence to the population 200 generations in the future (relative to the average distance between the 
two populations).
DOI: 10.7554/eLife.03568.008
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Figure 4. Predicting the evolution of seasonal influenza A/H3N2 viruses. (A) A genealogical tree of a sample of HA1 sequences from May 2006 to end of 
February 2007. Nodes are colored according to our fitness ranking λiðτÞ. The highest ranked node is marked by a black arrow. (B) A tree of the same 
sequences from (A) (colored) and sequences from October 2007 to end of March 2008 (in grey). Our algorithm successfully predicts a sequence 
genetically close and directly ancestral to viruses circulating the following winter. (C) For each year from 1995 to 2013 we predicted a progenitor 
sequence and calculated its nucleotide distance to the A/H3N2 population of the following winter. Predictions based on terminal or internal sequences 
are very similar. The figure shows the average ΔðpredictionÞ of 50 runs using subsamples of the data. A random pick from the prediction set corresponds 
to the solid line at 1. The dashed lines indicate the optimal extant sequence at time of prediction. The distance of the dashed line from the line at 1 
indicates the closeness of the optimal extant sequence to future populations.
DOI: 10.7554/eLife.03568.009
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Figure 4—figure supplement 1. Variation of predictions upon variation of the memory time scale of the LBI  λiðτÞ. 
Each year shows two lines–one for internal and external nodes–that show the variation of the prediction as τ varies 
from 2−6 to 4 in multiples of 2.
DOI: 10.7554/eLife.03568.010

Figure 4—figure supplement 2. Comparison to predictions by Łuksza and Lässig (2014). In many years, 
choosing the sequence with the highest LBI results in a very similar sequence to that predicted by Łuksza and 
Lässig (2014). In some years the LBI resulted in a pick closer to the future, in other years the sequences predicted 
by Łuksza and Lässig (2014) was a better choice. Łuksza and Lässig aimed at minimizing amino-acid distance at 
epitope position, rather than nucleotide distance as we do here. The two measures are strongly correlated, but 
nucleotide distance has better resolution and is hence used here.
DOI: 10.7554/eLife.03568.011
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Figure 4—figure supplement 3. High LBI predicts clade expansion. Each dot corresponds one clade with less 
than 75% frequency in a sample of sequences from May to February of year t. The excess of points in the upper 
right corner shows that high LBI is predictive of clade expansion. The x-axis shows its rank according to the LBI in 
this year, normalized to the iterval [0,1]. The y-axis shows the rank according to clade growth measured as the 
ratio of frequency of this clade in year t+1 and year t. Again, rankking is done on a yearly basis and normalized to 
the interval [0,1]. This plot contains data from years 2003–2013 for which there are sufficiently many sequences to 
calculate meaningful clade frequencies. The pointsin the lower half of the plot correspond to all clades that do 
not continue into the next year.
DOI: 10.7554/eLife.03568.012
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Figure 5. Comparison of predictors. Transformed genetic distance d  averaged over 1000 bootstrap samples 
(bootstrapping years) to the next influenza season. We compared our method using the sequence of the top 
ranked internal node, external node, the predictions by Łuksza and Lässig (2014), the ancestral sequence of 
clades with the largest estimated growth rate, and the sequence of the most ‘advanced’ node in a ladderized tree.
DOI: 10.7554/eLife.03568.013
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Figure 5—figure supplement 1. Dependence of prediction accuracy on τ. Predictions for influenza virus A/H3N2 
based on the LBI improve with increasing the memory time scale τ. Prediction accuracy is assessed as nucleotide 
distance to the future sample scaled such that the optimal pick as d = 0 and a random pick has d = 1, averaged 
over 50 repeated predictions per year on different subsamples of the data (at most 100 sequences from Asia and 
North-America, 70% of the available data in cases fewer than 100 sequences are available). The figure shows the 
average of d over years 1995–2013; the accuracy of predictions by Łuksza and Lässig (2014) is shown as black line; 
the value of τ used in the remainder of the manuscript is indicated by the dashed vertical line.
DOI: 10.7554/eLife.03568.014
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Figure 6. Numerical solution for the lineage propagator. Panel A shows gðx; t′jy; tÞ as a function of x for different t′ at t=0 given the ancestor had 
Malthusian fitness y=0 (blue) or approximately y=2σ (red). In both cases, the offspring tend to get less fit and the distribution broadens due to 
additional mutations. Saturated colors correspond to small t− t′, light colors large t− t′. Panel B shows gðx; t′jy; tÞ

R
dx  as a function of t− t′ for the high 

(red) and low (blue) fitness ancestor. The dashed lines show the approximation given in Equation (6). In the high fitness case, Equation (6) overesti-
mates gðx; t′jy; tÞ

R
dx  since it does not account for the non-sampling contribution. Panel C shows gðx; t′jy; tÞ as a function of y, given the offspring is unfit 

(blue) or fit (red). Ancestors tend to be fit regardless of offspring fitness and both ancestral distributions converge to a common curve far back in time.
DOI: 10.7554/eLife.03568.016

http://dx.doi.org/10.7554/eLife.03568
http://dx.doi.org/10.7554/eLife.03568.016



