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Figure 1. Screening the Escherichia coli proteome to discover new KDACs using the ‘clip-chip’ strategy. (a) Schematic of the ‘clip-chip’ strategy. (b,c)

Identification of YcgC as a potential protein deacetylase. E. coli proteome chips were clipped onto three substrate slides separately coated with

acetylated RutR, NhoA, and YceC. After incubation in a protein deacetylase buffer, the reactions were terminated by adding wash buffers, followed by
a signal detection step with a pan o-AcK antibody coupled with a Cy3-labeled secondary antibody as detection reagent to visualize the loss of signals
(e.g., black holes in (b,c). To determine the identity of proteins that generated the holes, the substrate slide was subsequently probed with an a-éxHis
antibody followed by a Cy5-conjugated secondary antibody. (d) Using acetylated RutR proteins purified from E. coli, of the four candidates tested,
YcgC showed robust deacetylation activity in vitro. Equal amounts of RutR proteins were used in each reaction and loss of acetylation was detected

with the pan o-AcK antibody.
DOI: 10.7554/eLife.05322.003
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Figure 1—figure supplement 1. Design of the ‘clip-chip’ strategy. (a) The ‘clip-chip’ strategy uses two slides, a
protein slide that contains proteins of interest printed onto a slide with an appropriate surface, and a second
substrate slide on which the enzymatic reactions are carried out. The protein slide containing arrayed protein
droplets (b) is first imprinted onto the slide coated with substrate (red) (c) to transfer the proteins of interest from
the protein slide onto the substrate slide. (d) Visible and homogenous watermarks indicate that the protein
droplets from the protein slide are effectively and evenly transferred to the substrate slide. (e) An appropriate
enzymatic reaction buffer is then loaded onto the surface of the imprinted substrate slide and reactions are carried
out under appropriate conditions. After a series of stringent washes, the results are recorded with a microarray

scanner.
DOI: 10.7554/eLife.05322.004
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Figure 2. In vitro and in vivo characterization of YcgC's KDAC activity. (a) In vitro assays of the KDAC activity of YcgC on RutR demonstrated that its
KDAC activity does not require either NAD* or Zn?* as cofactors. Incubation with YcgC almost completely abolished the slower migrating acetylated
RutR bands (upper panel) as evidenced by immonublotting (lower panel). (b,c) LC-MS/MS analysis to determine the residues of RutR deacetylated by
YcgC. RutR was treated with YcgC first and the untreated RutR used as the control. Both these two samples were resolved on a SDS-PAGE gel side by
side. The upper band represents the Kac-containing starting materials and the lower band represents the K-containing product, which were then
recovered from the gel and subjected for MS/MS analysis (inserts). Lys52 was identified as an acetylated site in RutR protein (b). After incubating with
YcgC, acetylation on K52 was no longer detectable (c). (d) RutR is deacetylated by YcgC in Escherichia coli. A 3xFLAG tag was chromosomally inserted
at the 3'-end of rutR coding sequence. Acetylation of 3xFLAG-tagged RutR was monitored upon induction of YcgC. While the protein level of RutR was
unchanged (middle panel), its acetylation level was dramatically reduced as a function of YcgG induction (upper panel). YcgC's expression was
monitored using a custom-made antibody (lower panel). (€) Mutagenesis of RutR confirmed that K52 and Ké2 are acetylated in vivo. Two single mutants
Figure 2 continued on next page
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Figure 2 continued

K52Q and K62Q and one double mutant K52/62Q were constructed. These mutants along with WT RutR were produced and purified in E. coli. Equal
amounts of purified proteins were Western blotted with the o-AcK antibody, quantitation of acetylation level of these samples were performed. KDAC:
Lysine deacetylase; LC-MS/MS: Liquid chromatography-mass spectrometry; IP: Immunoprecipitation.

DOI: 10.7554/eLife.05322.005
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Figure 2—figure supplement 1. Without NAD",
CobB could not deacetylate RutR. In vitro assays of the
KDAC activity of CobB on RutR demonstrated that its
KDAC activity is dependent on NAD". Incubation with
CobB and NAD" almost completely abolished the
slower migrating acetylated RutR bands (upper panel)
as evidenced by immonublotting (lower panel).

DOI: 10.7554/eLife.05322.006
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Figure 2—figure supplement 2. LC-MS/MS analysis to determine the residues of RutR deacetylated by YcgC. RutR was treated with YcgC first and
used the untreated RutR as the control. Both these two samples were resolved on a SDS-PAGE gel side by side. The upper band represents the Kac-
containing starting materials and the lower band represents the K-containing product, which was then cut and subjected to MS analysis (the inlet). (a)
Lysé2 was identified as an acetylated site in RutR. (b) After incubating with YcgC, acetylation on Ké2 was no longer detectable.

DOI: 10.7554/elife.05322.007
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Figure 2—figure supplement 3. Specificity and sensitivity of the custom-made YcgC monoclonal antibody as
assessed by Western blotting. Specificity was measured by spiking an E. coli total lysate with affinity purified YcgC,

and sensitivity by testing serially diluted YcgC.
DOI: 10.7554/eLife.05322.008
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Figure 2—figure supplement 4. Mutagenesis of RutR confirmed that K52 and Ké2 are acetylated in vivo. Four
single mutants K52Q, K62Q, K52R, and K62R and two double mutants K52/62Q and K52/62R were constructed.
These mutants along with WT RutR were produced and purified in E. coli. Equal amounts of purified proteins were
Western blotted with the a-AcK antibody.

DOI: 10.7554/elife.05322.009
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Figure 3. 5200 is critical for YcgC's deacetylation activity. (a) Two mutants of YcgC, that is, S S8/10/73/77/200A
and S200A were constructed through gene synthesis. In vitro assays of the KDAC activity of these two mutants on
RutR demonstrated that their KDAC activities were completely abolished. (b) S200 on YcgC was identified as an
AEBSF binding site by LC-MS/MS analysis. YcgC was incubated with AEBSF, then trypsin digested and subjected
to MS/MS analysis. Upon AEBSF-mediated sulfonation, a 183 Da molecular weight increase is predicted. (c) In vitro
assays of the KDAC activity of YcgC on heat-denatured RutR demonstrated that YcgC was still active (right panel),
while the downshift band disappeared (left panel). Similar results were observed when heat-denatured RutR was
treated with CobB. KDAC: Lysine deacetylase; LC-MS/MS: Liquid chromatography-mass spectrometry; AEBSF: 4-
(2-Aminoethyl)benzenesulfonyl fluoride; WT: Wild type.

DOI: 10.7554/eLife.05322.010
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Figure 3—figure supplement 1. YcgC's protein deacetylase activity is inhibited by AEBSF. (a) YcgC's deacetylase
activity on YcdC was monitored when a variety of hydrolase inhibitors were added individually. The solvents of
these inhibitors, that is, DMSO and ethanol, were also included as controls. (b) Testing the individual component
of the Pierce Halt protease inhibitor cocktail revealed that AEBSF inhibits the protein deacetylase activity of YcgC.
() YegC's protein deacetylase activity is not affected by both EDTA and EGTA.

DOI: 10.7554/elife.05322.011
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Figure 3—figure supplement 2. Lysine 62 is critical for RutR proteolysis. (a) Mutant proteins of K52R, K62R, K52/
62R, K52Q, K62Q, and K52/62Q with WT, RutR proteins were treated with YcgC and examined with Coomassie
stain. (b) The ratio of cleavaged RutR to intact RutR was also calculated.

DOI: 10.7554/eLife.05322.012
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Figure 3—figure supplement 3. The K, and V.,
values of YcgC were determined using RutR as a
substrate. Because the N-terminal cleavage of RutR is
tightly coupled with its deacetylation by YcgC, the
downshifted band of RutR in the YcgC deactylation
reaction could be conveniently used as a surrogate of
YcgC's activity. YegC was incubated with

serially diluted acetylated RutR. Deacetylation was
determined by measuring the intensity of the lower
bands on a silver-stained gel.

DOI: 10.7554/eLife.05322.013
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Figure 4. YcgC and CobB target distinct sets of substrates. (a) YcgC regulates gene expression via deacetylating
RutR. Expression of ged and pmrD is significantly reduced upon RutR induction over a period of 2 hr as measured
by quantitative real-time PCR. Double asterisks indicate that the observed fold changes are statistically significant,
p<0.01. (b) Global gene expression analysis of ycgC- and cobB-induced cells. Clustering analysis shows clearly that
impact on global transcription of induction of ycgC is distinct from that of cobB. Venn diagram showing that there
is no significant overlap between genes down- and up-regulated due to CobB and YcgC induction. (c)
Overexpression of YcgC affects global protein acetylation levels in E. coli. After ycgC and cobB were separately
induced for 1 hr, global acetylation was detected in whole lysates of Escherichia coli using two pan a-AcK
antibodies. The WT E. coli strain was also included for comparison. Boxed areas indicate regions that show
obviously different staining patterns in ycgC- and cobB-induced cells. PCR: Polymerase chain reaction; WT: Wild

type.
DOI: 10.7554/elife.05322.014
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Figure 5. YcgC represents a new family of KDACs. (a) Five representative YcgC homologs with protein sequence homology ranging from low to high.
(b) Amino acid sequence homology analysis between YcgC and five selected YcgC homologs from other bacteria. The consensus strength among the
six homologous proteins at each amino acid position of YcgC is indicated with colored bars. Red, orange, green, light blue, dark blue, and blank bars

Figure 5 continued on next page
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Figure 5 continued

Biochemistry

represent 100, 80, 60, 40, 20, and 0% consensus strength, respectively. (c,d) Changes in global E. coli acetylation profiles upon induction of the five
YcgC homologs. The five selected YcgC homologs were cloned, transformed into E. coli, and induced to overexpress. Global acetylation profiles of
each induced strain were detected with a pan monoclonal antibody (Cell Signaling, #9441) and a pan polyclonal antibody (PTM-Biolabs, PTM-105), as

shown in ¢ and d, respectively. WT E. coli cells were also processed in parallel as a comparison. An antibody against myelin basic protein was used as a
loading control. WT: Wild type.
DOI: 10.7554/elife.05322.015
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