

Figures and figure supplements

Endocrine remodelling of the adult intestine sustains reproduction in Drosophila

Tobias Reiff, et al.

Figure 1. Mating increases ISC proliferation and gut size. (**A**, **A**') Using the *esgReDDM* tracer (*Antonello et al.,* **2015**), intestinal progenitors (intestinal stem cells (ISCs) and enteroblasts) are labelled with GFP and RFP, whereas the postmitotic progeny (enterocytes (ECs) and enteroendocrine cells) that these progenitors give rise to in *Figure 1. continued on next page*

Figure 1. Continued

a defined time window is labelled with RFP only (see Supplemental Information for additional details). At 3 days after mating, the posterior midgut of mated flies contains more newly generated postmitotic progeny (**A**) compared to age-matched virgins (**A**'). It has also become visibly larger (**B**, **B**'). At this time point, these guts also have a higher number of nuclei marked by the mitotic marker pH3 in both w¹¹¹⁸ and OregonR backgrounds (**C**, p = 0.008, and **E**, p < 0.001, negative binomial GLM), although the proliferation increase is transient (data not shown). The size increase is quantified in the posterior midgut by measuring midgut diameter (**D**, p < 0.001, t-test) and counting the number of cells labelled by the EC marker *caudal-Gal4* (**F**, p = 0.02, t-test). See **Table 1** for full genotypes. DOI: 10.7554/eLife.06930.003

Figure 1—figure supplement 1. Mating re-sizes the Drosophila gut. The increase in gut size at 3 days after mating is also measurable (**A**, **A**') and significant (**B**, p < 0.001, t-test) in the OregonR background. The *esgReDDM* tracing system reveals that mated guts contain more cells generated in the last 7 days if the fly had been mated in that time (**C**, p < 0.001, t-test) than if it had not. The size increase is not due to stretching of the tissue, as the density of nuclei in the posterior midgut remains the same (**D**, p = 0.77, t-test). See **Table 1** for full genotypes. DOI: 10.7554/eLife.06930.004

Figure 2. Mating changes the activity and/or expression of lipid metabolism genes in the intestine. At 3 days after mating, increased expression of a reporter that replicates the transcriptional regulation and post-translational modification of sterol regulatory element-binding protein (SREBP) is apparent in the posterior midgut (**A**, **A**', quantified in **B**, p < 0.001, Mann–Whitney test). A *bgm* transcriptional reporter is also increased specifically in the ECs of the posterior midgut following mating (**C**, **C**', quantified in **D**, p = 0.002, Mann–Whitney test). Transcript abundance of *SREBP*, *bgm*, and the *SREBP* targets *Acyl-CoA synthetase long-chain* (*Acsl*), *Fatty acid synthase* (*FAS*), and *Acetyl-CoA carboxylase* (*ACC*) is increased by mating in either one or both of the w¹¹¹⁸ and OregonR backgrounds (**E** w¹¹¹⁸: p = 0.02 *SREBP*, p = 0.02 *bgm*, p = 0.005 *Acsl*, p = 0.5 *FAS*, p = 0.3 *ACC*; **F** OregonR: p = 0.02 *SREBP*, p = 0.03 *bgm*, p = 0.03 *Acsl*, p = 0.01 *FAS*, p = 0.04 *ACC*, paired one-tailed t-test). See **Table 1** for full genotypes. DOI: 10.7554/eLife.06930.005

Figure 3. Systemic JH secreted after mating acts directly in the intestinal epithelium to drive reproductive remodelling. Circulating juvenile hormone (JH) is elevated after mating in the haemolymph of female flies (A, p = 0.02 at 24 hr, p = 0.002 at 48 hr, t-test with Holm's correction). Increased tissue renewal (B, B') and SREBP activation (C, C', quantified in D, p < 0.001, Mann–Whitney test) are apparent following a 3-day dietary supplementation with JH analogue (JHa). JHa treatment is sufficient to increase mitoses (E, p < 0.001, negative binomial GLM) and size (H, p < 0.001, t-test) of the posterior midgut. Conversely, when the endogenous JH source is genetically ablated by means of Aug21 > NiPp1 (Yamamoto et al., 2013), the proliferation and size increase that follow mating are abolished, although they can be reinstated by feeding JHa (proliferation F, p < 0.001 between Aug21 > NiPp1 and Aug21 > NiPp1 mated, p < 0.001 between Aug21 > NiPp1 and NiPp1/+ mated, p < 0.001 between Aug21 > NiPp1 and Aug21 > NiPp1 and

Figure 3. Continued

reporter upon mating is abolished by the downregulation of *gce*, but not *Met*, in ECs using the EC-specific driver *Mex-Gal4* (**K–K**^{''''}). See **Table 1** for full genotypes.

DOI: 10.7554/eLife.06930.006

Figure 3—figure supplement 1. Continued

Figure 3—figure supplement 1. Intestinal JH signalling is relayed through Kr-h1 and underlies mating-dependent intestinal growth and gene expression phenotypes. JHa application in virgin females results in a net growth of the gut, as shown by the increase in *caudal*-marked cells (A, p = 0.004, t-test). The JH signalling pathway can be targeted using RNAi constructs against the receptors Met and gce, which decrease transcript abundance compared to a tub^{ts} control when expressed globally in larvae for 3 hr at 29°C (**B**, p = 0.002 for Met, p = 0.005 for gce, paired one-tailed t-test). Consequently, using esgReDDM to specifically knockdown gce in adult intestinal progenitor cells abolishes the proliferative effect of JHa application (C, C'), but does not reduce the number of progenitors after 7 days of downregulation (D, p > 0.05, t test). Progenitors in which gce is downregulated can still proliferate normally to replenish a gut damaged by a 24 hr application of the toxin paraquat (E, E' with quantification of mitoses in F, p < 0.001 for both esgReDDM/+ and esgReDDM > gce RNAi, p > 0.05 for all other relevant comparisons, t test with Holm's correction) and the number of progenitors is not reduced by this treatment (G, p = 0.04 between esgReDDM/+ untreated control and esgReDDM > gce RNAi untreated control, p > 0.05 for all other relevant comparisons, t test with Holm's correction). The transcription factor Kruppel homolog 1 (Kr-h1), a well-established effector of JH responses, is transcriptionally upregulated after 3 days of mating (\mathbf{H} , $\mathbf{p} = 0.02$ in w^{1118} , $\mathbf{p} = 0.02$ in OregonR, paired two-tailed t-test). Kr-h1 function is necessary and sufficient for the re-sizing of the gut after mating, as its downregulation in intestinal progenitors through RNA interference using esgReDDM prevents the increase in proliferation (I, p < 0.001 between esgReDDM/+ and esgReDDM > Kr-h1 RNAi mated, negative binomial GLM with Holm's correction) and gut size (J, p < 0.001 between esgReDDM/+ and esgReDDM > Kr-h1 RNAi mated, t-test with Holm's correction) typically observed after 7 days of mating, while overexpression of Kr-h1 constructs from the same cells recapitulates the effect of mating in virgins (proliferation, I, p < 0.001 between esgReDDM/+ and esgReDDM > $Kr-h1_{GS}$ virgin, p < 0.001 between esgReDDM/+ and esgReDDM > $Kr-h1_{UAS}$ virgin, negative binomial GLM with Holm's correction; gut size J, p < 0.001 between esgReDDM/+ and esgReDDM > Kr-h1_{UAS} virgin, t-test with Holm's correction). RNAi constructs against Kr-h1 and SREBP are effective in downregulating these genes; they decrease transcript abundance compared to a tub^{ts} control when expressed globally in larvae for 3 hr at 29°C (K, p = 0.02 for Kr-H1, p < 0.001 for both SREBP constructs, paired one-tailed t-test). Downregulating gce constitutively from ECs using Mex-Gal4 significantly suppresses the transcriptional increase of the lipid metabolism gene bgm upon mating, as indicated by the intensity ranking of a gce reporter (L, p = 0.004 between gce RNAi/+ and Mex > gce RNAi, p = 0.02 between Mex > gce RNAi and Mex/KK control, Mann–Whitney test with Holm's correction; relevant comparisons with Met RNAi are not significant). See **Table 1** for full genotypes. DOI: 10.7554/eLife.06930.007

Figure 4. Metabolic remodelling of ECs by JH sustains reproduction. Lipid-harbouring tissues (fat body, posterior midgut, and ovary) are found in close proximity in the fly's abdomen (represented schematically in **A**, and in confocal microscopy in **D**). The amount of stored triglycerides (TAG) in the carcass of 3-day mated sterile female flies is increased compared to virgins (**B**, p = 0.003 in w^{1118} , p = 0.009 in OregonR, t-test), as quantified by thin-layer chromatography (**C**). Adult-specific downregulation of JH receptors *gce* and *Met* or *SREBP* in ECs reduces the total progeny produced by females in the 6 days following their first mating (**E**, p = 0.01 between *Met RNAi/+* and *Mex^{ts} > Met RNAi*, p = 0.007 between *Mex^{ts} > Met RNAi* and *Mex^{ts}/KK* control, p < 0.001 between *gce RNAi/+* and *Mex^{ts} > gce RNAi*, p = 0.007 between *Mex^{ts} / KK* control; **F** p = 0.04 between *SREBP RNAi/+* and *Mex^{ts} > SREBP RNAi*, p = 0.004 between *SREBP RNAi/+* and *Mex^{ts} > SREBP RNAi*, p = 0.002, t-test). Acute block of lipid export by heat-shock activation of *lpp > stop > LTP RNAi* (*Palm* et al., 2012) in virgin females results in heavy accumulation of neutral lipid in this gut region, further indicating that this midgut region provides a net source of lipid in adult flies (**I**, quantified in **J**: p < 0.001 between *LTP RNAi/+* and *lpp > stop > LTP RNAi* and *lpp*

Figure 4—figure supplement 1. continued on next page

Figure 4figure supplement 1. Continued

Figure 4—figure supplement 1. Reproductive intestinal remodelling is uncoupled from germline demands and is needed to sustain reproduction. Sterile females carrying the ovo^{D1} mutation experience the post-mating increase in progenitor proliferation (**A**, p < 0.001 for w^{1118} and ovo^{D1} , negative binomial GLM, visualised in **C** and **C'** using the *esgReDDM* tracing system), gut size increase (**B**, p < 0.001 for w^{1118} and ovo^{D1} , t-test), and *SREBP* reporter activation (**D**, p < 0.001 for w^{1118} and p = 0.005 for ovo^{D1} , Mann–Whitney test, visualised in **E** and **E'**). The role of intestinal remodelling in enhancing reproductive capacity is confirmed with additional RNA interference lines against the JH receptor gce (chosen because of its larger effect in *Figure 4E*; **F**, p = 0.002 between *GD11178/+* and *Mexts* > *GD11178*, p = 0.008 between *Mexts* > *GD11178* and *Mexts*/+, p < 0.001 between *GD37641/+* and *Mexts* > *GD37640*, t-test). Despite these effect on fecundity, eggs laid by gce, Met, or *SREBP* RNAi mothers are viable (**H** and **I**, mean hatched fraction >0.9 for all groups, p > 0.05 for all relevant comparisons, t-test). See *Table 1* for full genotypes.