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Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and
prevents defects that manifest postnatally
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Figure 1. Maternal expression and coditional deletion of Kdm1a in mouse oocytes. (A) Wild-type mouse oocyte nucleus (white arrowhead) and
surrounding follicle cells (white asterisks) stained with anti-KDM1A (green) antibody and DAPI (red). (B) Developmental timeline of maternal Cre
expression (Vasa-Cre, Gdf9-Cre and Zp3-Cre transgenes) and corresponding oogenesis stages. (C,D) Immunohistochemistry (IHC) with anti-KDM1A
(brown) antibody and hematoxylin (blue) showing KDM1A nuclear expression (black arrowhead) and absence of expression (white arrowheads) in
Kdm1a®% control (C) and mutant (D) oocytes. (E,F) Immunofluorescence (IF) with anti-KDM1A (green) antibody, phalloidin (red) and DAPI (blue)
showing KDM1A nuclear expression (black arrowhead) and absence of expression (white arrowheads) in Kdm1a?P3 control (E) and mutant (F) oocytes.
(G,H) IHC with anti-KDM1A (brown) antibody and hematoxylin (blue) showing KDM1A nuclear expression (black arrowhead), absence of expression
(white arrowhead) and reduced expression (pink arrowhead) in Kdm1a"25? control (G) and mutant (H) oocytes. (l) Percentage of oocytes with KDM1A
(green), reduced KDM1A (red) or no KDM1A blue) staining in Kdm1a® and Kdm1a¥2*? heterozygous control versus mutant oocytes. Scale bars
represent 50 um. n=number of oocytes analyzed with percentages indicated for each category.
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Primordial Follicles

Figure 1—figure supplement 1. KDM1A expression in stged oocytes. (A-L) Immunohistochemistry (IHC) of
primordial follicles (A-C), primary follicles (D-F), secondary follicles (G-l) and pre-antral and antral follicles (J-L)
stained with anti-KDM1A(brown) antibody and hematoxylin (blue). The oocyte nucleus is indicated with black
arrowheads. Scale bars represent 50 um.
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Figure 1—figure supplement 2. Generation of Kdm1a mutant and control animals. Kdm1a animals were

generated by crossing multiple generations of Kdm1a

1 animals with either Gdfo-, Zp3-, or Vasa-Cre transgenic

animals. Blue indicates Mus castaneus control animals. Purple indicates Kdm7a mutant females. Green indicates
B6/Cast hybrid control progeny. Red indicates Kdm1a maternal effect progeny (MEP). Orange indicates progeny
resulting from intercrossing 2 MEP adult animals. All labelled progeny were used in crosses and assays presented
in subsequent figures (color-coding matches animals used and graphed in each figure).
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Figure 2. Kdm1a%P3 embryos arrest at the 1-2 cell stage. (A-D) Brightfield images of (A,C) M+Z+ and (B,D) M-Z+ 1- and 2-cell embryos derived from

Kdm1a??® control and mutant mothers at e1.5. (E) Percentage of 1-cell (green) and 2-cell (yellow) embryos derived from Kdm1a

mothers at e1.5. n = 40 for Kdm1a?> M+Z+ embryos from 3 litters. n = 57 for Kdm1a?> M-Z+ embryos from 6 litters.
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Figure 2—figure supplement 1. Lack of normal Kdm1a°%" and Kdm1a%°3 embryos at embryonic day 1.5 and 2.5. (A,B,D,E,F) Brightfield images of
embryonic day 1.5 (e1.5) M+Z+ 1-cell (A) and 2-cell (B) embryos and M-Z+ 1-cell (D), 2-cell (E), and fragmented (F) embryos derived from Kdm1a®*
control and mutant mothers. (C,G,H) Brightfield images of e2.5 M+Z+ 8-cell (C) embryo and M-Z+ abnormal 1-cell (G), and fragmented (H) embryos
derived from Kdm1a®# control and mutant mothers. () Percentage of fragmented (purple), unfertilized oocyte or 1C (green), and 2C (yellow) embryos
from Kdm1a%# control and mutant mothers. n = 123 for Kdm1a® M+Z+ control embryos from 8 litters. n = 104 for Kdm1a®¥? M-Z+ embryos from 8
litters. (J) Brightfield image of 3-cell M-Z+ embryo derived from a Kdm1a”®® mutant mother. (K) Brightfield image of 4-cell M-Z+ embryo derived from a
Kdm1a?® mutant mother.
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Figure 3. The MZT is impaired in Kdm1a?P® mutants. (A,B) Differential expression of mRNAs in Kdm1a™ versus Kdm1a23 oocytes (A) or Kdm1a™"
M+Z+ versus Kdm1a?* M-Z+ 2C embryos (B) as determined by RNA-seq. Genes/repeats highlighted in red are significant with the number of
significant gene/repeats show. GO enrichment using the Up_tissue database was performed on Kdm1a™" M+Z+ 2C enriched and Kdm1a?* M-Z+ 2C
enriched mRNAs, with a list of the most enriched categories displayed. (C,D) Differential expression of mRNAs in Kdm1a™" M+z+ 2C embryos versus
Kdm1a™" cocytes (C) or Kdm1a?P? M-Z+ 2C embryos versus Kdm1a™" cocytes (D). The numbers of zygotically activated (2C enriched) genes/repeats
and zygotically repressed (oocyte enriched) genes/repeats are highlighted in each comparison. (E) Hierarchical cluster dendrogram of transcriptomes in
Kdm1a™" cocytes, Kdm1a?®® oocytes, Kdm1a™" M+Z+ 2C embryos, and Kdm1a?P®> M-Z+ 2C embryos. (F) Heat map of gene expression of principal
component 1 (PC1) genes in Kdm1a™" cocytes, Kdm1a™® M+Z+ 2C embryos, and Kdm1a?°> M-Z+ 2C embryos. The most GO Up_tissue enriched
terms are displayed for the 2 categories of PC1 genes.
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Figure 3 continued

The following source data is available for figure 3:

A/l Zp3

Source data 1. Gene Table comparison of Kdm1a
DOI: 10.7554/eLife.08848.009

oocytes and Kdm1a“P” oocytes.

Source data 2. Gene Table comparison of Kdm1a®® M+Z+ 2C and Kdm1a?* M-Z+ 2C embryos.

DOI: 10.7554/eLife.08848.010
Source data 3. Gene Table comparison of Kdm1a?*> M+Z+ 2C and Kdm1a™" cocytes.
DOI: 10.7554/eLife.08848.011
Source data 4. Gene Table comparison of Kdm1a®® M-Z+ 2C and Kdm1a™" cocytes.
DOI: 10.7554/eLife.08848.012
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Figure 3—figure supplement 1. The MZT is impaired in Kdm1a

Zp3

mutants. (A-H) Differential expression of

mRNAs in Kdm1a™ versus Kdm1a%°3 oocytes (AE), Kdm1a™ M+Z+ versus Kdm1a%*® M-Z+ 2C embryos (B,F),
Kdm1a"" M+z+ 2C embryos versus Kdm1a™" oocytes (C,G), and Kdm1a%P3 M-Z+ 2C embryos versus Kdm1a™f
oocytes (D,H) as determined by RNA-seq. Differential expression represented in mean difference plots (A-D) and
normalized FPKM values on XY scatter plots (E-H). Genes/repeats highlighted in red are significant.
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Figure 3—figure supplement 2. Principal component analysis of Kdm1a

Zp3

2C embryos. (A) Principal Component

1 is plotted on x-axis and Principal Component 2 is plotted on y-axis. Variance due to each component for
Kdm1a?P® M-Z+ 2C embryos (red), Kdm1a™" M+Z+ 2C embryos (green), and Kdm1a™" cocytes (purple) are

shown.
DOI: 10.7554/elife.08848.014

Wasson et al. eLife 2016;5:08848. DOI: 10.7554/¢eLife.08848

10 of 20


http://dx.doi.org/10.7554/eLife.08848.014
http://dx.doi.org/10.7554/eLife.08848

e LI FE Research article

Developmental biology and stem cells

Lsd1/Kdm1a
e 7 L —— L w— _——
-
e ) — ) )
Mez+2C4 ) L,
Msz+2c2
M+z+2¢3 ( I L A
M-Z+ 2C-1
M-Z+2C2
M-Z+2C-3
Tet1 Trim28
— e — — — —— — -
e e - u:‘“ e o ame e A
L i L = i e veme e . e e - oo |
mM#z+2C1 n . N M#2Z+2C1 7 am i
M+2Z+ 2C-2 [ "‘ s ™ N M#z+2C2 " v
M+Z+ 2C-3 —
) Ll N 1 | M+z+2c-3m T
M-2+2C-1 M-Z+2C-1
mz+2c2 mz+2c2
Mz+2¢3 Mz+2c3
- — - — ———— ————————
Zfp57 Dppa3/Stella
— — - ——— - o —— e —— e T — L
arom ssom
e wepn v ‘ s v = EOE N e — = 5 f—
= J— 5
M+2+ 2C-1 M+Z+ 2C1
- L |
M+Z+ 2C-2 M+Z+ 2C-2
Miz+2C3 mz+2C3 —
Mz+201 r - b | M2+ 2¢-1 — = i
M-Z+2C-2 —— M-Z+2C-2
M-Z+2C-3 . - - RSN, M-z+2C-3 .
= _M * - R —
F Dnmt1 Uhrf1
= - T B T ) e — e - O Lmaa o T L
=
: ) s = ) r = ) - E Bt o T e L ew e o =
M#Z+2C-1 " Ty M#Z+2C1
M#z+2C2 i M#z+2C2
Miz+2C-3 " j M#Z+2C3
weezen L, . IR 1 wzrzen A P 0
M-Z+2C-2 o i M-z+2C-2 it
wa 269 PRI EENN] l was 2 . ee
HHH—HH —
L B . e BT : R R 1] " 1 e
' -

Figure 3—figure supplement 3. Expression of epigenetic regulators in Kdm1a?® 2C embryos. Sequenced RNA-seq reads showing relative expression
from Kdm1a™" M+z+ 2C embryos and Kdm1a%P3 M-Z+ 2C embryos aligned to the genome for Lsd1/Kdm1a (A), Tet1 (B), Trim28 (C), Zfp57 (D), Dppa3/
stella (E), Dnmt1 (F) and Uhrf1 (G). Gene tracks visualized using Integrative Genomics Viewer.
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Figure 3—figure supplement 4. Relative expression of epigenetic regulators in Kdm1a

Zp3

2C embryos. Quantitative RT-PCR analysis of epigenetic

regulators including Trim28 (A), Zfp57 (B) Dppa3/stella (C), and Dnmt1 (D) in Kdm1a?®3 M+Z+ 2C embryos compared to Kdm1a?*3 M-Z+ 2C embryos.

Y-axis represents average fold change. All gene expression was normalized to Hprt expression.
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Figure 3—figure supplement 5. Expression of epigenetic regulators in Kdm1a™ and Kdm1a?*® oocytes. Sequenced RNA-seq reads showing relative
expression from Kdm1a™f oocytes and Kdm1a?P® mutant oocytes aligned to the genome for Lsd1/Kdm1a (A), Tet1 (B), Trim28 (C), Zfp57 (D), Dppa3/
stella (E), Dnmt1 (F) and Uhrf1 (G). Gene tracks visualized using Integrative Genomics Viewer.
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Figure 4. Hypomorphic phenotype in Kdm1a”**® progeny. (A-D) Brightfield images of M+Z+. (A) and M-Z+ (B-D) embryos derived from Kdm1a"**
control and mutant mothers at embryonic day 3.5 (e3.5). Panels show blastocysts (A,B), a multicellular embryo (C) and a fragmented embryo (D). (E)
Percentage of fragmented (purple), 1-cell (green), multi-cellular (blue) and blastocyst (yellow) embryos from Kdm1a¥?%® control and mutant mothers at
e3.5. n = 58 for Kdm1a"?** M+Z+ embryos from 7 litters. n = 79 for Kdm1a"#s2 M-Z+ embryos from 10 litters. (F) Litter sizes of Kdm1a"#*? control and
mutant mothers. Average litter size for each indicated by red line. Each circle indicates one litter and n=number of litters analyzed. p-values calculated
using an unpaired t-test with **** = p<0.0001 indicating statistical significance. (G) Percentage of newborn pups from Kdm1a"#** heterozygous control
and mutant mothers that died perinatally. n = number of litters analyzed. p-values calculated using an unpaired t-test with **** = p<0.0001 indicating
statistical significance.
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Figure 5. Abnormal behaviors in Kdm1a"2%® M-Z+ adults. (A-C) Mouse cages at day 0 (A) and day 8 (B) from M. castaneus (CAST) controls compared to
day 6 (C) from a Kdm1a"?*? M-Z+ adult. (D) Quantification of change in weight of food in the hopper from CAST controls, B&/CAST hybrid M+Z+
controls, and F2 intercrossed M+Z+ adults versus Kdm1a"#$® M-Z+ adults. Data are shown as mean for each day with error bars indicating + S.E.M. (E)
Quantification of change in bedding height from CAST controls, B6/CAST hybrid M+Z+ controls, and F2 intercrossed M+Z+ adults versus Kdm 12"
M-Z+ adults. Data are shown as mean for each day with error bars indicating + S.E.M. (F-H) Mouse cages before (F) and after (G,H) the marble burying
assay was performed on a CAST control (G) compared to a Kdm1a¥2%2 M-Z+ adult (H). (I) Quantification of the number of marbles buried during the
marble burying assay performed on CAST controls, B&/CAST hybrid M+Z+ controls, and F2 intercrossed M+Z+ adults versus Kdm1a"#** M-Z+ adults.
Data are shown as quartiles with error bars indicating = S.E.M. (J,K) Open field test performance in CAST controls versus Kdm1a"?*? M-Z+ adults scored
by number of center crosses (J) and time spent in center of cage (K). Data are shown as quartiles with error bars indicating + S.E.M. p-values calculated
using an unpaired t-test with n.s. indicating p>0.05, * = p<0.05, ** = p<0.005, *** = p<0.0005. All asterisks indicate statistical significance.

DOI: 10.7554/elife.08848.020

Wasson et al. eLife 2016;5:08848. DOI: 10.7554/¢eLife.08848 15 of 20


http://dx.doi.org/10.7554/eLife.08848.020
http://dx.doi.org/10.7554/eLife.08848

e LI FE Research article Developmental biology and stem cells

.
2
s 60
§Tn‘ mm CAST controls
5 < 40 = Kdm1a"*? adults (M-Z+)
§*
T 2
3
a
0 . - B
Teepg22P i
ES < EFES g s
o 2 ¢ £ 5 ¢ o _cLo 8
0 F 5326388 a
© &gz s
28
3 :
2 EE
w
B 4 C
b 5001
500 §_ —=— B6/Cast M+Z+ controls
- —e— CAST controls o 400+ —+— Kdm1a"**?* M-Z+ adults
8 400 Kdm1a"**? M-Z+ adults _2
g y £ 3001
‘£ 300 9
§ 200 § § 2001 i
o
2 £ 100+
£ 100 s
g )
o 0 T T T ?
Day 0 Day 1 Day 2 Day 3 Day 0 Day 1 Day 2 Day 3
500 m 2,01 Parents of Kdm1a"*? M-Z+
3 - . o adults
) F2int d M+Z
§ 400+ = —— adl:r‘sercrosse e o 5 —e— CAST controls
2 = 1| —— kamta"s?mz+ aduis £ 157 Kdm1a"*5* M-Z+ adults
' 300 -
3 § ) 1.0 *
£ 2004 - °
@ £
£ o
S 100+ £ 05
5 2
0 r r T —| & 0ol— r T T T
Day 0 Day 1 Day 2 Day 3 Day0 Day1 Day2 Day5 Day6
FA —a— B6/Cast M+Z+ controls G
g 2.0 - Vasa —_ F2 intercrossed M+Z+
2 —— Kdm1a"**? M-Z+ adults g 2.0 adults
Q 151 S —— Kdm1a"#%2 M-Z+ adults
= £ 1.5
o ~—
£ « -
D 10 S .
[ = = 1.0
= ]
o <
1 o
:g 0.5 £ 0.57
E 3
[ o Q
m Al T T T T T m 0.0
Day0 Day1 Day2 Day5 Day6

T T T T T
Day0 Day1 Day2 Day5 Day6

Figure 5—figure supplement 1. Abnormal behaviors in individual Kdm1a¥#** M-Z+ adults. (A) Behavioral ethogram of M. castaneus (CAST) controls
versus Kdm1a"#** M-Z+ adults. (B) Quantification of change in weight of food in the hopper of parents of Kdm1a¥#** M-Z+ adults and CAST controls
versus Kdm1a"#%2 M-Z+ adults. (C) Quantification of change in weight of food in the hopper of B6/CAST M+Z+ controls versus Kdm1a"?*? M-Z+ adults.
(D) Quantification of change in weight of food in the hopper of F2 intercrossed M+Z+ adults versus Kdm1a"?? M-Z+ adults. (E) Quantification of
change in bedding height of parents of Kdm1a"#** M-Z+ adults and CAST controls versus Kdm1a"#** M-Z+ adults. (F) Quantification of change in
bedding height of B6/CAST M+Z+ controls versus Kdm1a"#** M-Z+ adults. (G) Quantification of change in bedding height of F2 intercrossed M+Z+
adults versus Kdm1a"?%® M-Z+ adults. The measurements for each individual animal (B-D) and (E-G) correspond to the averages shown in Figure 5 (D,
E). Yellow arrowheads represent animals heterozygous for Kdm1a. Data shown as mean for each day. p-values calculated using an unpaired t-test with *
= p<0.05, *** = p<0.0005, **** = p<0.0001. All asterisks indicate statistical significance.
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Figure 6. Imprinting defects in Kdm1a

progeny. (A,D,G) Allele-specific bisulfite analysis of ZacT (A), Impact (D),

and H19 (G). Each line represents the clone of an allele. Each circle represents a CpG dinucleotide where closed

circles indicate methylation and open circles indicate no methylation. Maternal and paternal alleles are indicated.
(B,E,H) Relative expression analysis of Zac1 (B), Impact (E), and H19 (H). Expression normalized to B-actin. Error
bars indicate S.E.M. p-values calculated using an unpaired t-test with n.s. indicating p>0.05, * = p<0.05, ** =
p<0.005, **** = p<0.0001. All asterisks indicate statistical significance. (C,F) Allele-specific expression of Zac1 (C)
and Impact (F). The polymorphic base is highlighted in yellow. For Zac1, the maternal allele SNP is T (red) in
highlighted position and paternal allele SNP is C (blue) in electrophoretogram. For Impact, the maternal allele
SNP is A (green) in highlighted position and paternal allele SNP is G (black) in electrophoretogram. All analyses

Figure 6 continued on next page
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Figure 6 continued

were performed on 2 staged matched B6/CAST hybrid control pups and 2 maternal effect progeny (MEP)
exhibiting perinatal lethality.
DOI: 10.7554/eLife.08848.024
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Figure 6—figure supplement 1. Imprinting analysis of Kdm1a progeny. (A,C,E) Allele-specific bisulfite analysis of, Igf2r (A), Mest (C), and Snrpn (E).
Each line represents the clone of an allele. Each circle represents a CpG dinucleotide where closed circles indicate methylation and open circles
indicate no methylation. Maternal and paternal alleles are indicated. (B,D,F) Relative expression analysis of Igf2r (B), Mest (D), and Snrpn (F). Expression
normalized to B-actin. Error bars indicate + S.E.M. p-values calculated using an unpaired t-test with n.s. indicating p>0.05, * = p<0.05, ** = p<0.005,
**x = <0.0001. All asterisks indicate statistical significance. All analyses were performed on a stage matched B4/CAST hybrid control pup and 2
maternal effect progeny (MEP) exhibiting perinatal lethality.
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Figure 7. Model. Loss of maternal LSD1 results in defects later in development in wild-type oocytes, after
fertilization (denoted by blue sperm encircling oocyte) the fertilized egg undergoes the maternal to zygotic
transition (MZT, green to blue/purple) at the 1-2 cell stage. These M+Z+ embryos proceed normally through
development (indicated by blastocyst, perinatal stage pup, and adult mouse). In contrast, when Lsd1 is deleted
with either Gdf9- or Zp3-Cre, the resulting Lsd1Gdf9 and Lsd1Zp3 progeny become arrest at the 1-2 cell stage
and never undergo the MZT (green). When Lsd1 is deleted with Vasa-Cre, we observe 3 hypomorphic outcomes in
resulting Lsd1Vasa progeny: (1) developmental arrest at the 1-2 cell stage, (2) perinatal lethality and (3) abnormal
behavior in surviving adult animals. These outcomes are due to reduced LSD1 in the mothers oocyte, suggesting
that lowered maternal LSD1 can result in defects much later in development. These long-range outcomes are
associated with imprinting defects (depicted as wild-type versus mutant changes in DNA methylation within the
yellow region).
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