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Abstract Coordinated walking in vertebrates and multi-legged invertebrates such as Drosophila 
melanogaster requires a complex neural network coupled to sensory feedback. An understanding 
of this network will benefit from systems such as Drosophila that have the ability to genetically 
manipulate neural activities. However, the fly’s small size makes it challenging to analyze walking in 
this system. In order to overcome this limitation, we developed an optical method coupled with 
high-speed imaging that allows the tracking and quantification of gait parameters in freely walking 
flies with high temporal and spatial resolution. Using this method, we present a comprehensive 
description of many locomotion parameters, such as gait, tarsal positioning, and intersegmental and 
left-right coordination for wild type fruit flies. Surprisingly, we find that inactivation of sensory neurons 
in the fly’s legs, to block proprioceptive feedback, led to deficient step precision, but interleg 
coordination and the ability to execute a tripod gait were unaffected.
DOI: 10.7554/eLife.00231.001

Introduction
Ever since life became terrestrial ∼360 million years ago, animals have developed increasingly sophis-
ticated methods to navigate their environments (Dickinson et al., 2000). Locomotion is essential for 
animals to escape from predators, find mates, and search for food. One of the most common forms of 
terrestrial locomotion depends on the movement of multi-jointed legs. For this to occur, animal nervous 
systems face two main computational challenges. First, multiple leg joints must move rhythmically and 
in a precisely coordinated fashion to allow the stereotyped movements that occurs during the swing 
and stance phases of each step cycle. Second, these movements must be coordinated between legs, 
which number four in a typical tetrapod and six in a hexapod. Both challenges are met in part by inter-
actions between central pattern generators (CPGs), neural networks within the central nervous system 
that have the capacity to generate rhythmic outputs (MacKay-Lyons, 2002). When used for walking, 
individual CPGs result in the rhythmic and alternating activity of motor neurons that control the flexion 
and extension of single leg joints (Bässler, 1977; Strauss, 2002; Borgmann et al., 2009; Büschges et al., 
2011). Leg movement coordination is also assisted by proprioceptive sensory inputs that report the 
load and position of leg joints (Bässler, 1977; Borgmann et al., 2009). Other sensory modalities, such 
as visual, olfactory and gravitational, also modulate the activity of locomotor CPGs to allow animals to 
readily change their motor behavior in response to their environment (Frye, 2010).

An understanding of locomotion requires the identification of the neurons that comprise locomotor 
neural circuits. Given the complexity of these circuits, insects provide an attractive model to achieve 
this goal due to their relative simplicity, approachable physiology and availability of genetic tools. 
Moreover, adult insects share with vertebrates the same general principles of locomotion (Pearson, 
1993). Nevertheless, despite many anatomical similarities, it is less clear how similar the neural circuitries 
underlying locomotion are in vertebrates and invertebrates. Groundbreaking studies in cockroaches, 
locusts and stick insects have identified many components and fundamental rules that regulate the 
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walking apparatus, such as the definition of multiple gaits (Graham et al., 1985; Burrows, 1992; Zill 
et al., 2004; Ritzmann and Büschges, 2007; Büschges et al., 2008). However, unlike in verte-
brates, where gait transitions are discontinuous, it is less clear in which situations insects use distinct 
gaits and how they transition between them. Although theoretical considerations suggested the 
possibility that gait transitions may be more gradual than they are in vertebrates, this question has 
not been fully resolved (Graham et al., 1985). Walking speeds in cockroaches, for example, cluster 
into two groups, but both rely on the tripod gait (Bender et al., 2011). The stick insect tends to use 
a tetrapod gait at slower speeds and a tripod gait at faster speeds (Graham et al., 1985). Drosophila, 
on the other hand, are reported to primarily use the tripod gait (Strauss and Heisenberg, 1990). 
Similar questions arise with respect to the role of sensory feedback in coordinated walking. Although 
feedback is thought to be critical for coordination between legs (Bässler, 1977; Borgmann et al., 
2009) most studies address this question using electrophysiology readouts with tethered animals. In 
addition, with the exception of surgical ablation experiments (Usherwood et al., 1968; Cruse et al., 
1984), it has been difficult to dissect the contribution of individual sensory modalities. Gaining 
further insights into these questions may benefit by the use of systems that use freely walking animals 
with access to genetic tools to identify and manipulate the individual components of locomotor 
circuits.

eLife digest Most animals need to be able to move to survive. Animals without limbs, such as 
snakes, move by generating by wave-like contractions along their bodies, whereas limbed animals, 
such as vertebrates and arthropods, walk by coordinating the movements of multi-jointed arms and 
legs. Locomotion in limbed animals involves bending each joint within each arm or leg in a coordinated 
manner, while also ensuring that the movements of all the limbs are coordinated with each other. In 
bipeds such as humans, for example, it is critical that one leg is in the stance phase when the other 
leg is in the swing phase. The rules that govern the coordination of limbs also depend on the gait, 
so the rules for walking are not the same as the rules for running.

The nervous systems of bipeds and other animals that walk solve these problems by using complex 
neural circuits that coordinate the firing of the relevant motor neurons. Two general mechanisms are 
used to coordinate the firing of motor neurons. In one mechanism, local interneurons within the 
central nervous system coordinate motor neuron activities: in vertebrates these interneurons are 
found in the spinal cord. A second mechanism, termed proprioception, relies on sensory neurons 
that report the load and joint angles from the arms and legs back to the central nervous system, 
and thereby influence the firing of the motor neurons. Remarkably, both of these mechanisms, and 
also the types of neurons that comprise motor neuron circuits, are conserved from arthropods to 
vertebrates.

Mendes et al. describe a new approach that can be used to analyze how the fruit fly,  
D. melanogaster, walks on surfaces. They use a combination of an optical touch sensor and high-
speed video imaging to follow the body of the fly as it walks, and also to record when and where it 
places each of its six feet on the surface as it moves. Then, using a software package called FlyWalker, 
they are able to extract a large of number of parameters that can be used to describe locomotion in 
adult fruit flies with high temporal and spatial resolution. Many of these parameters have never 
been measured or studied before.

Mendes et al. show that fruit flies do not display the abrupt transitions in gait that are typically 
observed in vertebrates. However, they do modify their neural circuits depending on their speed: 
indeed it appears that flies use subtly different neural circuitry for walking at slow, medium and fast 
speeds. Moreover, when genetic methods are used to block sensory feedback, the fly is still able to 
walk, albeit with reduced coordination and precision. Further, the data suggest that proprioception 
is less important when flies walk faster compared to when they walk more slowly. The next step in 
this research will be to combine this new method for analyzing locomotion in flies with the wide 
range of genetic tools that are available for the study of Drosophila: this will allow researchers to 
explore in greater detail the components of the motor neuron circuitry and their role in coordinated 
walking.
DOI: 10.7554/eLife.00231.002
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The fruit fly, D. melanogaster, is a powerful genetic model with a large collection of mutants and an 
increasingly sophisticated genetic toolkit (Pfeiffer et al., 2008; Venken et al., 2011). However, 
despite the availability of powerful genetic tools, there is a lack of quantitative and robust methods to 
analyze the consequences of manipulating locomotor circuits in the fruit fly. Consequently, many studies 
focus on relatively low-resolution locomotor assays such as monitoring the average speed of a popula-
tion, walking trajectories, or the ability to fulfill simple motor tasks such as climbing a vertical surface 
(Ganetzky and Flanagan, 1978; Branson et al., 2009; Slawson et al., 2009; Robie et al., 2010). To 
obtain kinematic data, researchers have relied on the manual frame-by-frame analysis of videos 
(e.g. Strauss and Heisenberg, 1990, 1993; Wosnitza et al., 2012). The lack of a high-resolution and 
accessible assay to monitor fruit fly walking has greatly limited the use of this model system to study 
locomotion.

In order to quantitatively analyze locomotion in Drosophila, we developed an optical system to 
monitor walking that uses frustrated Total Internal Reflection (fTIR) coupled with high-speed video 
imaging. Our fTIR-based method is similar in principle to that used for analyzing the gaits of larger 
animals (e.g. CatWalk (Vrinten and Hamers, 2003); http://www.noldus.com/animal-behavior-research/
products/catwalk/), but differs significantly due to the small size and rapid walking speed of fruit flies. 
Using this approach, we are able to track the position of each footprint relative to the body at high 
spatial and temporal resolution as an untethered fly walks freely on a flat surface. Custom analysis 
software allows the extraction of many parameters of fly walking behavior, including gait, coordination 
between legs, and footprint positions. Using this method, we comprehensively characterized the walk-
ing behavior of wild type animals. Unlike walking in vertebrates, our data demonstrate that flies do not 
abruptly switch from one gait to another, but instead rely on a continuum of gait patterns that correlate 
with walking speed. However, several readouts suggest that flies may use distinct neural programs at 
slow, medium, and fast walking speeds. Genetic manipulations to specifically disrupt sensory feedback 
from the legs show that blocking proprioception results in altered step parameters and reduced walk-
ing precision, especially at slower speeds, but does not interfere with the ability of flies to execute a 
tripod gait. Together, these data reveal the underlying parameters of wild type walking in Drosophila 
and show that proprioceptive sensory feedback is important, but not absolutely required, for coordinated 
locomotion.

Results
High resolution tracking of gait parameters
The analysis of locomotion in large animals, notably mammals, often relies on the placement of visual 
marks in strategic positions, usually joints that can be readily detected and tracked (Akay et al., 2006). 
However, in smaller insects such as Drosophila, such a strategy becomes not only technically challenging 
but is also likely to disturb walking behavior and generate artifacts. Such challenges have precluded a 
more detailed examination of the components that comprise the fly’s walking behavior. To overcome 
these obstacles, and to measure the biomechanical features underlying walking in Drosophila we 
turned to an optical effect known as frustrated Total Internal Reflection (fTIR) (Zhu et al., 1986). Total 
Internal Reflection occurs when light traveling through a medium—in this case optical glass—hits an 
interface with another medium with a lower refractive index, such as air. If the angle of incidence is 
above the so-called critical angle (as compared to the normal of the surface), defined by Snell’s Law 
(Katz, 2002), the light is no longer refracted but is internally reflected. For a glass-air interface this 
corresponds to ∼43°. However, if a denser material, such as the tarsus of an insect leg, contacts the surface 
of the glass, then the locally ‘frustrated’ total internal reflection will scatter the light, which can be recorded 
by a high-speed video camera (Figure 1 and Figure 1—figure supplement 1) (Sumriddetchkajorn 
and Amarit, 2006). A sample video of the unprocessed fTIR effect can be seen in Video 1.

To automate the tracking of the footprints and fly body revealed by the fTIR method, we created a 
program called FlyWalker that tracks and outputs several user-defined parameters (Figure 1—figure 
supplement 2). The program, which is freely available for download at http://biooptics.markalab.org/
FlyWalker, evaluates the fTIR signals in each video and generates a set of graphs that describe the 
walking behavior (Video 2 shows a FlyWalker-processed video; see ‘Materials and methods’ for a list 
of parameters, their definitions and a list of graphs generated by FlyWalker). In addition, the program 
also creates a spreadsheet that contains the full data set. From this, the user can analyze, compile and 
compare several samples.

http://dx.doi.org/10.7554/eLife.00231
http://www.noldus.com/animal-behavior-research/products/catwalk/
http://www.noldus.com/animal-behavior-research/products/catwalk/
http://biooptics.markalab.org/FlyWalker
http://biooptics.markalab.org/FlyWalker
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Step parameters
As a proof-of-principle, we examined the walking behavior of freely walking upright wild-type adult 
flies on a flat horizontal surface. The distance recorded was on average 1.27 cm, a distance covered by 
the camera without compromising the fTIR signal. We collected 71 videos of animals that walked in a 
straight manner without any stops. Average speeds of each fly varied between 7.2 and 44.7 mm/s with 
28 mm/s as the most representative speed (Figure 2A), similar to previously reported values (Robie et al., 
2010). Interestingly, speeds ∼20 mm/s were underrepresented in this data set (see ‘Materials and 
methods’), reminiscent of underrepresented speeds at gait transitions in humans or ponies (Hoyt and 
Taylor, 1981).

Figure 1. fTIR apparatus and FlyWalker software. (A). Schematic of the fTIR optical effect. LED light sources are located at the edges of an optical 
glass and light propagates within the glass via internal reflection. Tarsal contacts lead to light scattering detected by a high-speed camera. See 
Figure 1—figure supplement 1 for more details. (B). Single frame of a fTIR video. The fTIR effect can be seen for three legs in stance phase (yellow arrows). 
Background light partially illuminates the fly’s body (orange dashed ellipse; the center of the body is indicated by an orange cross). (C). Image generated 
by the FlyWalker software. The fly’s footprints and body center are tracked throughout the video. Present footprints are identified and labeled (yellow 
arrows). The fly body and trajectory are visualized by a blue line (white arrow). Past footprints can also be recorded (red arrows). A scale bar can be 
introduced. Step length is defined as the distance between two consecutive footprints (green arrows).
DOI: 10.7554/eLife.00231.003
The following figure supplements are available for figure 1:

Figure supplement 1. Additional information on fTIR apparatus.
DOI: 10.7554/eLife.00231.004
Figure supplement 2. FlyWalker program. 
DOI: 10.7554/eLife.00231.005

http://dx.doi.org/10.7554/eLife.00231
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To initially describe the walking behavior of 
wild type animals, we plotted several step 
parameters (Figure 2B—F and Figure 2—figure 
supplement 1). As previously noted in several 
insect species (Wilson, 1966; Graham, 1972; 
Strauss and Heisenberg, 1990) as speed 
increases, stance phase duration becomes shorter 
while swing phase duration remains largely con-
stant; at the fastest speeds the durations of both 
swing and stance phases equalize (Figure 2B). 

Consequently, step period varies inversely with average speed up to approximately 30 mm/s, when 
step period reaches a steady state of about ∼60 ms, corresponding to a frequency of 16 cycles per s 
(Figure 2C).

Next we examined the relationship between step pattern and period for faster and slower walk-
ing animals. For this, we plotted the metachronal lag, (i.e., the time between sequential swing 
onsets from hind to forelegs on an ipsilateral side), as a function of hindleg period (Graham, 1972) 
(Figure 2D, Figure 2—figure supplement 1). We compared data extracted from slow animals 
(<20 mm/s) with those from fast animals (>34 mm/s). These speed groups were chosen and consist-
ently used in this and all subsequent analyses because several of our readouts exhibit discontinuous or 
non-linear behavior at ∼20 and ∼34 mm/s (see Figures 2A; 3C and 5B for examples). Data 
extracted from the fast set reveal that hindleg period equals the metachronal lag (HLagF ≈ PH), typical 
of the tripod gait (also called Gait I; (Graham, 1972)). In contrast, flies walking slower than 20 mm/s 
showed a period-dependent metachronal lag with a regression curve of (HLagF = 0.505* PH + 27.6), 
typical of the tetrapod gait (also called Gait II; (Graham, 1972)), see also ‘Gait parameters’, below) 
(Figure 2D). We also find that step length increased almost linearly with speed (Figure 2E). As a 
consequence, swing speed also follows this trend (Figure 2F).

The FlyWalker program also extracts data for each individual leg for each of the three thoracic 
segments (Figure 2—figure supplement 2). Although legs in different segments show very similar 
trends for most parameters, some distinctions can be made. For example, as average speed increases 
there is a small but noticeable decrease in swing phase duration in the forelegs when compared to 
other segments. In addition, compared to other leg segments, foreleg swing speed varies more linearly 
with average speed, as seen by a larger R value (Figure 2—figure supplement 2). These observations 
support the hypothesis of a leading role for forelegs in forward locomotion suggested by experiments 
in the stick insect (Akay et al., 2007; Bässler and Büschges, 1998).

Spatial parameters
In addition to following the six footprints, FlyWalker also monitors the position of the fly body. 
From these data we can reconstruct the stance positions relative to the center of the body (Figure 3A). 
In order to account for variations in body size, these plots are normalized to body length. Stance 
traces are generated as each leg contacts the glass. The onset of these traces is termed the 
Anterior Extreme Position (AEP), which corresponds to the position where the leg first contacts 
the glass after touchdown at the end protraction (Cruse, 1976). The position at the end of the 
stance phase, just before the tarsi enter swing phase, corresponds to the Posterior Extreme 
Position (PEP) (Cruse, 1976). Stance traces can be compared by their straightness, which is a 
measure of how much wobble there is in body position relative to each footprint, which are sta-
tionary. This parameter, the stance linearity index, is calculated by computing the average differ-
ence between an actual stance trace and a 
smoothed version of the trace (Figure 3B, 
Figure 3—figure supplement 1). Measuring 
this parameter, faster animals have straighter 
stance traces (lower stance linearity indexes) 
compared to slower animals. This trend is seen 
up to approximately 34 mm/s, after which this 
value stabilizes (Figure 3C).

Another informative parameter corresponds 
to the clustering of the AEPs and PEPs for each 

Video 1. Unprocessed fTIR video.
DOI: 10.7554/eLife.00231.006

Video 2. Processed video by FlyWalker.
DOI: 10.7554/eLife.00231.007

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.006
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Figure 2. General walking parameters. (A). Speed histogram of 71 videos recorded for wild type flies, with 2 mm/s bins. Average speeds vary 
between 7.2 and 44.7 mm/s, with 28 mm/s the most represented speed. Speeds at ∼20 mm/s are underrepresented in this dataset. (B). Durations of 
stance (blue) and swing (red) phases as a function of speed. Swing phase duration remains mostly constant while stance phase duration is inversely 
proportional to speed. Graphical fits for swing and stance phases versus speed are represented in red and blue lines, respectively. (C). Step period is 
inversely proportional to average speed. The blue line is a graphical fit. (D). Duration of the metachronal lag as a function of the hindleg period for 
slow (blue) and fast (red) flies. metachronal lag closely matches hindleg period for fast flies (HLagF ≈ Period). Regression line for the slow walking flies: 

HLagF = Period × 0.505 + 27.627. A total of 220 metachronal waves were used, error bars correspond the standard error of the mean. (E),(F). Step 
Figure 2. Continued on next page

http://dx.doi.org/10.7554/eLife.00231
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leg in a single video. This parameter—termed footprint clustering—corresponds to the vector sum of 
standard deviations (STDs) from the mean for all AEPs or PEPs calculated for each leg (Figure 3D). For 
example, a small footprint clustering value for the foreleg AEP means that the AEP coordinates (rela-
tive to the fly’s body) were similar for all of the foreleg steps in a video. Using this parameter, we asked 
if there was a relationship between footprint clustering and average speed. For the reasons given 
above, we binned the speed values into three groups: <20 mm/s; between 20 and 34 mm/s; and 
>34 mm/s. For both AEP and PEP, the footprint clustering values were smaller for faster flies 
(Figure 3E and Figure 3—figure supplements 2 and 3), suggesting that animals have more spatially 
restricted steps as they increase their speed. We also found that AEP clustering values are generally 
smaller than PEP clustering values (Figure 3E), suggesting a tighter motor control at touchdown 
(AEP) compared to stance offset (PEP). Pooling the data for all legs, AEP clustering was smaller than 
PEP clustering in 61 out of 71 (86%) videos. This difference is largest for the forelegs and is very small 
for the hindlegs (Figure 3—figure supplement 3).

Knowing that flies increase their speed by making longer strides (Figure 2E), we next asked if there 
is a relationship between average speed and AEP or PEP. To address this question we plotted AEP and 
PEP for each leg for the three speed groups (Figure 3F). At faster speeds, for all legs, AEP coordinates 
are shifted anteriorly, while PEP coordinates are shifted posteriorly. Interestingly, at faster speeds 
midleg AEP and PEP are also shifted laterally, perhaps to increase stability at higher speeds. In con-
trast, the hindlegs are positioned closer to the body at higher speeds, perhaps to allow for a stronger 
power stroke.

Gait parameters
Previous work described insect gaits as either tripod or tetrapod, depending on the speed and 
body load (Graham, 1972). The tripod gait is characterized by three legs in stance phase and 
three legs in swing phase at any one time (Figure 4—figure supplement 1). Each group of three 
legs is composed of the fore and hind legs on one side and the midleg on the contralateral side. 
In contrast, in an idealized tetrapod gait only two legs are in swing phase while the remaining four 
legs are in stance phase (Figure 4—figure supplement 1). The two legs in swing phase are on 
contralateral sides and are offset by one segment. We also observed many noncanonical stance 
combinations that do not fit either of the idealized gaits, which we analyze below (Figure 4—figure 
supplement 1 and Table 1).

For each video, a step pattern can be generated while simultaneously plotting the instantaneous 
speed and gait characteristics with high temporal resolution (Figure 4A,B). Notably, the instantaneous 
speed plot has a wave-like appearance (Figure 4A′,B′), particularly in high speed animals, with maxima 
and minima that can differ up to 30 mm/s. Consistent with the observations of Graham in the first 
instar stick insect (Graham, 1972), peak speeds are observed midway through each stance phase 
when the retracting tripod reaches its maximum motor output. Conversely, minimum speeds are 
observed at the transition between phases, when the stance switches to a different set of legs. The 
difference between the maxima and minima in these instantaneous speed plots decreases at slower 
speeds (Figure 4B), suggesting that power is more evenly distributed throughout each period at 
slower speeds.

For each frame in a video we also classify whether the fly is in a tripod, tetrapod, or noncanonical 
stance. The resulting gait map graphically illustrates the gaits used over time (yellow for tripod, blue 
for tetrapod, and grey for noncanonical) (Figure 4A″,B″). Visual inspection of the full data set 
shows that flies walk preferentially using the tripod gait (data not shown) (Strauss and Heisenberg, 

length (E) and swing speed (F) increase linearly with speed. A graphical fit is shown by the blue lines. Error bars in (B–F) correspond to standard error 
of the mean.
DOI: 10.7554/eLife.00231.008
The following figure supplements are available for figure 2:

Figure supplement 1. Gait definitions. 
DOI: 10.7554/eLife.00231.009

Figure supplement 2. Gait parameters by segment. 
DOI: 10.7554/eLife.00231.010

Figure 2. Continued

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.008
http://dx.doi.org/10.7554/eLife.00231.009
http://dx.doi.org/10.7554/eLife.00231.010
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Figure 3. Spatial parameters. (A). Stance traces. Representative plot of an animal walking at 28.82 mm/s. Traces are generated by the position of the 
stance phase footprints relative to the body center (set at 0.0,0.0). For each leg, stance onset corresponds to the Anterior Extreme Position (AEP) while 
Figure 3. Continued on next page

http://dx.doi.org/10.7554/eLife.00231
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1990; Wosnitza et al., 2012), but also underscores that as flies decrease their speed they increas-
ingly use tetrapod and noncanonical combinations. To quantify these gait maps we plot the gait 
index. To calculate the gait index each frame is assigned a value (+1 for tripod, −1 for tetrapod 
and 0 for noncanonical) and these values are averaged for a sliding window of n frames; empir
ically, we find that n = 8 is most effective at distinguishing flies primarily using the tetrapod and 
tripod gaits (Figure 4A‴,B‴ and Figure 4—figure supplement 2). The average value for an entire 
video corresponds to the average gait index. We calculated the average gait index for all 71 videos in 
our data set and binned the results using the same three speed groups used previously (Figure 4C). 
Each group (slow, medium, and fast) had statistically distinct average gait indexes: slower animals 
had more negative values while faster animals had increasingly positive values, reflecting their 
increasing use of the tripod gait.

As a complementary method to quantify differences in gait, we analyzed our fTIR data to determine 
the fraction of time flies spend using either idealized tripod or tetrapod configurations, and if these 
fractions depend on average speed (Figure 4D,E). We define the tripod or tetrapod indexes as the 
fraction of frames in a video in which a leg combination matches one of these two gaits. As expected, 
faster flies spend a larger fraction of time in a tripod configuration, which presumably allows flies to 
maximize leg thrust (Figure 4D). The inverse relationship is seen for the tetrapod configuration, where 
slower animals display the highest proportion of this gait (Figure 4E).

Two additional conclusions can be derived from these data. First, there is not an abrupt transition 
between the tripod and tetrapod gaits at a particular speed. Instead, the proportion of time a fly 
spends using each gait varies gradually according to average speed. Second, the idealized tripod and 
tetrapod combinations only account for a subset of all stance configurations present in our data set. 
For example, the fastest flies in our data set had tripod and tetrapod indexes of ∼70% and <10%, 
respectively. Noncanonical leg configurations in which none or only one leg is in swing phase account 
for 48% to 21% of all combinations, depending on the average speed (Table 1). Inspection of these 
videos reveals that these noncanonical combinations generally occur at the transitions between 
stances (data not shown and Figure 4A″). Thus, slower animals spend less time using the tripod gait 
in part because they use the tetrapod gait more, but also because they spend a larger fraction of time 
in gait transitions, where noncanonical leg configurations play a dominant role. In addition, at slow 
speeds occasional short sequences of pentapod stances (≤3 steps) fit the so-called ‘wave gait’ in which 
individual legs swing in a wave-like pattern from front to back (Wosnitza et al., 2012).

stance offset is termed Posterior Extreme Position (PEP). (B). Method to quantify the stance linearity index. For each stance trace (brown), a smoothed 
trace is generated (using data from every five frames; yellow trace), and the average of the difference between these two lines (orange arrows) corresponds 
to the stance linearity index. (C). Stance linearity as a function of speed. Each data point corresponds to the average of all traces for all six legs for a 
single video greater than ∼34 mm/s, stance linearity becomes constant (red box). (D). Method to quantify footprint clustering. For each set of AEP/PEP 
footprints (red circles), an average ±STD xy point is created (blue cross). The footprint clustering value is calculated as the vector sum of the two 
STD values (orange arrow). (E). Quantification of footprint clustering. Data were grouped into slow (<20 mm/s), medium (between 20 and 34 mm/s) 
and fast (>34 mm/s) speeds. Boxplots represent the median as the middle line, with the lower and upper edges of the boxes representing the 25% 
and 75% quartiles, respectively; the whiskers represent the range of the full data set. Values are normalized for body size. Asterisks indicate the 
significance of the decrease in footprint clustering between the AEP and the PEP (using the paired parametric t test in the case of the slow speed 
group and the Wilcoxon non-parametric test for the remaining groups, **p<0.005, ***p<0.001). A comparison between the three speed groups 
also displays statistical significance (Kruskal–Wallis-ANOVA, p values of 0.0015 and 0.0014 for AEP and PEP, respectively). Dunn’s post hoc 
significance tests show: slow AEP vs medium AEP, not significant (NS); medium AEP vs fast AEP, **; slow AEP vs fast AEP, **; slow PEP vs medium 
PEP, NS; medium PEP vs fast PEP, NS; slow PEP vs fast PEP, ***. (F). Footprint position relative to the body center. Data were pooled as in the 
previous panel. AEP and PEP values for each leg are represented on the left and right sections of the plot, respectively. Values are normalized for 
body size.
DOI: 10.7554/eLife.00231.011
The following figure supplements are available for figure 3:

Figure supplement 1. Representative examples of stance traces and corresponding stance linearity values. 
DOI: 10.7554/eLife.00231.012

Figure supplement 2. AEP and PEP clustering values for all segments as a function of speed. 
DOI: 10.7554/eLife.00231.013

Figure supplement 3. AEP and PEP clustering values for each segment as a function of speed.
DOI: 10.7554/eLife.00231.014

Figure 3. Continued

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.011
http://dx.doi.org/10.7554/eLife.00231.012
http://dx.doi.org/10.7554/eLife.00231.013
http://dx.doi.org/10.7554/eLife.00231.014
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Figure 4. Gait parameters. (A),(B). Upper panels show the step pattern for representative videos of animals walking at 44.7 (A) and at 14.6 mm/s (B). For 
each leg swing phases are represented in black (from top to bottom: right hind (RH); right mid (RM); right front (RF); left hind (LH); left middle (LM); left 
front (LF)). (A′),(B′) show the instantaneous speed for the same video. Thick and thin lines correspond to integration times of 25 or 12.5 ms, respectively. 
In faster animals (A), peak speeds are observed halfway through the stance phase (red dashed line), while minimum speeds are observed during gait 
transitions (blue dashed line). (A″),(B″), for each frame the corresponding gait was color coded as follows: green (tripod), blue (tetrapod), and gray 
(non-canonical). Red brackets indicate the eight frame windows used to generate the gait index plots (A‴),(B‴). Tripod = +1; tetrapod = −1; and 
noncanonical = 0. (C). Quantification of the average gait index for three speed groups. For each video the average gait index was calculated for all 
frames (p<0.0001 for Kruskal–Wallis-ANOVA test. Dunn’s post hoc significance test: **p<0.005, ***p<0.001). (D),(E). Tripod (D) and tetrapod (E) indexes 
as a function of speed. Graphical fits are represented in blue. Data for points labeled (A) and (B) are shown in panels (A) and (B), respectively.
DOI: 10.7554/eLife.00231.015
The following figure supplements are available for figure 4:

Figure supplement 1. Gait features. 
DOI: 10.7554/eLife.00231.016

Figure supplement 2. Gait index plot. 
DOI: 10.7554/eLife.00231.017

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.015
http://dx.doi.org/10.7554/eLife.00231.016
http://dx.doi.org/10.7554/eLife.00231.017
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Coordination parameters
Typically for hexapods, leg touchdown occurs close to where the immediately anterior ipsilateral 
leg made contact, a behavior termed follow-the-leader (Dean and Wendler, 1983; Cruse et al., 
1984; Song and Choi, 1989; Brunn and Dean, 1994; Sponberg and Full, 2008). This behavior 
depends on sensory feedback and specialized intersegmental interneurons (Brunn and Dean, 
1994). One possible advantage of this behavior is to ensure that the animal places its legs on safe 
ground, particularly on rough terrain. As a consequence, mid and hindleg footprints fall close to 
where the foreleg was placed (Figure 1C). We quantified this tendency by measuring the footprint 
alignment parameter, which corresponds to the mean standard deviation of the projection of the 
fore, mid, and hind footprints along the body’s displacement axis (Figure 5A). Accordingly, footprints 
that are more aligned have a smaller footprint alignment value (Figure 5—figure supplement 1). 
Interestingly, plotting footprint alignment as a function of speed revealed a non-linear relationship 
in which the data points cluster into three groups (Figure 5B). At slow speeds (<20 mm/s), foot-
print alignment values were relatively large while at fast speeds (>34 mm/s) these values were 
much smaller, suggesting that footprint alignment is highly constrained. Notably, at intermediate 
speeds (between 20 and 34 mm/s), there was no correlation between speed and footprint align-
ment. The more aligned footprints observed in faster flies could assist the maintenance of static 
stability during tripod transitions (Song and Choi, 1989). In support of this possibility, the tripod 
index increases with lower footprint alignment values (data not shown). The abrupt difference 
seen in alignment values between slow, intermediate, and fast flies suggests that the motor circuits 
controlling walking in these three speed groups may differ. Interestingly, one of the transitions in 
footprint alignment values occurs at speeds (∼20 mm/s) that are underrepresented in our data set, 
consistent with the existence of a possible gait transition at this speed.

Coordinated walking requires that CPGs interact with other CPGs. Such coordination is seen when 
examining the phase differences between the contralateral and ipsilateral legs of the same segment. 
For example, during a tripod gait, contralateral legs within the same segment maintain a consistent 
phase value of 0.5 ± 0.05 (Graham, 1972). The FlyWalker software computes the phase values for 
contralateral legs within the same segment and between adjacent ipsilateral legs. We compared 

Table 1. Gait combinations in three speed classesa

Slow [≤19.9 mm/s] Medium [20–33.9 mm/s] Fast [≥34 mm/s]

Tripod 31.37 Tripod 51.63 Tripod 64.98

Tetrapod 25.45 Tetrapod 15.90 Tetrapod 7.26

Total 56.82 Total 67.54 Total 72.24

Additional combinations Additional combinations Additional combinations

111110 8.27 111111 4.76 111011 4.89

110111 7.60 111110 4.61 111111 4.25

111111 6.38 011111 4.30 011111 4.07

111011 5.62 111011 4.26 010111 3.36

011111 5.03 010111 3.84 111010 2.80

010111 2.47 110111 3.79 110111 2.32

111010 2.45 111010 2.91 111110 1.29

101111 1.94 101111 0.71 011011 1.25

111101 1.69 011011 0.52 011010 0.69

Pentapod 30.15 Pentapod 14.37 Pentapod 13.33

3 gaits combinedb 86.97 3 gaits combinedb 81.91 3 gaits combinedb 85.57

Total c 98.3 Total c 97.2 Total c 97.15

aValues are expressed as percentage (%). Leg order in combination: LF LM LH RF RM RH. 1, footprint present; 0, 
footprint is absent.
bThe sum of tripod, tetrapod, and pentapod gaits.
cThe sum of all gait patterns listed in the table.
DOI: 10.7554/eLife.00231.018

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.018
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these values for the slow (<20 mm/s) and fast (>34 mm/s) groups of flies in our data set. In both 
groups, contralateral legs within the same segment display an average phase of approximately 0.5 
(Figure 5C–E). However, slower animals display a higher degree of variability as seen by a shorter r 
vector in these radial plots. Examining hindlegs vs midlegs and midlegs vs forelegs revealed a decrease 
in the phase values for slower animals (Figure 5—figure supplement 2), consistent with an increased 
step period without a proportional increase in the step lag.

Consequences of impairing leg sensory feedback
The mechanosensory system constantly reports the surface properties and the relative position of each 
of an animal’s appendages (Bässler, 1977). Moreover, sensory feedback is thought to trigger inter-leg 
coupling of local circuits to allow stable and well-coordinated gaits (Brunn and Dean, 1994). Different 
types of proprioceptor organs, positioned in different regions of the legs, report different aspects of 
the posture and terrain. For example, the tibial campaniform sensilla (or sensilla campaniformia) are 

Figure 5. Coordination parameters. (A). Method to calculate footprint alignment. For each set of footprints, the 
projection points along the displacement axis (horizontal black arrow) are calculated. Footprint alignment 
corresponds to the standard deviation (STD) of the average point (orange arrowhead). (B). Quantification of 
footprint alignment versus speed. Values are color coded according to speed group: <20 mm/s in dark blue; 
between 20 and 34 mm/s in purple and >34 mm/s in turquoise. Values cluster into three main groups indicated by 
the dotted boxes (p<0.0001 for Kruskal–Wallis-ANOVA test. Dunn’s post hoc significance test: *p<0.005, 
***p<0.001). (C)–(E). Radial plots of contralateral leg phases comparing slow (blue triangles) and fast (red triangles) 
walking animals. Mean r vectors for slow and fast animals are represented by blue and red arrows, respectively. 
Inner circles indicate a Rayleigh p value of 0.05.
DOI: 10.7554/eLife.00231.019
The following figure supplements are available for figure 5:

Figure supplement 1. Representative images of footprints with different footprint alignment values. 
DOI: 10.7554/eLife.00231.020

Figure supplement 2. Radial plots of adjacent ipsilateral leg phases comparing slow and fast walking 
animals. 
DOI: 10.7554/eLife.00231.021

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.019
http://dx.doi.org/10.7554/eLife.00231.020
http://dx.doi.org/10.7554/eLife.00231.021
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mostly responsible for measuring body load while the femoral chordotonal organ (ChO) is a stretch 
sensor, reporting joint angles as the animal walks (Shanbhag et al., 1992; Zill et al., 2004).

To quantify the effect of inactivating sensory neurons in the Drosophila leg, we tested both inactivation 
of a small subset of neurons and broader sensory inactivation within the legs. First, we tested the 
inactivation of the leg ChO. The nanchung (nan) gene encodes for a cation channel subunit and is 
expressed exclusively in the sensory cilia of chordotonal organs (Kim et al., 2003) (Figure 6A). Loss of 
function alleles for nan display loss of sound perception, hygrosensation and negative gravitaxis 
defects, in addition to an ‘uncoordinated’ phenotype (Liu et al., 2007; Kamikouchi et al., 2009; 
Sun et al., 2009). Second, we tested neuronal inactivation induced by the expression of tetanus toxin 
(TNT) in a large subset of sensory neurons in the legs (Figure 6B). To restrict TNT expression to leg 
sensory neurons we relied on a intersectional approach using a UAS-FRT-stop-FRT-TNT line (Stockinger 
et al., 2005), the pan-sensory driver 5-40-Gal4 (Hughes and Thomas, 2007), and a 567 base pair cis-
regulatory enhancer fragment of dachshund (dac) to drive the FLP recombinase in the leg imaginal 
disc (Giorgianni and Mann, 2011). For simplicity, we refer to this genotype as 5-40Leg>TNT. Video 3 
shows an example of walking by these flies.

Flies of both genotypes (nan36a and 5-40Leg>TNT) walked slower than wild type flies but, remark-
ably, maintained a typical tripod gait (Figure 6C,D). These flies also exhibited normal left-right 
and intersegmental coordination (Figure 6E). Strikingly, however, stance traces for nan36a and 
5-40Leg>TNT flies highlight several locomotion defects (Figure 7A), which were quantified (Figure 7 
and Table 2). We observed an increase in the step length (Figure 7B); a more wobbly body place-
ment (reflected by an increase in stance linearity, Figure 7C); and a larger variability in footprint 
clustering (Figure7D). In addition, both AEP and PEP were altered, in part because of a longer 
stride, and midleg placement was farther from the body (Figure 7A and data not shown). Both 
swing and stance duration increased (Figure 7E,F) resulting in a longer period. The increase in 
step length reflects both overreaching (more anterior AEPs) and delayed swing onset (more pos-
terior PEPs). However, swing speeds were minimally affected (Figure 7G), suggesting that the 
motor neurons, themselves, were not compromised in proprioception deficient flies. Footprint 
alignment values also decreased in flies deprived of sensory feedback (Figure 7H). This pheno-
type was partially a consequence of a longer stride but also because protraction was often com-
pleted when direct contact was made with the next anterior leg. Importantly, although both nan36a 
and 5-40Leg>TNT affect sensory structures in the antennae, only an increase in swing duration was 
observed upon surgical removal of the antenna, arguing that all other phenotypes are a result of 
knocking out sensory feedback specifically from the legs (data not shown).

Interestingly, several of the differences we observed in flies deprived of sensory feedback were 
more pronounced in animals that walked more slowly compared to faster flies (e.g. stance duration 
and footprint alignment; Figure 7F,H). The tripod index also decreased in slower flies (Figure 6D). It 
is also noteworthy that several of the trends observed in sensory-deprived flies (such as AEP, PEP, and 
footprint alignment) are the same as those observed in faster wild type flies. In addition, sensory 
deprived flies position their midlegs further from their bodies, similar to the trend seen in fast flies 
(Figures 3F and 7A). These observations are consistent with the idea that flies walking at slow, 
medium, and fast speeds use distinct neural programs, and that flies walking at fast speeds are less 
dependent on sensory feedback.

Discussion
Research using insects has contributed greatly to the field of locomotion and sensory feedback (Cruse, 
1990; Cruse et al., 2007; Ritzmann and Büschges, 2007; Sponberg and Full, 2008). Emerging and 
established tools have set the fruit fly as a valuable genetic system for studying many behaviors such 
as olfaction and courtship. Improved expression tools (Pfeiffer et al., 2008; Jenett et al., 2012; Jory 
et al., 2012; Manning et al., 2012), transgenic neuromodulators (Pulver et al., 2009) and imaging of 
neuronal activity (Seelig et al., 2010), continue to improve the Drosophila toolkit. However, despite 
the growing collection of tools to disturb the circuit that regulates waking, Drosophila neurogenetics 
lacks a reliable method to measure the outcome of these manipulations. Here we fill this gap in the 
toolkit by describing an approach that unambiguously detects with high temporal and spatial resolu-
tion the kinematic behavior of freely walking fruit flies on a flat surface. A powerful and downloadable 
FlyWalker software tool allows the tracking of both the fly body and legs when they contact the 
ground as the animal moves forward.

http://dx.doi.org/10.7554/eLife.00231
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Figure 6. Effects of sensory deprivation on walking. (A). Expression pattern driven by nanchung-Gal4. Genotype: F-Gal4, UAS-GFP. (B). GFP expression 
under combinatorial control of 5-40-Gal4 and dacRE-flp. Genotype: 5-40-Gal4, dacRE-flp, UAS-FRT-stop-FRP-GFP. All classes of sensory neurons in the leg 
express GFP. tChO, tibia chordotonal organ; fChO, femur chordotonal organ; hp, hair plates; cs, campaniform sensilla; ms, mechanosensory brisles.  
Bar, 100 μm. (C). Average speed. Boxplots with the median as the middle line and the lower and upper edges of the boxes representing the 25% and 
75% quartiles, respectively; the whiskers represent the range of the full data set. Statistical analysis with one-way-ANOVA (p<0.0001) followed by  
Tukey’s post hoc test, ***p<0.001. (D). Tripod index. Lines represent graphical fits. See Table 2 for statistical analysis. (E). Gait patterns, instantaneous 
speeds, and gait maps for representative wild type and sensory deprived animals walking at similar speeds. See Figure 2—figure supplement 1 for 
details. Tripod gait properties remain unchanged.
DOI: 10.7554/eLife.00231.022

http://dx.doi.org/10.7554/eLife.00231
http://dx.doi.org/10.7554/eLife.00231.022


Neuroscience

Mendes et al. eLife 2013;2:e00231. DOI: 10.7554/eLife.00231	 15 of 24

Research article

Using these tools, we analyzed the behavior of 
wild-type animals during straight walking on a 
horizontal plane, extending previous analyses 
(Strauss and Heisenberg, 1990, 1993; Wosnitza 
et al., 2012). In addition to corroborating earlier 
findings, the high degree of temporal and spatial 
resolution, coupled to the simultaneous tracking 
of the body allowed us to define several addi-
tional parameters, particularly those that address 
the spatial aspects of locomotion. Several obser-
vations also suggest the existence of previously 
unknown transitions that occur at ∼20 mm/s and 

∼34 mm/s. For one, we find that flies walking at 20 mm/s are underrepresented in our data set. In 
addition, some parameters, such as stance linearity and footprint alignment, show striking differ-
ences in flies walking slower and faster than these speeds. These transitions do not, however, 
represent abrupt transitions in gait because the tripod gait was observed at all speeds, at gradu-
ally diminishing frequencies in slower flies. This scenario contrasts with abrupt gait transitions 
observed in many vertebrates, for example horses, where each gait is only observed in a defined 
range of speeds (Hoyt and Taylor, 1981). Nevertheless, our data suggest that in flies modifica-
tions of a common neural circuit may regulate walking at these different speeds (Watson et al., 
2002; Sponberg and Full, 2008). Because each leg muscle is targeted by multiple motor neurons 
(Baek and Mann, 2009), it is feasible that different subsets of MNs play a more or less dominant 
role at different speeds.

Walking by proprioceptive-deficient flies
In larger insects such as the stick insect and locust, the role of sensory feedback in coordinated walking 
has been addressed by local surgical ablations coupled to electrophysiological measurements 
(Usherwood et al., 1968; Cruse et al., 1984; Akay et al., 2001; Borgmann et al., 2009). For exam-
ple, using single leg preparations of the stick insect, it was found that for mid and foreleg steps to be 
out of phase (as they are in wild type walking), stimulation of sensory afferents in the midleg was 
required; without this stimulation, the CPGs for these legs fired in phase (Borgmann et al., 2009). 
These, as well as additional observations (Büschges et al., 2008), argue that sensory feedback from 
legs in stance phase is required for interleg coordination.

The use of Drosophila brings an additional set of tools to address these questions. In one set 
of experiments, we took advantage of a mutation that specifically disrupts the function of the 
ChOs while a second set of experiments used a combinatorial misexpression approach to inacti-
vate the majority of sensory neurons in the leg, including the ChO, hair plates, campaniform sen-
silla and mechanosensory bristles. In both sets of experiments, gait parameters and interleg swing 
phases were largely normal when sensory feedback was impaired. These results suggest that in 
the fly interleg coordination is not dominated by sensory feedback. Instead, they suggest that 
communication between CPGs, perhaps by local interneurons, may be sufficient for coordination, 
a suggestion that is supported by recent studies in vertebrates ((Kiehn, 2011) for review). In 
insects, interneurons have been implicated in interjoint coordination within individual legs and in 
footfall placement, but their role in interleg coordination has not been established (Brunn and 
Dean, 1994; Brunn, 1998; Matheson, 2002). The different requirements for sensory feedback 
observed here compared to electrophysiology studies in the stick insect may in part be because 
in our experiments leg sensory neurons were inactivated in all six legs (in the case of 5-40leg>TNT) 
or all ChOs in the animal (in the case of the nan mutant). We speculate that when all six legs are 
equally impaired, the flies resort to a CPG and interneuron-dominated system, which is sufficient 
to execute the tripod gait. Consistent with this notion, although interleg coordination was impaired 
upon amputation of a single hindleg in Drosophila, the flies were able to recover a partial tripod 
gait (Wosnitza et al., 2012).

The data derived from sensory-deprived flies also supports the idea that flies may be less depend-
ent on sensory feedback when they walk fast because, for several parameters, the defects were signifi-
cantly more pronounced in slow flies. This observation is consistent with the idea that when flies walk 
fast, they use a largely sensory-independent CPG-based system where individual CPGs communicate 

Video 3. Processed video of 5-40Leg>TNT fly.
DOI: 10.7554/eLife.00231.023
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Figure 7. Quantification of gait parameters in sensory deprived animals. (A). Stance traces of three representative animals walking at a similar speed. For 
simplicity, only left stance traces are shown. Traces for sensory deprived genotypes display a longer step length; higher jitter and a more variable AEP 
and PEP. (See panels (B)–(D) and (H) for quantification). In (B),(C) and (E)–(G), colored lines represent graphical fits. See Table 2 for statistical analysis of 
Figure 7. Continued on next page

http://dx.doi.org/10.7554/eLife.00231
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(B),(C),(E),(F) and (G). (B). Step length. Sensory deprived animals display an increased step length. (C). Stance linearity. Sensory deprived animals display 
a more jittery movement. (D). AEP and PEP footprint clustering. Wild type data correspond to the speed range of nan36a and 5-40Leg>TNT (12.6 to 27.7 mm/s). 
In (D),(H), boxplots represent the median as the middle line and the lower and upper edges of the boxes representing the 25% and 75% quartiles, 
respectively; the whiskers represent the range of the full data set. Statistical analysis with Kruskal–Wallis-ANOVA (p<0.0001) followed by Dunn’s post hoc 
test, ***p<0.001. (E). Swing duration. (F). Stance duration. (G). Swing speed. (H). Footprint alignment. Slow-walking sensory deprived animals display 
more aligned footprints compared to wild type flies. Data were grouped into slow (<20 mm/s) and medium speeds (between 20 and 34 mm/s). Kruskal–
Wallis-ANOVA test: p=0.0003 and NS for the slow and medium speed groups, respectively. Asterisks indicate the significance of the decrease in 
footprint clustering between genotypes. (Data analyzed by the Dunn’s post hoc significance test, **p<0.005).
DOI: 10.7554/eLife.00231.024

Figure 7. Continued

by local interneurons to achieve coordination. In contrast, in slower flies, sensory feedback would be 
invoked to allow animals to negotiate more complex terrains. These speculations are supported 
by our observations that several parameters measured here, most prominently footprint clustering, 
appear distinct at slow, medium, and fast walking speeds. Thus, although the tripod gait is used 
at all speeds, distinct neural programs may come into play that are more or less dependent on 
sensory feedback, depending on the speed.

Conclusions
The fTIR method and FlyWalker software provides a robust suite of tools for analyzing walking in 
Drosophila. Using this approach, we present many parameters that comprehensively describe walking 
by wild type flies. Our initial analysis of sensory-deprived flies reveal that proprioception, at least from 
the legs, is largely dispensable for coordinated walking and the tripod gait. In the future, additional 
expression tools will allow the targeting of other subsets of sensory and interneurons and the ability to 
carry out gain-of-function experiments. Moreover, the fTIR apparatus can be used with other arthro-
pods as long as they, like Drosophila, possess adhesive structures on their tarsi (Gorb et al., 
2007). However, although footprints and body position can be readily identified with this method, 
our current setup does not provide the ability to follow individual leg joints, which can be done in 
larger insects such as the stick insect (Cruse and Bartling, 1995). Nevertheless, the set of param-
eters measured here underscore the complex mechanisms and circuits regulating hexapod loco-
motion. Our approach, in combination with the growing collection of genetic tools available in 
Drosophila should open many additional opportunities to unravel the mechanism of locomotion in 
animals and improve bio-inspired machines.

Materials and methods
Fly strains
Oregon R flies were reared on standard cornmeal food at 25°C. nan-Gal4 (F-Gal4) was obtained 
from the Bloomington Stock Center. 5-40-Gal4 was a gift from Cynthia Hughes (Hughes and 
Thomas, 2007), UAS-FRT-stop-FRT-TNT was from Barry Dickson (Stockinger et al., 2005) and 
nan36a was kindly provided by Marco Gallio. dacRE-FLP was generated by TOPO cloning the Ring 
Enhancer (RE) fragment from the regulatory region of dac (Giorgianni and Mann, 2011) into an 
entry clone followed by a Gateway reaction into a FLP destination plasmid. Transgenic lines were 
generated by standard procedures in a yw background. All experiments were carried out with 1 to 
7 day old animals at room temperature. To select the correct genotype, flies were anesthetized on 
a cold plate and allowed to recover at least 24 h. Before imaging, flies were kept in clean glass 
vials for ∼15 min.

fTIR apparatus
Five Neutral White (4100K) LEDs from Luxeonstar (Brantford, Ontario, Canada), Pre-Mounted on a  
10 mm Square Base (230 lm @ 700mA) were wired in series and glued to a 60 mm CPU heat-sink 
and fan (StarTech.com Lockbourne, Ohio). Three LED/heat-sink sets were wired in parallel and 
clamped to the edges of a 150 mm × 150 mm × 6.5 mm Borofloat Glass (Advanced Optics, 
Pewaukee, WI). The edges of the glass were scribed and broken so they would be clear, but not 
polished. The fourth edge of the glass was fixed to a filter mount and the whole system was 

http://dx.doi.org/10.7554/eLife.00231
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attached to a bench plate by steel mounting posts (Edmund optics, Barrington, NJ). The LEDs 
were powered by a variable power supply (Tekpower, Montclair, CA). In order to minimize deflected 
light, the edges of the glass and the LEDs are covered with black ink or black cardboard. 
Consequently, most of the light from the LEDs enters the glass below the critical angle. To recycle 
light that reaches the edges of the optical glass, the remaining edges of the glass are covered with 
aluminum foil. Movies were acquired using a Photron (San Diego, CA) Fastcam MC2 camera using 
a 55 mm Computar (Commack, NY) telecentric lens, which has very little optical distortion. By 
measuring 1 mm intervals at multiple positions within the field of view we determined the optical 
distortion to be less than 4%. The lens aperture (f/2.8) was maximized in order to increase light 
sensitivity and minimize depth of field.

If the glass–air interface becomes disrupted by the footprints of a fruit fly, the light becomes 
deflected and is detected by the high-speed video camera. Consequently, when a leg is in stance 
phase it is detected by fTIR and the absence of signal indicates a swing phase. In addition, a small 
amount of reflected light illuminates the fly’s body (Figure 1—figure supplement 1). In the center of 
the fTIR apparatus, a plexiglass tunnel limits the mobility of the fly and increases the chance it will 
move in a straight line (Figure 1—figure supplement 1). This tunnel is slightly separated from the 
glass by a nylon string in order to minimize the contact between the plexiglass and optical glass, which 
would produce a fTIR signal. In order to trigger an optomotor response, two optical fibers connected 
to a UV light source are present at both ends of the tunnel (Figure 1—figure supplement 1). Images 
are detected within a ∼1.2 cm2 area by a high-speed camera at a rate of 250 frames per second at 
f/2.8. This allows sufficient light to be detected per frame while permitting a high temporal resolution 
of 4 milliseconds per frame.

For the fly tunnel, a rectangle measuring 7 by 40 mm was cut out of a transparent plexiglass plate 
measuring 4.76 × 46 × 23 mm. At both ends, a 1 mm diameter hole was made in order to accommo-
date an optical fiber. As a cover for the tunnel, a second piece plexiglass of equal size was glued on 
top. A 5 mm hole was drilled on the cover approximately 1 cm from the edge in order to insert the flies 
into the chamber. In order to raise the chamber slightly, two small holes 1 mm apart, were drilled at 
each of the four corners of the chamber. A nylon wire—0.48 mm diameter—was inserted through 
the two holes to create a loop that functions as spacers to prevent the chamber from contacting the 
optical glass. Finally, the chamber was painted in black on the outside and the interior walls coated 
with Fluon AD-1 (www.entosupplies.com.au) mixed with black India ink in order to encourage walking 
on the optical glass (Figure 1—figure supplement 1).

FlyWalker software
FlyWalker was created in MATLAB, and analyzes the sequence of images from the videos by register-
ing the position of the body and each footprint. Once the image sequence is loaded into the FlyWalker 
interface (Figure 1—figure supplement 2), its analysis becomes a two-step process. First, body and 
footprints are tracked automatically by the software based on sudden increases of brightness within 
preset thresholds, as well as information from preceding frames. Any fTIR signal present in frames 
prior to the appearance of the fly (due for example to dust) is subtracted from all subsequent frames 
to minimize false positive signals. Sequential frame comparison sets the displacement axis, which 
helps with the identification of each of the six footprints, for example the left and right fore (LF, RF), 
left and right mid (LM, RM), and left and right hind (LH, RH) legs. Second, the software allows the user 
to manually correct any mislabeled or missed footprints. A sample video of the processed fTIR effect 
can be seen in Video 2. For each frame, the user can reject a mislabeled footprint or add a footprint 
that is visible, but was not included because it fell below the preset threshold. The script is optimized 
to minimize the time spent editing each video. A setup window allows the user to define auto-tracking 
parameters and which features to show on-screen (Figure 1—figure supplement 2). For example, 
depending on the user-defined settings, the body trace and/or past footprints can be visualized 
(Figure 1C). Importantly, through the use of a calibration reticle, the user can input the pixel/μm ratio, 
which allows the program to introduce a scale bar (Figure 1C), calculate distances and speeds.

Parameters quantified by FlyWalker
Speed (instantaneous and average)
Frequency
Period

http://dx.doi.org/10.7554/eLife.00231


Neuroscience

Mendes et al. eLife 2013;2:e00231. DOI: 10.7554/eLife.00231	 20 of 24

Research article

Metachronal lag
Swing speed (average and for individual steps)
Step length (average and for individual steps)
Swing time (average and for individual steps)
Stance time (average and for individual steps)
Footprint alignment (average and for individual footprint clusters)
Anterior Extreme Position (AEP)
Posterior Extreme Position (PEP)
Footprint clustering (AEP and PEP)
Stance trace (average and for individual segments)
Body trace
Tripod index
Tetrapod index
Gait index
Step period (LH:RH; LM:RM; LF:RF; LH:LM; LM:LF; RH:RM; RM:RF)

List of files generated by FlyWalker
Angle between footprint and displacement axis vs time
Footprint distance to body center vs time
Footprint parallel distance to body center vs time
Footprint perpendicular distance to body center vs time
Instantaneous speed vs time
Gait vs time
Combined gait and instantaneous speed vs time
Anterior extreme position plus stance trace
Posterior extreme position plus stance trace
Geometric combinations generated by footprints
Step size vs time
Gait maps (fixed and automatic time scale)
Gait index vs time (fixed and automatic time scale)
�Step velocity; instantaneous speed; color code and gait index plots combined vs time (fixed and 
automatic time scale).
�Summary plots including combined gait and instantaneous speed and anterior extreme position 
plus stance trace; plus values for average speed, tripod index, tetrapod index, stance trace and 
average step distance.
Excel file with all parameters
Image sequence from the tracking program.

Statistical analyses
For most plots, each data point comes from a single video, except for phase and metachronal lag plots 
where each video generated multiple data points. Because some parameters changed with speed we 
fit multiple regression models (Table 2). The interaction term corresponds to the slope variation 
(Δ slope). When the relationship between the parameter and the average speed was non linear (stance 
linearity and stance duration), we transformed the average speed by its natural log.

Because of the different behaviors of the slow, medium, and fast speed groups, some parameters 
were compared between individual speed groups. In these cases, the data were presented as box and 
whisker plots. For independent observations, comparisons between speed groups (Figures 3E and 4C) 
or between mutant groups (Figures 6C and 7D,H) were done using Kruskal–Wallis test followed by 
Dunn’s post hoc test (for non-normal distributions) or one-way-ANOVA followed by Tukey’s post hoc 
tests (for normal distributions). For paired observations (AEP vs PEP in Figure 3E and Figure 3—figure 
supplement 3) with a normal distribution, a paired t-test was used. Otherwise a Wilcoxon signed rank 
test was used (GraphPad Prism, San Diego, CA).

The least square regression line and the R correlation coefficient are indicated in all scatter plots.
Although average speeds of ∼20 mm/sec are underrepresented in our collection of wild type 

videos, the histogram shown in Figure 2A is not statistically different from a normal distribution 
(Shapiro-Wilk test; p=0.31). However, a normal probability plot shows non-linearity of the data at 
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<20 mm/s and greater than ∼35 mm/s (data not shown), suggesting that the distribution has significant 
non-Gaussian outliers in the tails.

Parameter definitions
Terms and definitions for parameters used in this paper. § indicates definitions described previously by 
Strauss and Heisenberg 1990 (and references within).

Period§

Time taken to complete one leg cycle consisting of one swing and one stance phase.

Step length§

Distance between two successive footprints of the same leg. No normalization in relation of the direc-
tion of propagation.

Stance linearity index
Average difference between the stance traces generated by each leg during stance phase and a 
5-point smoothed line.

Anterior Extreme Position (AEP) (Cruse, 1976)
Position where the leg first contacts the glass after touchdown at the end of swing phase (or 
protraction).

Posterior Extreme Position (PEP) (Cruse, 1976)
Position at the end of the stance phase, just before the tarsi enter swing phase.

Footprint clustering
Standard deviation from the average position for all AEPs or PEPs.

XLagY
§

Time interval between the beginning of swing phase in leg x and immediate following swing phase 
onset of another leg y.

Metachronal Lag§

Time interval between the beginning of swing phase in hindleg and immediate following swing phase 
onset of the ipsilateral foreleg (HLagF).

Phase§

Lag between two legs divided by the period of the first.

Tripod index
Percentage of frames in a video that display leg combinations defined by the tripod gait.

Tetrapod index
Percentage of frames in a video that display leg combinations defined by the tetrapod gait.

Gait index
Average value for a window of frames where tripod configurations = +1 value; tetrapod = −1; and 
noncanonical = 0.

Footprint alignment
Standard deviation from the average point of adjacent ipsilateral footprints projected onto the dis-
placement axis. Each set of ipsilateral footprints includes one foreleg, one midleg and one hindleg.
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