
elife.elifesciences.org

Shemesh et al. eLife 2013;2:e00759. DOI: 10.7554/eLife.00759	 1 of 19

High-order social interactions in groups 
of mice
Yair Shemesh1†, Yehezkel Sztainberg1†, Oren Forkosh1†, Tamar Shlapobersky1, 
Alon Chen1,2*, Elad Schneidman1*

1Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; 
2Max Planck Institute of Psychiatry, Munich, Germany

Abstract Social behavior in mammals is often studied in pairs under artificial conditions, yet groups 
may rely on more complicated social structures. Here, we use a novel system for tracking multiple 
animals in a rich environment to characterize the nature of group behavior and interactions, and show 
strongly correlated group behavior in mice. We have found that the minimal models that rely only on 
individual traits and pairwise correlations between animals are not enough to capture group behavior, 
but that models that include third-order interactions give a very accurate description of the group. 
These models allow us to infer social interaction maps for individual groups. Using this approach, we 
show that environmental complexity during adolescence affects the collective group behavior of adult 
mice, in particular altering the role of high-order structure. Our results provide new experimental and 
mathematical frameworks for studying group behavior and social interactions.
DOI: 10.7554/eLife.00759.001

Introduction
Understanding the nature and impact of the interactions that underlie the behavior of groups of 
organisms is a central question, shared across biology, physics, psychology, and mathematics. The 
coherence of ‘collective behavior’ patterns of large groups of animals, such as insect swarms (Buhl 
et al., 2006; Simpson et al., 2006) fish schools (Sumpter et al., 2008; Katz et al., 2011), bird flocks 
(Cavagna et al., 2010; Nagy et al., 2010), and human crowds (Song et al., 2010; Gallup et al., 2012), 
presents us with fundamental questions relating to distributed information processing, computation, 
and learning. The adequacy of different mathematical models of the interactions between animals 
in describing the behavior of large groups has therefore been of great interest (Winfree, 1967; Vicsek 
et al., 1995; Couzin et al., 2002; Lathe, 2004; Couzin et al., 2005; Ben-Jacob, 2009; Cavagna 
et al., 2010; Lukeman et al., 2010; Nagy et al., 2010; Bialek et al., 2012).

Smaller groups of animals present an interesting and sometimes more difficult scenario, where indi-
vidual traits may play an important role in shaping the group behavior (Lathe, 2004). This may be 
especially true in mammals, where both individual behavior and interactions are often assumed to be 
more complex. It has therefore been common to study ‘social behavior’ in small groups and explore 
the interplay of individual and group relations in decision-making (Couzin et al., 2011), information 
transfer (Leadbeater and Chittka, 2007), learning (Couzin et al., 2005), and more. Yet, much of our 
understanding of social behavior has come from studies of just pairs of animals under artificial settings 
(Insel and Fernald, 2004; Langford et al., 2006; Moy et al., 2008; Branson et al., 2009; Dankert et al., 
2009; Blumstein et al., 2010; Silverman et al., 2010; Ben-Ami Bartal et al., 2011; de Chaumont 
et al., 2012). It is not clear, however, what the detailed analysis of social interaction at the level of a 
single pair implies for larger groups. In particular, new features may emerge that characterize the 
group as a whole that cannot be inferred from the study of individuals or pairs (Cavagna et al., 2010).

To study the nature of interactions underlying social behavior in a group, we used a novel automatic 
system for tracking individuals in small groups of mice over long periods of time, in an environment 
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that is ethologically relevant. Systems for tracking individual animals in simple and enriched environments 
have been used in recent years to characterize individual behavior (Branson et al., 2009; Green et al., 
2012; Freund et al., 2013), and even to relate individual behavior to neurogenesis (Freund et al., 
2013). We focused here on the nature of group behavior, and in particular how group behavior is the 
result of individuality, pairwise, and potentially higher-order interactions between the animals. We 
then used a maximum entropy-based modeling framework (Jaynes, 1957; Schneidman et al., 2003, 
2006) to quantify the nature of correlated group behavior and map the social interactions between 
individuals. Finally, we compared the joint activity patterns and social contacts of mice subjected 
to environmental manipulations.

Results
We analyzed the behavior of 17 groups of mice, each composed of four adult mice in an arena 
resembling an ethologically relevant context that has an interesting environment for exploration (see 
‘Materials and methods’) (Figure 1A, and Figure 1—figure supplement 1). Mice were raised either in 
a standard laboratory environment (SE mice; eight groups) or an enriched one (CE mice, nine groups; 
see ‘Materials and methods’) and studied in the arena using a novel automated system for tracking 
individual and group behavior simultaneously, with high spatial and temporal resolution. To enable 
accurate tracking of the mice in their nocturnal phase, we stained their fur with fluorescent hair dyes, 
illuminated the arena with UVA light, and recorded their activity with a sensitive color camera (Figure 1B). 
The behavior of each group was recorded at 25 frames/s, over 4 consecutive nights, for 12 hr each 
night (Figure 1C and Video 1; see ‘Materials and methods’).

Mice spent much more time in certain locations in the arena (see ‘heat map’ in Figure 1D). We 
therefore used a discretized representation of their spatial configurations, based on the ten most 
visited regions of interest in the arena. We found that individual mice in the group had distinct 
personal preferences for certain locations (Figure 1E), and the relative amounts of time spent in 

eLife digest All animals need to interact with others of the same species, even if it is only to 
mate. To date, social behavior has been studied mainly at two extremes: detailed observation of 
pairs; and studies of the collective behavior of large groups, such as flocks of birds. However, to 
gain an understanding of social behavior in mammals will require an approach that falls between 
these two extremes. It will be necessary to study animals in larger groups, rather than in pairs, but 
also to track individuals rather than looking at the activity of the group as a whole.

Now, Shemesh et al. have developed a system that can track the behavior of each of four mice 
with high spatial and temporal resolution as they move around freely in an arena containing ramps, 
nest boxes, and barriers. Because mice are largely nocturnal, Shemesh et al. dyed the animals’ fur 
with compounds that produced different coloured fluorescence under ultraviolet light, and then 
employed an automated system to accurately track each mouse during 12 hr of darkness, over a 
number of days.

Using these data it was possible to estimate the extent to which the behavior of the group is 
determined by the characteristics of individual mice and how much is determined by interactions 
between animals. Models based solely on the behavior of individuals could not accurately describe 
the behavior of the group. Surprisingly, neither could models that focused on interactions between 
pairs of mice. Only models that included interactions between three mice gave a good approximation 
of the observed behavior. This shows that, even in a small group, social behavior is determined by 
relatively complex interactions.

Shemesh et al. also found that the behavior of the mice depended on the environment in which 
they had been raised. Animals that had lived in larger groups and in more interesting enclosures 
were influenced more by pairwise interactions, and less by three-way interactions, than mice that 
had been raised in a standard laboratory environment. This suggests that being raised in a complex 
environment strengthens mouse ‘individuality’. The approach developed by Shemesh et al. could be 
extended to study larger groups of animals and could also be used to examine the interplay between 
genes, environment and other factors in shaping social interactions.
DOI: 10.7554/eLife.00759.002
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Figure 1. Simultaneous tracking of individual mouse behavior in the dark. (A) Top view of the arena showing the 
10 regions of interest: (1) open field, (2) Z wall, (3) water, (4 and 5) feeders, (6) on small nest, (7) on large nest, (8) block,  
(9) in small nest, (10) in large nest. For further details of the arena, see Figure 1—figure supplement 1. (B) Video 
recording and color-based tracking of a group of mice in the dark. (C) A 15-min segment of the tracked paths of each of 
the four mice in a group. (D) A ‘heat map’ showing the relative amount of time the mice spent in different parts of 
the arena. Data shown is from one typical group on the second day of the experiment (red corresponds to highly visited 
points, and blue to less favorable ones). (E) Individual histograms of the time spent in the different regions of the arena 
(same group as in D). See legend at the bottom for the color coding of the regions. (F) Distribution of continuous time 
periods spent by one typical mouse at each region. Most areas show a similar behavior resembling scale free distribution.
DOI: 10.7554/eLife.00759.003
The following figure supplements are available for figure 1:

Figure supplement 1. The color-based tracking system. 
DOI: 10.7554/eLife.00759.004
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different places. Despite these individual differ-
ences, the amount of time that each mouse 
spent continuously at each location had a power-
law-like behavior (Figure 1F). This power-law dis-
tribution was similar for the different mice, when 
they were each analyzed individually, despite their 
individual differences on other parameters. It is 
unclear, however, how one should interpret these 
individual characteristics of the mice, given that 
they share the same space. We therefore moved 
on to consider what portion of the joint configu-
rations can be explained in terms of individual 
behavior, and how are the mice affected by their 
peers, that is via social interactions?

Strongly correlated group behavior 
among mice
To characterize the behavior of the mice as a group, 
we studied their joint spatial configurations over 
long periods of time. We defined the ‘state’ of the 
group at time t, as a vector, (x1, x2, x3, x4), where xi 
denotes the location of mouse i at that time, and 
xi = 1,…,10, denote the regions defined in Figure 1. 
An example of these state vectors as a function 
of time is shown in Figure 2A, with time bin of 
Δt = 240 ms (this choice did not affect the results 

over a wide range of values, see ‘Materials and methods’). We then compared the empirical proba-
bility to find the group in a given spatial configuration pempirical (x1, x2, x3, x4) with the prediction of a 
model that assumes that the mice choose their locations independently, based on their individual 
preferences, pind (x1, x2, x3, x4) = p(x1) p(x2) p(x3) p(x4). This difference is exactly the extent to which the 
group is different from the case of a collection of independent individuals. We found that the two distri-
butions were very distinct, that is the group behavior is very different from what one would expect 
from studying single mouse properties. In particular, Figure 2B shows the distribution of observed 
states for a typical group, where out of the 104 possible states (of 4 mice in 10 zones), only approxi-
mately 2000 occurred in the experiment, whereas the independent model predicts that approximately 
4000 states would typically occur in our experiment. In other words, the correlations between mice 
contract the space of ‘allowed’ configurations, such that many of them are socially avoided.

To quantify the strength of dependencies between the mice, we first asked how much does knowing the 
location of one mouse tells us about that of the others. (If the mice were completely individual and ignored 
one another, then knowing the location of one mouse would tell us nothing about that of the others.)

Since the entropy of the distribution of locations of a mouse, H(xi)= −
∑
xi

p(xi)log2p(xi) measures 

how much we do not know about its location, then the dependency between mice can be measured 
in terms of how much of this uncertainty is reduced by knowing the location of another mouse. This is 
exactly the mutual information I(xi; xj)=H(xi)−H(xi|xj) between the location of one mouse xi and 
that of the other mouse xj. To get a normalized measure of the fraction of uncertainty about the loca-
tion of mouse i that can be ‘read’ from mouse j, we divided I(xi; xj) by the entropy of location of 
mouse i, H(xi). We found that knowing the location of one mouse gives relatively little information 
about the location of another—typically less than 5% (averaged on all pairs, Figure 5—figure supple-
ment 1). However, knowing the joint locations of three mice gives much more information about 
that of the fourth one—over all groups and mice I(xi; {xj, xk,xl}) was, on average, 25% of H(xi). 
Figure 2C shows that this information was highly synergistic—namely that the information about 
the location of one mouse that can be read from the locations of the other mice can be more than 
double the sum of pairwise information values of that mouse with all the others: I(xi;xj) + I(xi;xk) + 
I(xi;xl). Thus, the group is not only more complex than a collection of individuals, but much more 
complex than even the full collection of pairs.

Video 1. Tracking four mice in a semi-natural 
environment. Each mouse is stained using a different 
fluorescent hair dye that glows under ‘dark’ light (UVA). 
The positions of the mice were constantly tracked and 
the trails are shown in the video. The arena included 
several objects, which we marked using dashed line in 
the video. In each frame, the location of all mice is 
presented in the lower left side of the video by a 4-digit 
code, which is based on a division of the arena into  
10 regions of interest.
DOI: 10.7554/eLife.00759.005
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The remaining 75% of uncertainty about the location of each mouse is exactly the level of individu-
ality of each mouse, which cannot be explained in terms of the location of the other mice. If there were 
more information about the location of one mouse from the locations of the others, then that mouse 
would be less ‘free’ to decide on its location. We therefore turned to characterize group behavior in 
terms of the combination of individual mouse traits and the dependencies between mice.

High-order social interactions are necessary to explain group behavior
Dissecting the role of individual behavior and the dependencies between animals in shaping the 
group’s behavior is difficult, since we need to infer from the joint behavior what the underlying 
contributions of ‘pure’ mouse individuality and the nature of the interactions are. The difficulty arises 
since in general, for any given set of observable features of the behavior, there can be multiple models 
that will be consistent with these observables. We therefore used the idea of maximum entropy 
(ME) models from physics (Jaynes, 1957) to construct minimal models of the group, based on 

A

B C

p p p p

p

Figure 2. Characterization of group behavior patterns, and signatures of strong group correlations between mice. 
(A) The joint configuration of the mice at each time frame was represented by a 4-dimensional vector, where each 
dimension denotes the location of a particular mouse in 1 of the 10 regions of interest. (B) Comparison between 
the empirical probability distribution of the observed configurations and a predicted distribution from a model that 
assumes independence between mice. Configurations were ranked from the most to the least prevalent. (C) Fraction of 
uncertainty about the location of a mouse that can be read from the location of other group members (mutual 
information about location, divided by location entropy). Every dot shows the fraction of information about the 
location of mouse i that can be read from the joint location of the other three vs the sum of pairwise information 
terms between i and each of the other mice. Each of the 32 dots corresponds to 1 mouse (4 mice in 8 groups), and 
the information that can be read from his group members. The results are for day 2 of the test.
DOI: 10.7554/eLife.00759.006
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different order of dependencies between the animals. Since the entropy of a distribution meas-
ures its randomness of lack of structure, then among all models that are consistent with some desired 
feature of the data, the maximum entropy model is the most parsimonious explanation that does not 
make any additional assumptions beyond the required features. This minimal model is mathematically 
unique and can be found numerically (Schneidman et al., 2003). Such models have been successfully 
used to infer functional dependencies between neurons, genes, proteins and more (e.g., Schneidman 
et al., 2006; Ganmor et al., 2011; Lezon et al., 2007; Marre et al., 2009; Mora et al., 2010; 
Stephens et al., 2010; Stephens et al., 2013; Bialek et al., 2012).

We built a hierarchy of maximum entropy models to describe the group configurations, based on 
successive orders of correlations between the mice (one that relies only on individual behavior of the 
mice, one that adds pairwise dependencies between mice, third order, etc.). The relationship between 
these models then allowed us to dissect exactly the contribution of each order to the total group 
behavior.

The first-order model is one that relies only on the individual behavior of each of the mice, but 
assumes no dependencies among them at all. The maximum entropy model in this case is built on 
the observed probability of finding each mouse in one of the regions in the arena, and is exactly the 
independent model (that we used above), namely p(1)(x1, x2, x3, x4) = p(x1) p(x2) p(x3) p(x4). As it was clear 
already from Figure 2B, the independent model is insufficient to describe the behavior of the group.

Next, we tried to describe the group configurations using a model that takes into account both the 
individual behavior and the pairwise relations between mice. The minimal pairwise-based model is 
then given by the maximum entropy distribution that is consistent with the distribution of states that 
we observe for each mouse individually (i.e., first-order statistics), and the pairwise correlations between 
them (i.e., second-order statistics). Unlike the independent case, this cannot be performed by a simple 
factorized probability distribution and must be found numerically by solving an optimization problem 
in which we maximize the entropy with a given set of constraints. The solution of this optimization 
problem (see ‘Materials and methods’) is given by

p(2)(x1, x2,x3,x4)=
1

Z
exp


∑

i

αi(xi)fi(xi)+
∑

i<j
βij
(
xi,xj

)
fij
(
xi,xj

)

  ,

where the parameters, αi(xi) for each mouse i for location xi and βij(xi,xj) for each pair i and j (one for every 
combination of locations, xi and xj), are set such that the marginal probabilities of the model agree with 
the empirically observed p(xi) and p(xi,xj); fi(x) is an indicator function, which equals 1 when mouse i is in 
location xi and 0 otherwise, and fij(xi,xj) is an indicator function, which equals 1 when mouse i is in xi and 
mouse j is in xj; Z is the normalization factor, or partition function.

We can build more complex models of group behavior by adding orders of interactions between 
mice. Thus, the third-order model is given by a maximum entropy distribution of a similar form, which 
has the same single mouse, and pairwise statistics, but also the empirically third-order statistics. This 
third-order model, p(3), has, in addition to αi(xi)’s and βij(xi,xj)’s, interaction parameters for each triplet 
and locations γijk(xi, xj, xk). The fourth-order model, p(4), uses all possible correlations among mice. 
We emphasize that the maximum entropy models give the most parsimonious explanation of the data 
for each order, and therefore are not just an arbitrary ‘modeling approach’ but rather the least 
structured models one could build for the observed data. This hierarchy of maximum entropy models 
allows us to dissect the role of individual behavior, pairwise relations, triplets and so on, since every 
model adds a unique set of independent constraints.

Figure 3A shows the accuracy of the maximum entropy models of different orders in describing 
the empirical distribution of the spatial configurations of the mice (see ‘Materials and methods’). 
The top left panel shows how poorly the independent model p(1) describes the empirical distribution 
of configurations of the group pempirical. This discrepancy (which was already apparent in Figure 2B) 
reflects the effect of the correlations among mice on the group behavior. The top right panel 
shows that the pairwise model p(2) was a much better model of the group behavior, and captured 
much of these correlations in the group, but still shows considerable differences from the empirical 
data. Thus, the group correlations have a significant higher-order contribution. We see that p(3) gave a 
very good approximation to the empirical data (left bottom panel), and was very close to the accuracy 
of p(4) that relies on all orders of correlations among mice (bottom right panel). We emphasize that 
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the comparison was performed through cross-validation, namely, ME models were fit to a randomly 
chosen half of the data (train data), and then compared to the empirical distribution based on the 
other half (test data).

To quantify the accuracy of each of these models in capturing the full group configurations, and the 
relative contribution of each interaction order in explaining the group behavior, we first estimated the 
total correlations of all orders in the group that go beyond the individual behavior of the mice. We 
used the ‘multi-information’ of the group (Schneidman et al., 2003), which is a generalized form of 
the mutual information between two variables that measures dependencies among a group of vari-
ables IN({x1, x2,...,xN}). It measures by how much the dependencies between mice change the con-
figurations of the mice, compared to what would be expected if the mice were independent, through 
the difference between the entropy of the independent (first-order) model and the entropy of the 
empirical distribution, (see ‘Materials and methods’). IN can be uniquely broken down to the sum of 
exact contributions of each order of correlations, when the contribution of order k to IN, is given 
by I(k) =H[p(k−1)]−H[pk], where H[pk] is the entropy of the ME models of order k (Schneidman et al., 
2003). Here, IN = I(2) + I(3) + I(4), which then gives the second-order, third-order and fourth-order contri-
butions to the correlation in the group beyond what the individuality predicts. We found that over 
all groups, the contribution of the pairwise ME model, given by I(2) was 57.2% ± 10.2% of IN. We found 
that I(3) carried nearly a third of the total correlations, and so p(3) that relies on individual traits, pairwise 
and triple interactions between the mice explains 92.8% ± 2.9% of the correlations (Figure 3B shows 
as an example the results for the group shown in Figure 3A). Thus, for a group of four mice even using 
all pairwise interactions is not enough to capture the group behavior; the third-order interactions 

A B

Figure 3. High-order maximum entropy models show the role of pairwise and triplewise interactions in shaping 
the group configurations of one representative group. (A) In each panel we present the accuracy of the corresponding 
ME model, from first to fourth order, in describing the empirical data for the group. Each dot corresponds to 
one configuration state of the group, and its probability is shown for the data (x-axis) and the prediction of the 
model (y-axis). The grey funnel shows the 95% confidence interval of estimation of the empirical distribution of 
configurations. Examples of two specific configurations are highlighted in all graphs (green and blue dot), to show 
improvement of model accuracy over orders. (B) Breakdown of the total group correlations, or multi-information IN, 
to the contribution of the pairwise interactions between mice, I(2), triplet interactions between them, I(3), and fourth-
order contribution I(4).
DOI: 10.7554/eLife.00759.007
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are therefore necessary and capture about a third of the correlation structure. This strong high-order 
dependency is consistent with the synergistic effect seen in Figure 2 in terms of the information that 
can be read about the location of a mouse from that of the other mice.

Inferring the pairwise and triplewise functional interaction maps 
underlying group behavior
The maximum entropy models we have used to describe the group behavior are a generalized form of 
the Potts model from statistical physics, which describes the behavior of spins in a lattice in terms of 
the interactions between them (Landau and Lifshitz, 1980). We therefore interpreted the parameters 
of our ME models as the interactions between the mice at the different locations; these reflect func-
tional (rather than physical) dependencies between the animals. To give as compact an explanation 
of the social interaction between animals as possible (and to avoid overinterpretation of the parameters 
we found in the ME model), we tried to identify the dominant and irreducible dependencies between 
animals. We therefore constructed a third-order ME model, where we tried to minimize the number of 
parameters of the model. Specifically, we fitted the maximum entropy model but added a constraint 
in the form of a cost for every interaction term that is not zero (see ‘Materials and methods’ and 
Figure 4—figure supplement 1). This standard regularization approach gives a model, p*, that is 
nearly as accurate as the full third model (Figure 4A), but uses far less parameters (Figure 4B and 
Figure 4—figure supplement 1). Figure 4C shows all the pairwise interactions between the mice 
for one of the groups (Figure 4—figure supplement 2). We found that most pairwise parameters (or 
functional interactions) were negative, making the corresponding configurations less common than 
predicted from single mouse preferences, and positive interactions were less common and weaker, 
making the corresponding configurations occur more than expected from single mouse traits. Figure 
4D,E show the most dominant pairwise and triplewise interactions for one group, respectively, 
overlaid on a drawing of the arena. Importantly, the interaction maps show that mere physical 
limitations do not play a key factor in shaping the group configurations. In particular, we did not find 
strong high-order interactions for configurations in which more than two mice are in the same loca-
tion. (i.e., there is no exclusion of these configurations that requires a special interaction that 
would ‘prevent’ this from happening).

Social interactions and correlated group behavior depend on past 
environment
Since the nature of the environment and availability of resources determine population density, 
aggression, dominance, and territoriality in mice (Bronson, 1979; Haemisch et al., 1994; Van Loo et al., 
2001), we asked how raising mice in a complex and more populated environment (Sztainberg and 
Chen, 2010; Sztainberg et al., 2010) might affect their group behavior. We found that groups raised 
in standard laboratory conditions environment (SE, n = 8) and those raised in a complex environment 
(CE, n = 9; Figure 5A), already showed distinct behavior at the individual level, as CE mice spent 
significantly more time inside the large nest and less time outside (Figure 5B). But more importantly, 
we found clear differences between SE groups and CE ones in terms of the overall group behavior 
and, in particular, the nature of the interactions in the group that go beyond single mouse individuality. 
Given their accuracy in describing the group behavior, we used the third-order models that we fitted 
for each group separately to compare the distribution of the spatial configurations in the arena. 
We found that CE groups were more similar to other CE groups than to SE groups (and vice versa) in 
terms of the overall distribution of observed configurations of the mice (Figure 5C).

We found that the total group correlation IN values of the SE and CE groups were similar on the first 
day, but then the SE groups became more correlated. In contrast, the correlations among the CE mice 
remained unchanged (Figure 5D). In other words, there was a progressive increase in social correla-
tion, or ‘socialization’ in the SE groups, which was absent in the CE groups. We emphasize that these 
are differences at the level of group behavior that go beyond the differences between the indi-
vidual (single animal) behavior patterns of SE and CE mice.

Finally, we found that the contribution of the different orders of interactions to the group behavior 
differed significantly between the SE and CE groups. In the CE groups the contribution of pairwise 
interaction to the full group correlations was higher than in SE groups (74.6% ± 2.5% in CE groups 
compared to 61.9% ± 2.4% for the SE ones, averaged over all four days). The dominance of the low-
order interactions was also reflected by the virtual lack of contribution of fourth-order interaction in 
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Figure 4. Functional social interaction maps between mice. (A) Accuracy of a ‘regularized’ third-order maximum 
entropy model of the spatial configurations of the same groups of mice from Figure 3A. Model predictions are 
plotted against the empirical distribution. For details of parameter selections for the regularized model see 
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.00759
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the CE groups, whereas the SE groups showed more complex high-order structure (fourth-order inter-
actions contribution to the total correlation in the SE groups was 6.0% ± 0.7% [Figure 5E]). The larger 
role of pairwise interactions in shaping the group’s behavior is also reflected in the information about 
the location of one mouse that can be read from the locations of the other three mice. In the CE 
groups the information from three mice about the fourth was far less synergistic than in the case of SE 
groups (Figure 5—figure supplement 1). Thus, mice exposed to a complex environment during ado-
lescence were more individual, and their weaker group correlations relied more on pairwise rather 
than higher-order dependencies.

Discussion
Quantifying social interactions presents an ethological challenge both experimentally and theoretically 
(Adolphs, 2010). While even solitary species display social behavior such as mating, aggression, and 
maternal care, species that live in groups display profoundly more complex social repertoires (Silk, 
2013). This group behavior, ideally dissected into individual and group parts, is also likely to depend 
on the environmental context (Insel and Fernald, 2004). Thus, understanding group social behavior 
requires a framework combining an experimental system for recording group behavior with high reso-
lution both spatially and temporally in a reliable manner over long time windows, and a mathematical 
formalism to quantify the nature of interactions and their contribution to the group’s behavior.

Mice are an ideal model organism for investigating social behavior in mammals and the neural 
mechanisms that underlie it. Together with the ability to manipulate their genomic make-up (Lewandoski, 
2001), and record neural activity (electrophysiologically or optically), mice live in groups and form 
diverse societies with different characteristics such as group size, hierarchy, aggression, and social 
tolerance (Bronson, 1979). However, despite the complex nature of their social organization, the current 
methodologies used for analysis of social behavior in mice have focused mainly on dyadic interactions 
such as in the classical three-chamber social approach test and the partition test (Silverman et al., 
2010). One common approach has been to record, via video, the interaction between two animals and 
then have defined behaviors scored by trained human observers (Moretti et al., 2005). This allows for 
identifying intricate social behaviors and can provide new insights about underlying features of social 
interaction, but demands immense human resources and is prone to human error. Another approach has 
focused on the behavior of one individual towards other restricted conspecifics (Nadler et al., 2004; 
Moy et al., 2008; Ben-Ami Bartal et al., 2011), which allows for an automated behavioral scoring 
system. However, since only one animal is free to roam, its behavior might be altered due to the synthetic 
dynamics of interactions. de Chaumont et al. (de Chaumont et al., 2012) reported an automated video 
tracking system for social interaction between two rats, which were analyzed based on their relative 
locations in a 10 min test. This method holds the advantages of both rats roaming free and the use of 
an automated system; however, the ability to distinguish between different behaviors is limited.

Figure 4—figure supplement 1. (B) The distribution of ME parameters according to the order of interactions in 
the regularized p* model (shown above the horizontal line), compared to the model without regularization (shown 
below the line). The distribution is over parameters of all eight groups of SE mice taken together. (C) Full pairwise 
interaction maps for four representative groups. (Group S2 is magnified as it is used in following panels.) In each of 
these maps, the colored dots represent the location of a mouse according to the color coding in the bottom of the 
figure. The colors of the mice are depicted near their corresponding locations. The color of a vertex shows 
whether the interaction is positive (red) or negative (blue) and its width reflects the interaction strength. An alternative 
presentation of all the pairwise interaction parameters is shown in Figure 4—figure supplement 2. (D) The dominant 
positive and negative pairwise interactions are shown overlaid on a diagram of the arena. ‘Filled mice’ show positive 
interactions, and ‘empty mice’ show negative interactions. A star denotes that the mouse is on the nest. The value of 
the corresponding interaction is shown on the bottom of each panel. (E) The dominant positive and negative 
triplewise interactions for the same group as in D, overlaid on a diagram of the arena.
DOI: 10.7554/eLife.00759.008
The following figure supplements are available for figure 4:

Figure supplement 1. Tradeoff between generalization and accuracy of the maximum entropy model.
DOI: 10.7554/eLife.00759.009

Figure supplement 2. All pairwise interactions of a typical group. 
DOI: 10.7554/eLife.00759.010

Figure 4. Continued

http://dx.doi.org/10.7554/eLife.00759
http://dx.doi.org/10.7554/eLife.00759.008
http://dx.doi.org/10.7554/eLife.00759.009
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Figure 5. Environmental background changes group behavior and interactions. (A) Experimental design. At the 
age of 4 weeks (day 0 of the experiment), mice were separated into two different housing conditions: standard 
environment and complex environment. After 6 weeks, groups of four mice from both treatments were color 
Figure 5. Continued on next page
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The system we introduce here enables automatic tracking of group behavior of mice in the dark, 
over long periods of time, and in a semi-natural environment, with high spatiotemporal resolution 
while maintaining individual identities. Similar systems for tracking multiple individuals (Freund et al., 
2013) allow for tracking animals over long periods of time, using radio-frequency identification (RFID) 
tagging of individual animals. We note that RFID-based systems allow for the tracking of a very large 
number of animals, whereas our tracking capacity depends on the number of distinguishable dyes and 
spatial marking patterns on the mice (our preliminary results suggest we can expand even the current 
system to more than 10 mice). However, the strength of our system is in its much higher spatial and 
temporal resolution, and the ability to track and analyze details of individual behavior of the animals 
and between them.

Clearly, these kinds of systems would change the way individual and social behavior can be studied 
and quantified. The recent work by Freund et al. used the tracking of many mice over several months 
to study the individual mouse behavior within a large group and showed correlation between the roam-
ing behavior of a mouse and the level of neurogenesis in its hippocampus (Freund et al., 2013). The 
work we have presented here addresses the complementary question of the nature of group beha-
vior that goes beyond individual traits, focusing on the interactions between animals. Our results 
show the limitations of individual-based and even pairwise-based approaches, and identify irre-
ducible high-order structure among mice. Moreover, although every individual group is likely to have 
its own unique nature, hierarchy, traits and rules, we were still able to identify universal features of 
the groups that govern their behavior and distinguish different behavioral contexts. Combining 
detailed behavioral and genetic analysis at the level of individuals as seen in Freund et al. (2013), in 
association with the kind of group analysis used, may enable the identification of genetic and neuronal 
correlates of complex social interactions.

Our analysis of the groups relied on a representation of the mice in their preferred locations in  
the arena. This is a discretized version of the full physical space, but even at this level the number of 
potential group configurations, which is exponential in the number of animals, is very large. We found 
strongly correlated group structure among the animals, which dictate which configurations are permit-
ted and which are not. Moreover, we found that more information was obtained from the joint position 
of the other mice than from summing all the information provided by the interactions between the 
pairs of mice. To assess the contribution of individuality and of pairwise and higher-order interactions 
among the mice, we used tools from information theory to quantify any kind of dependency, of any 
order, be it linear or non-linear. Intriguingly, the pairwise-based model of the group that assumed no 
higher-order contribution could only explain approximately 60% of the correlation structure in the 
group, whereas models that included also third-order dependencies (but not fourth-order ones) cap-
tured approximately 90% of the group correlation structure. How should one interpret these results 
together? The ME model shows how well we can describe the distribution, whereas the information 
about location reflects how deterministic the behavior of one mouse is given the others. What we can 
read about the location of a mouse from the location of the others is much more than what one would 
naively expect from the pairwise relations between mice, which amounts to approximately 5%. This 

marked, returned to their cages for an additional week, and then put in the arena for recording their group social 
behavior. (B) Behavioral ethograms of two representative groups from each treatment (left). Data shown in these 
panels is for the 12 hr of the second day. Average percentage of time spent at the different regions over all groups 
for each treatment (right). (C) Similarity of group behavior between all SE and CE groups. For each pair of groups, 
the Jensen–Shannon divergence between the third-order maximum entropy models of the groups was calculated. 
Matrix entries are ordered by their corresponding SE or CE label. (D) Total group correlation (multi-information, IN) 
of the SE and the CE groups over 4 consecutive days. (E) The contribution of each order of interaction to the total 
correlation in the groups. Figure 5—figure supplement 1 presents the differences in the distribution of the fraction 
of information about the location of one mouse that can be ‘read’ from the location of the other mice for SE and 
CE groups.
DOI: 10.7554/eLife.00759.011
The following figure supplements are available for figure 5:

Figure supplement 1. Histogram of the fraction of information about the location of one mouse that can be ‘read’ 
from the location of the other mice. 
DOI: 10.7554/eLife.00759.012

Figure 5. Continued

http://dx.doi.org/10.7554/eLife.00759
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strong synergistic effect is the result of high-order dependency between the animals (which the 
maximum entropy models reflect), but it is still the case that three-quarters of the uncertainty we have 
about the location of a mouse comes from its own individuality. That is, the mice still have a signif-
icant individual component, even given the other mice.

The need for models that include high-order interactions is surprising, since intuitively one might 
have expected that it would be possible to construct a mathematically accurate description of the 
group once all the interactions between pairs of mice were known. After all, most social behaviors, 
such as fights, chases, courtship, and grooming, are usually observed in pairs. Our analysis of the social 
interaction network underlying the group behavior relied on a family of maximum entropy models, 
which enabled us to uniquely dissect the contribution of different orders of correlations in the group. 
This approach has been useful for different biological networks, from small to large networks of 
neurons (Schneidman et al., 2006; Shlens et al., 2006; Marre et al., 2009; Ohiorhenuan et al., 2010; 
Ganmor et al., 2011), genes (Lezon et al., 2007), T cells (Mora et al., 2010), letters in words (Stephens 
and Bialek, 2010), the structure of images (Stephens et al., 2013), and birds in large flocks 
(Bialek et al., 2012). Interestingly, in almost all these cases the contribution of pairwise interactions 
was very large and dominated the network structure, especially in small networks—in clear contrast 
to what we found for the mice.

The parameters of the maximum entropy models can be interpreted as functional social inter-
actions between the animals (similar to the parameters of the corresponding Potts models from 
physics). We emphasize that these functional interactions reflect statistical dependencies, and will 
probably differ from explicit physical interactions between the animals that one could measure. Yet, 
these statistical dependencies highlight the most prominent relations that underlie the patterns of 
group behavior. The strongest functional interactions corresponded not to the most frequent events, 
but rather to those events that are most surprising or not predicted from lower orders of interactions, 
thus presenting interactions of a truly social nature. Our results show that the dominant interactions in 
the group are negative ones, namely compound configurations that tend not to happen compared to 
expectations based on individual behavior. This may suggest competition as a dominant force in the 
social structure. In addition, the relative sparseness of the interaction maps indicates that even a small 
number of social events can have a strong, macroscopic impact on the group.

As an example of how the combination of group tracking and the analysis based on information 
theory tools can enhance our understanding of the effect of external factors on group behavior, 
we compared the effects of different environmental exposures on social behavior. We found that 
growing up in a complex environment with more mice, which better resembles a natural habitat, 
resulted in groups that were far less correlated as a group, and their social structure could be explained 
to a much larger degree based on pairwise interactions. We suggest that this approach could now 
enable the quantitative characterization of many different aspects of group behavior that have so far 
only been studied in much more restricted set-ups, such as the effects of stress, rewards, and learning 
on the group.

Several technical and mathematical issues should be further explored to allow the extension of 
our approach to other groups of animals and contexts. First, we reiterate that our analysis has focused 
on a reduced description of the mice configurations (regions of interest), and not absolute or relative 
coordinate space. While it is not immediately clear how to construct such models, they have the potential 
to reveal new features and dependencies in the group, and with respect to cues from the environment 
as well. Moreover, it would be interesting to consider how our analysis might be related to more standard 
hierarchy models in groups. Second, we have focused on the joint configurations of the mice at given 
time points, and have not included temporal correlations between them. Third, it will be interesting to 
consider how the number of animals in the group affects the nature of group correlations and the 
contributions of the different interaction orders. Preliminary results suggest that our system can be 
expanded in terms of tracking more mice using additional dyes and using spatial color patterns 
on the mice.

We expect that mapping of the social interactions among other and larger groups of animals, 
and their dynamics, will change our understanding of group behavior in terms of the interplay 
between genetics, individuality, environment, and social hierarchy. Of particular interest would be 
the extension of our approach to study animal models of maladaptive social behavior. For example, 
our analysis would allow identifying mutants that rely on different kinds of low or high-order inter-
actions compared to wild type littermates; such analysis would be useful for studying mechanisms 

http://dx.doi.org/10.7554/eLife.00759
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underlying social intolerance and group stability, as well as models of autism and schizophrenia. 
Because our approach is based on high throughput as well as high spatiotemporal resolution, it may 
also be useful in detecting subtle changes in social behavior in mice that may not be detectable 
in standard social behavior paradigms even for standard parameters such as exploration, feeding 
or locomotor activity.

Materials and methods
Arena
Mice were studied in a specialized arena designed for automated tracking of individual and group 
behavior. The arena consisted of an open 70 cm × 50 cm × 50 cm box and included the following 
objects: Z-shaped wall, a water dispenser, two feeders, a small nest and a large nest, an elevated block, 
and two elevated ramps (Figure 1—figure supplement 1). Food and water were given ad libitum. Two 
UVA fluorescent lamps (18 W) were placed 3 m above the arena’s floor to illuminate the surrounding 
area with 370–380 nm ‘black light’. To avoid reflections from white objects in the room, a black curtain 
was drawn from the fluorescent lamps down to the arena. A color sensitive camera (Panasonic Color 
CCTV, WV-CL924AE) was placed 1 m above the arena. The camera analog input is converted to digital 
information with a digitizer (Picolo Diligent frame grabber board), and recoded on a standard com-
puter. Mice trajectories were automatically detected offline using specially written software in Matlab 
(Mathworks, Natick, MA).

Animals
Adult male ICR mice (Harlan Laboratories, Jerusalem, Israel) were used for the standard and complex 
environment experiment. Throughout the experiments, the animals were maintained in a temperature-
controlled mouse facility (22°C ± 1) on a reverse 12 hr light–dark cycle. Food and water were given ad 
libitum. All experimental protocols were approved by the Institutional Animal Care and Use Committee 
of The Weizmann Institute of Science.

Color marking
Mice were mildly anesthetized with a mix of ketamine (70 mg/kg) and xylazin (7 mg/kg). Their eyes 
were protected against drying using eye gel (viscotears liquid gel; Alcon). The fur of the mice was 
stained using a regular brush with fluorescent semi-permanent hair dyes that glow under black light. 
The fur was dried with a fan (low power and heat) for 3 min. After awakening, mice were kept in  
separate carton boxes for 4 hr before reunion. Mice were introduced to the arena for tracking 5 days 
after the fur staining. The dyes used were Electric banana, (HCR 11012), composed of natural ingredients, 
Virgin snow white (HCR 11033), and Raven (HCR 11007), from Tish & Snooky’s (manicpanic.com), and 
High octane orange, from specialeffectsusa.com.

Color under black light Color under regular light Dyes ratio

Green Yellow 100% Electric banana

Purple White 100% Virgin snow white

White Yellowish 20% Electric banana, 80% Virgin snow white

Red Red 80% High octane orange, 20% Electric banana

Orange Orange 20% High octane orange, 80% Electric banana

Black Black 100% Raven

Standard and complex environment conditions
At the age of weaning (4 weeks), mice were randomly distributed into 2 types of groups: standard 
environment (SE) mice that were housed in groups of 4 in standard laboratory cages, and complex 
environment (CE) mice that were housed in groups of 16 male mice in a relatively spacious and 
complex cage, with a variety of objects such as shelters, tunnels, running wheels, and mouse nest 
boxes (Sztainberg and Chen, 2010). After a period of 6 weeks, CE mice were randomly divided into 
groups of four, color marked, and introduced to the novel arena, as the SE mice, for analysis of group 
social behavior.

http://dx.doi.org/10.7554/eLife.00759
http://manicpanic.com
http://specialeffectsusa.com
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Mouse tracking
Mice were identified and tracked automatically, according to their fur colors, which were learned from 
labeled data. Because of low signal-to-noise ratio, due to the dim lighting and the camera’s sensitivity, 
some frames had reflection artifacts or missing parts. To overcome this noise, we used a Bayesian 
model to infer the most likely location of a mouse given the observed location of connected col-
ored blobs. Validation of the tracking algorithm was performed by comparing the algorithm’s 
performance to human labeling of 500 randomly chosen frames, which gave 99.6% accuracy.

Sampling rate
The raw camera acquisition rate was 25 frames/s (40 ms per frame). In analyzing the configurations of 
the mice we used a lower resolution of 240 ms per frame, as this did not have a major effect on the 
state distribution, but was more robust to single frame noise.

Estimating mutual information about mouse locations
The uncertainty about the location of mouse i is given by the entropy of its location distribution, 

H(xi)= −
∑
xi

p(xi)log2p(xi). The mutual information between the location of mouse i and that of mouse 

j is given by I(xi; xj)=H(xi)−H(xi|xj), where H(xi|xj)= −
∑
xi,xj

p(xi,xj)log2p(xi|xj) is the average conditional 

entropy or uncertainty about mouse i given the location of mouse j. The fraction of the uncertainty 

about the location of mouse i that can be extracted from the location of mouse j is then given by 

I(xi; xj)

H(xi)
. The fraction of uncertainty about the location of mouse i that can be ‘read’ from the joint location 

of the three other mice is given by

I
(
xi; {xj, xk,xl}

)

H(xi)
	 (1)

The naive additive pairwise information fraction was defined as

I
(
xi; xj

)

H(xi)
+ I(xi; xk)
H(xi)

+ I(xi; xl)
H(xi)

	 (2)

Group correlations and multi-information
The total correlation of all orders between mice was quantified by the multi-information of the group 
(Schneidman et al., 2003)

IN({xi})=
∑
j

H
(
xj
)
−H({xi})=

∑

{xi}
p({xi})log2

p({xi})∏
j
p
(
xj
)	 (3)

where the joint entropy of the mice configurations is defined by

H({xi})= −
∑

{xi}
p({xi})log2p({xi})		  (4)

(where {xi}={x1,x2,x3,x4}) and the entropy of the independent mice model or the sum of the entropies 

of the mice is 
∑
i

H(xi).

Maximum entropy models for mice configurations
For a given set of observed average functions of the group, <fi({xi})>, the maximum entropy 
model, which is the minimally structured model that is consistent with these measured functions, 
is given by

p({xi})=
1

Z
exp

(∑
i

λifi({xi})
)

		

(5)
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where λi are set such that the average of each fi under the model,<fi>p is identical to the empirical 
expectation value, <fi>empirical, and Z is the normalization or partition function (Jaynes, 1957).

For each group of mice, we then find a hierarchy of maximum entropy models that gives the minimal 
description of the mice configurations, relying only on pairwise correlations between mice (p(2)), 
pairwise and triplewise correlations (p(3)), and all correlations (p(4); pairs, triplets, and quadruplet 
correlations). The constraints of each of these maximum entropy models are the empirical marginal of 
different orders, that is, single mice pempirical (xi), pairs pempirical (xi,xj), and so on. For example, the pairwise 
model is the maximum entropy distribution over all mice, such that the marginal probabilities p(xi) and 
p(xi,xj), the pairwise marginal probability to find mouse i and mouse j in location xi and xj, are the same 
as empirically found in the data. Formally, we seek p({xi}) that maximizes
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The resulting maximum entropy distribution is given by

( ) { }( ) ( ) ( ) ( ) ( ) 
  
 
∑∑ ∑∑2

< ,2

1
p = + , ,

Z
i i j

i i i i i ij i j ij i j
i x i j x x

x exp x f x x x f x xα β 	 (7)

where the Lagrange multipliers αi(xi) and βij(xi,xj) have to be chosen to satisfy the constraints, and fi(xi) 
is an indicator function which equals 1 if mouse i is in location xi, and 0 otherwise; the partition function 
Z2 is a normalization factor.

The maximum entropy models were fit using a combination of the generalized iterative scaling 
algorithm (Darroch and Ratcliff, 1972), and a maximum-likelihood optimization using a variant of the 
gradient descent algorithm with line search (Nesterov, 2005).

The maximum entropy models of different orders form a hierarchy of correlation-based descriptions 
of the mice, from p(1) where all mice are independent, to p(4) which is an a description that allows 
arbitrary complex interactions; their entropies decrease monotonically toward the true entropy.

H[p(1)]≥H[p(2)]≥…≥H[p(N)] =H		  (8)

The multi-information IN = H[p(1)] − H[p(N)] can be broken down to the sum of contributions of each 
order of correlation, where the k’th order contribution is given by I(k) = H[p(k-1)] − H[p(k)], and IN = I(2) + I(3) 
+ … + I(N).

Regularized maximum entropy models
To build a more compact model for the mice configurations and isolate the significant functional 
correlations between the mice, we constructed a model, p*, for the mice configurations that has the max-
imal entropy given a set of constraints, but also minimizing the total sum of the non-zero parameters 
of the model. Thus we added a penalty term (‘regularization’), to the standard maximum entropy opti-
mization problem from equation 6, and maximize

L
(
p({xi}),{αi(xi)},{βij

(
xi,xj

)
},{γijk

(
xi,xj

)
}
)
−ε0


∑

i

|αi|+
∑

i<j
|βij| +

∑

i<j<k
|γijk|


  (9)
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where ε0 is an adjustable parameter that controls the trade off between maximizing the entropy and 
minimizing the total sum of absolute values of the parameters or the L1 norm, also known as lasso regu-
larization (Dudık et al., 2007).

Measuring similarity between group configurations
Similarity between groups was quantified by the Jensen–Shannon divergence (DJS) between the 
regularized third-order models of the groups (Lin, 1991). Since the mice were arbitrarily labeled, we 
used the permutation of mouse identities that gave the smallest value of DJS between two groups. 
Thus the distance between groups i and j is

d(i, j)=min
π
Djs

(
pi({xk}),pj(π{xk})

)
 ,		  (10)

where π is a permutation of the mice labels such that

π(x1, x2,x3,x4)= (xk1 ,xk2
,xk3

,xk4)			   (11)

where k1∈{1, ...,4} and are unique.
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