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Abstract Non-additive interaction between genetic variants, or epistasis, is a possible 
explanation for the gap between heritability of complex traits and the variation explained by 
identified genetic loci. Interactions give rise to genotype dependent variance, and therefore the 
identification of variance quantitative trait loci can be an intermediate step to discover both 
epistasis and gene by environment effects (GxE). Using RNA-sequence data from lymphoblastoid 
cell lines (LCLs) from the TwinsUK cohort, we identify a candidate set of 508 variance associated 
SNPs. Exploiting the twin design we show that GxE plays a role in ∼70% of these associations. 
Further investigation of these loci reveals 57 epistatic interactions that replicated in a smaller 
dataset, explaining on average 4.3% of phenotypic variance. In 24 cases, more variance is explained 
by the interaction than their additive contributions. Using molecular phenotypes in this way may 
provide a route to uncovering genetic interactions underlying more complex traits.
DOI: 10.7554/eLife.01381.001

Introduction
The discrepancy between the contribution of known genetic factors to variation of a trait and the 
estimated total contribution of all genetic variants has become known as ‘missing heritability’ (Manolio 
et al., 2009). Some of the explanations for this discrepancy are: many common variants with small 
effects; many rare variants with larger effects; and interactions between genetic variants (epistasis) or 
between variants and environment (GxE). Here, we focus on the discovery and characterisation of 
epistasis, by which we mean that the effect of a genetic variant on a trait depends on the genotype at 
one or more other locations in the genome. Statistically we define this as a joint effect of two loci on 
a trait, significant beyond the sum of additive effects.

On long time frames, epistasis plays an important role in evolution (Breen et al., 2012), and has 
been used to explain the persistence of deleterious mutations under selection (Hemani et al., 2013). 
Epistasis has frequently been seen in crosses between model organism strains. Huang et al. (2012) 
looked at mapping variants associated with three traits in two distinct Drosophila populations and 
found very little concordance between the results. They postulated that this could be because the  
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effect of genetic variants was dependent on the genetic background, and found frequent evidence of 
genetic interactions between one or more variants and the originally associated SNPs. Annotating 
these interacting SNPs to genes revealed common networks of highly connected genes across both 
populations. In a study of sources of variation in yeast crosses, Bloom et al. (2013) carried out a scan 
for epistasis which discovered 78 pairs of loci where the effect of one was dependent on the genotype 
of the other, affecting 24 traits. In most cases these interactions explained little of the genetic variation 
in trait, the median was 3%, but in one case 14% of this variance was explained. Significant interactions 
between variants have also been seen to affect rice yields (Huang et al., 2014) and metabolic traits in 
yeast (Wentzell et al., 2007). An extended recent review of study designs appropriate to detect 
epistasis in model organisms, and the evidence thus far collected, can be found in Mackay (2014).

However, epistasis has proved harder to identify in human genome-wide association studies.  
In particular, with classical complex traits there has not been evidence of epistasis on the scale seen in 
model organisms. This may be in part because of the large number of possible interactions to test in 
the human genome, and possibly because the genetic architecture is different in a homogeneous 
outbred population from that of a cross between inbred lines.

Paré et al. (2010) have described how an interaction, either genetic or environmental, can induce 
genotype dependent variance in phenotypes. This effect can be observed without directly modeling 
the interacting factor. They suggested that SNPs which showed such effects on variance could be  
prioritized in the search for interactions. We see an example of why this could be true in Figure 1A: 
carriers of C allele of SNP rs230273 show reduced expression when also carriers of the G allele of SNP 
rs3131691. For carriers of this G allele, this induces a bimodality in expression which appears as a large 
variance in expression. For those with AA genotype at rs3131691, expression appears independent of 

eLife digest Every person has two copies of each gene: one is inherited from their mother and 
the other from their father. These two copies are often not identical because there can be many 
different variants of the same gene in the human population. Traits (such as height, body mass and 
risk of disease) vary from one person to the next—and for many traits this variation depends in part 
on the different gene variants that each person has inherited. Studies seeking to find the differences 
in DNA that can predict this variation have often assumed that the changes in DNA act on traits 
independently of the effect of environment and of other genetic variants.

In contrast, studies with animals have shown that some genetic variants can interact to produce  
a bigger (or smaller) effect than would be expected from simply ‘adding together’ their individual 
effects—a phenomenon called epistasis. But how much does epistasis contribute to variation in 
human traits, if at all? This question has been much disputed, and is difficult to test, not least 
because of the sheer number of interactions to assess: tens of millions of changes in DNA have 
been observed in the human genome, and so there are many more than billions of possible 
combinations of these changes to investigate.

Here, Brown et al. have examined the sequences of all the genes that were expressed in cells 
taken from a cohort of twins and searched for genetic variants that show these epistatic 
interactions. By studying gene expression, which can be greatly affected by small changes in the 
DNA code, Brown et al. were able to identify 508 variants that had a bigger than expected effect 
on the level of gene expression. This may be a sign that these variants act in combinations: if within 
one genome a variant increased expression and in another it decreased expression, then this would 
cause greater variation in gene expression. Further investigation of these 508 variants led to the 
discovery of 256 examples of epistasis, and 57 of these were replicated in samples from another 
cohort. Brown et al. calculated that these epistatic interactions explained up to 16% of the variation 
in gene expression. Furthermore, as well as being involved in epistatic interactions, about 70% of 
the genetic variants that had an effect on the variation in gene expression were also involved in 
interactions between genes and the environment.

In addition to showing that epistasis contributes to variation in human traits, the work of Brown 
et al. could help to uncover interactions behind complex traits—beyond the expression level of a 
gene—that could not previously be investigated.
DOI: 10.7554/eLife.01381.002

http://dx.doi.org/10.7554/eLife.01381
http://dx.doi.org/10.7554/eLife.01381.002


Genes and chromosomes | Genomics and evolutionary biology

Brown et al. eLife 2014;3:e01381. DOI: 10.7554/eLife.01381	 3 of 16

Research article

rs230273 genotype; in the absence of the induced bimodality, the variance within this group is much 
reduced. The interactions causing genotype dependent variance could be with another genetic variant 
(epistasis, as in our example and the focus of this paper) or an environmental factor.

We therefore adopt the following two step strategy for uncovering epistasis affecting gene expres-
sion. We search for: (1) SNPs affecting the variance of expression (v-eQTL) within the 2 Mbp region 
around the transcription start site (TSS) of the gene, and then (2) SNPs in epistasis with these v-eQTL. 
Previous work that looked for variance QTL for height and BMI in ∼150,000 samples identified one 
replicated locus (Yang et al., 2012). Wang et al. (2014) also looked at v-eQTL in gene expression in 
the same cohort as presented here, where expression was quantified using microarrays rather than 
sequence based technology (Grundberg et al., 2012). They concluded that v-eQTL can often be 
induced by partial linkage disequilibrium with eQTL. They also discovered differences in expression 
between monozygotic twins which were dependent on genotype of the twin pair, such differences 
cannot be induced by these partial linkages and thus point to a gene–environment interaction. The 
haplotype effect explanation for v-eQTL, combined with a literature which has concluded in many 
cases epistasis does not contribute to variation in complex traits (Hill et al., 2008), led them to con-
clude epistasis is not a cause of v-eQTL. However, they do not search for examples of epistasis; we 
do so in this paper, explicitly ruling out haplotype effects. We note that microarray data are also less 
suitable than RNA-seq for the purpose of detecting v-eQTL, because saturation of signal limits 
discrimination at extremes (Wang et al., 2009). In neither Yang et al. (2012) nor Wang et al. (2014) 
were variance QTL directly used to identify epistatic or GxE interactions.

Two papers have also looked at producing a phenotype related to variance, in both cases using the 
coefficient of variance (CV) within inbred lines to map variants which control the stochastic influence in 
phenotypic variation (Ansel et al., 2008; Jimenez-Gomez et al., 2011). In single cell work, and 
animal models where the environment can be strictly controlled, variance within inbred lines could be 
seen as stochastic. But we focus our work on where genotype dependent variance is the consequence 
of a hidden factor, in our case the presence of an interaction between genetic variants, rather than 
examples where the observations are due to differences in random processes.

There are two other mechanisms by which genotype dependent variance can be induced. Firstly, as 
Sun et al. (2013) have described, standard eQTL working on mean gene expression levels can be mistaken 
for having variance effects in the presence of a mean–variance relationship. With RNA-seq data, the 
relationship between mean and variance is clear; as RNA-seq reads are sampled from a Poisson distribu-
tion, a square root transformation breaks this link. Secondly, as discussed by the Wang et al. (2014) 
paper described above, haplotype effects can appear as v-eQTL. For example, the situation where a 
recent strong eQTL co-segregates with a more common SNP (i.e., the SNP is in low R2 with the eQTL, 
but high D′) could be observed as variance effects of a single SNP. This could also by mistaken for epistasis 
between two variants which jointly tag the eQTL. We control for this possibility by explicitly considering 
all possible explanatory eQTL in the full sequence data available for our replication sample.

Results
We searched for v-eQTL in a dataset of 765 LCL samples from female Caucasian adult twins in the 
TwinsUK cohort, including 134 monozygotic (MZ) twin pairs and 192 dizygotic (DZ) pairs. The same 
samples from this cohort have previously been used for eQTL analysis, with expression quantified 
using microarrays (Grundberg et al., 2012). The level of expression of 13,660 genes was determined 
using whole transcriptome sequencing (RNA-seq). Using a non-parametric association test between 
SNPs within a cis window of ±1 Mbp around the TSS and the square of the residuals (‘Materials and 
methods’), we identified 497 SNPs as peak v-eQTL for 508 genes (false discovery rate (FDR) <0.05, 
Figure 1—figure supplement 1; Supplementary file 1A), 23 reaching Bonferroni significance (nom-
inal p-value <8.9 × 10−10). Many of the FDR defined v-eQTL cluster close to the TSS (9.3% are within 10 kb) 
but they are found at all positions in the window (Figure 1B). Of the 508 v-eQTL, 181 are also signif-
icant eQTL at a false discovery rate (FDR) of 0.05 (Figure 1—figure supplement 2).

To search for epistasis, we scanned the cis windows for a second variant statistically interacting with 
each of the peak v-eQTL. A forward stepwise analysis identified independent examples of epistasis, 
not induced by linkage disequilibrium; a statistical test was applied to remove signals related to 
dominance (‘Materials and methods’). This identified 256 independent SNPs in apparent epistasis with 
the peak v-eQTL for 173 genes (Bonferroni, p-value <1.98 × 10−8; Supplementary file 1B). To call 
these signals as genuine genetic interactions we required two further criteria: (i) significant replication 

http://dx.doi.org/10.7554/eLife.01381
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Figure 1. Genotype dependent variance analysis identifies candidate SNPs for interactions. These SNPs cluster 
close to the transcription start site. (A) The plot shows expression of the gene TRIT1, broken down by v-eQTL 
genotype (rs3131691), to illustrate how an interaction can be observed as an increase in variance. The genotype at 
rs3131691 interacts with the genotype of rs230273. Orange individuals are carriers of the C allele at rs230273, which 
decreases expression only in the AG and GG genotype groups of rs3131691. Observing only expression conditioned 
on rs3131691, this induced bimodality increases the variance of the observations within these groups. Jitter has 
been introduced in the x axis to reduce overplotting. (B) Histogram of distance from transcription start site in 
kilobases for the 508 peak v-eQTL hits. Figure shows the clustering of the 508 v-eQTL discovered in the TwinsUK 
cohort around the transcription start site, with downstream of the TSS counted as positive. The orange triangles 
below mark the positions of the 26 v-eQTL which replicated in the GEUVADIS cohort.
DOI: 10.7554/eLife.01381.003
The following figure supplements are available for figure 1:

Figure supplement 1. Peak v-eQTL signals for 13,660 genes. 
DOI: 10.7554/eLife.01381.004

Figure supplement 2. −log10 p value for v-eQTL against–log10 p value for eQTL for 508 v-eQTL hits estimated in 
the TwinsUK cohort. 
DOI: 10.7554/eLife.01381.005

Figure supplement 3. Variance of expression of ENSG00000164978 (NUDT2) is dependent on genotype dosage of 
rs10972055. 
DOI: 10.7554/eLife.01381.006

Figure supplement 4. Variance of expression of ENSG00000105499 (PLA2GC4) is dependent on genotype dosage 
of rs8109684. 
DOI: 10.7554/eLife.01381.007

Figure supplement 5. Variance of expression of ENSG00000043514 (TRIT1) is dependent on genotype dosage of 
rs3131691. 
DOI: 10.7554/eLife.01381.008

Figure supplement 6. Variance of expression of ENSG00000075234 (TTC38) is dependent on genotype dosage of 
rs6008743. 
DOI: 10.7554/eLife.01381.009

Figure supplement 7. Variance of expression of ENSG00000164111 (ANXA5) is dependent on genotype dosage of 
rs6857766. 
DOI: 10.7554/eLife.01381.010

Figure supplement 8. Variance of expression of ENSG00000137054 (POLR1E) is dependent on genotype dosage 
of rs7033474. 
DOI: 10.7554/eLife.01381.011

Figure supplement 9. Variance of expression of ENSG00000168765 (GSTM4) is dependent on genotype dosage of 
rs542338. 
Figure 1. Continued on next page
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in an independent dataset, and (ii) that the interaction could not be explained by the effect of a third, 
possibly rare, variant effecting expression as discussed above.

We replicated our scan for v-eQTL and epistatic interactions in 462 samples with LCL RNA-seq data 
from 1000 Genomes samples collected by the GEUVADIS consortium (Lappalainen et al., 2013). 
Table 1 reports the results of replication for v-eQTL and epistasis using both FDR and Bonferroni 
correction for threshold determination. For the 23 v-eQTL that are significant using the Bonferroni 
threshold, 16 are significant in the GEUVADIS cohort (FDR <0.05), 15 with same direction of effect. Of 
the 508 v-eQTL, 28 replicated with an FDR <0.05, 26 with same direction of effect. The ten most 
significant v-eQTL in the GEUVADIS cohort, with matching direction of effect across the two cohorts, 
are shown in Figure 1—figure supplements 3–12.

Of the 256 epistasis associations, information on both the SNP and the gene was available for 246 in 
the GEUVADIS data. We found that 137 replicated with FDR <0.05, 131 of which had the same direction 
of effect (Supplementary file 1B). p-value enrichment analysis (Storey, 2002) indicated that there was 
replication evidence for 71% of the 246. Moreover, we observed a correlation of 0.58 between the effect 
sizes of the interactions in both datasets (p-value = 5.9 × 10−24), with 202 of the 246 interactions sharing 
the same direction of effect (p-value = 2.2 × 10−25) (Figure 2—figure supplements 1, 2).

As discussed in the introduction, it is possible that an observed statistical interaction between two 
SNPs can be caused by a single true eQTL in linkage disequilibrium with them. For example, a particular 
combination of alleles across the pair of SNPs could tag a rare causative eQTL. To rule out this possibility, 
we took advantage of the full sequence for the GEUVADIS replication samples obtained by the 
1000 Genomes Project (The 1000 Genomes Project Consortium, 2012). For the 131 replicated 
examples of epistasis we identified all eQTL for the relevant genes amongst all sequenced cis SNPs or 
indels (a forward stepwise scan identified all eQTL significant with p<10−5, ‘Materials and methods’). 
The aim was for good characterisation of eQTL down to low frequency variants, though this is complicated 
by power and poorer imputation accuracy at such frequencies. We then tested whether the epistatic 
interaction was still significant in models incorporating each eQTL individually at the same threshold as 
previously applied. Fifty seven epistasis signals remain significant. Figure 2A shows the effect of the 
epistasis SNP broken down by genotype group on expression of TRIT1, Table 2 and Figure 2—figure 
supplements 3–12 report the 10 most significant examples of epistasis in the GEUVADIS cohort, a full 

DOI: 10.7554/eLife.01381.012

Figure supplement 10. Variance of expression of ENSG00000232629 (HLA-DQB2) is dependent on genotype 
dosage of rs114183935. 
DOI: 10.7554/eLife.01381.013

Figure supplement 11. Variance of expression of ENSG00000196735 (HLA-DQA1) is dependent on genotype 
dosage of rs9276807. 
DOI: 10.7554/eLife.01381.014

Figure supplement 12. Variance of expression of ENSG00000160284 (C21orf56) is dependent on genotype 
dosage of rs16978976. 
DOI: 10.7554/eLife.01381.015

Figure 1. Continued

Table 1. Replication analysis

Test Threshold

Associations  
(available for  
testing in GEUVADIS)

Replicate,  
FDR <0.05  
(% success)

Same direction  
of effect (% success) π1

v-eQTL FDR <0.05 508 (485) 28 (5.8%) 26 (93%) 0.30

v-eQTL Bonf <0.05 23 (23) 16 (70%) 15 (94%) 0.72

Epistasis Bonf <0.05 256 (246) 137 (56%) 131 (96%) 0.71

Significant associations (at FDR and Bonferroni thresholds) from the TwinsUK sample were replicated in GEUVADIS 
samples. The number of overlapping SNPs and genes in both datasets per analysis is shown, as well as the 
percentage of replicated associations. π1 is an estimate of the proportion of replicating loci in the GEUVADIS 
cohort (Storey, 2002).
DOI: 10.7554/eLife.01381.016
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list is in Supplementary file 1B. For all plotted interactions, the direction of effect was consistent 
within v-eQTL genotype groups across cohorts. In at least two instances we see sign epistasis, the  
effect of one SNP reverses direction conditional on the other SNP (Figure 2—figure supplements 7, 9).

We estimated the proportion of variance explained by the interaction in the GEUVADIS cohort to 
avoid over-estimating effects because of winner’s curse. As a result, we were able to determine that 
up to 16% of the variance in gene expression was explained by considering the interaction between 
the variants, with an average additional variance explained of 4.3% (Table 2; Supplementary file 1B; 
Figure 3). For the eight genes for which we replicated independent interactions with the v-eQTL, we 
found that in total up to 10.4% of the variance was explained by these multiple interactions, with an 
average of 5.1%. For 24 out of 57 the replicated examples of epistasis, the interaction explains more 
variance than the additive effects of the SNPs. We show as an example the gene TRIT1 (Figure 2). The 
v-eQTL (rs3131691) for TRIT1 lies on the boundary of an ENCODE defined LCL weak enhancer 
(Dunham et al., 2012; Rosenbloom et al., 2013) upstream of the gene, while the SNP in epistasis 
(rs230273) lies on the boundary of a downstream LCL enhancer region (Figure 2B). The v-eQTL is 
also 28 bp upstream of a strong eQTL signal (rs34387655). This eQTL has minor allele frequency 
(MAF) 0.08, and is in high D′ with the v-eQTL (MAF = 0.30), suggesting that the eQTL could be a 
recent mutation co-segregating with one allele of the v-eQTL. But this eQTL cannot explain the 
observed interaction, which was still significant when analyzing only major allele homozygotes for 
the eQTL (p-value = 0.0095). Therefore, we conclude that two causal loci act on the weak enhancer 
in two different ways; rs34387655 has a direct effect on the enhancer while rs3131691 acts in con-
junction with the epistasis variant rs230273 (or variants in linkage disequilibrium with these SNPs act 
in these ways).

The discussion up to this point concerns SNPs in cis with the expressed gene. Looking for examples 
of trans SNPs (>5 Mbp from the TSS) in epistasis with the v-eQTL yielded no hits that replicated in the 
GEUVADIS cohort. However, using the twin design we were able to address the contribution of long 
range epistasis by a heritability analysis. Assuming no recombination in the cis region, the proportion 
of the cis window that dizygotic twins (DZ) inherited identically by descent is either 0, 0.5 or 1 and this 
allows us to perform a linkage analysis to estimate the proportion of variance explained by variants in 
the cis region, the trans region (5 Mbp away from the TSS) and interactions between the two. We had 
information about the IBD sharing around 273 of the 508 v-eQTL genes. For 15 of these, interactions 
between the cis and trans regions explain more than 10% of the variance in expression. For all of these 
there is greater evidence of cis-trans epistasis affecting expression than an influence of common environ-
ment, and for 9 of the 15 the interaction effect was more than the estimated combined direct genetic 
contribution of both cis and trans variants (Supplementary file 1C).

The presence of v-eQTL can be induced by gene–environment interactions, as well as epistasis 
or haplotype effects. Because our data come from a twin cohort, which includes monozygotic (MZ) 
twin pairs, we have another measure of variability within the dataset: the discordance in expression 
between MZ twins. Genotype dependent differences in expression within MZ pairs cannot be 
induced by epistasis or haplotype effects, as both twins share the same genetic background. 
Therefore, evidence that v-eQTL are also discordant eQTL (d-eQTL) would suggest that v-eQTL 
could also have a GxE explanation, including possibly interactions between the genome and the 
epigenome (Martin et al., 1983; Reynolds et al., 2007; Figure 4A). Using our MZ data, we have 
tested our 508 v-eQTL for evidence that they are also d-eQTL; using the methods from Storey 
(2002) we estimate that 70% of the v-eQTL act in this manner. This suggests that GxE interactions 
are common amongst these variants (‘Materials and methods’, Figure 4B; Supplementary file 1A). 
In total, 176 of the 508 v-eQTL show significant effects on discordance (FDR <0.05). Of these 176, 
we estimate the proportion that are also eQTL as 40.3%, less than the proportion of all v-eQTL 
which act as eQTL.

By looking at variance between individuals and discordance between monozygotic twins, we mirror 
an approach which looked at robustness of phenotypes to genetic and environmental influences 
(Fraser and Schadt, 2010). In this study of gene expression traits, differences between inbred mouse 
strains were called ‘genetic robustness QTL’ (GR-QTL). These correspond to our definition of v-eQTL, 
and the paper discusses how they can be induced by epistatic interactions. The paper also looks at 
QTL for within strain variance, analogous to our d-eQTL and referred to as ‘environmental robustness 
QTL’ (ER-QTL), and describe them as induced by gene–environment interactions. They reported 
finding both GR-QTL and ER-QTL in mice, Arabidopsis and S. cerevisiae.

http://dx.doi.org/10.7554/eLife.01381
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Figure 2. TRIT1 expression is affected by an interaction between two SNPs, lying on the boundaries of two separate enhancer regions, in both TwinsUK 
and GEUVADIS cohorts. (A) Expression of TRIT1 is shown, with a separate panel for each v-eQTL (rs3131691) genotype group. Relationship between 
expression and imputed genotype dosage of the epistasis SNP (rs230273) is shown to be conditional on v-eQTL genotype. Expression from TwinsUK 
individuals is shown in the upper panels, GEUVADIS individuals in the lower panels. Best fit lines show different SNP effects for the epistatic SNPs in 
different v-eQTL genotype groups, these lines are constructed ignoring twin structure in the case of the TwinsUK sample and population in the 
Figure 2. Continued on next page

http://dx.doi.org/10.7554/eLife.01381
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Discussion
The importance of non-additive variation to explaining missing heritability has been much debated 
(Hill et al., 2008; Zuk et al., 2012). Here, we were able to report specific examples of interactions 
explaining noticeable fractions of variation in human gene expression, with in many cases the interac-
tion contributing more than the marginal effects to overall variance. Estimating variance components 
from pedigrees and twin model studies has concentrated on additive variance, to estimate the narrow 
sense heritability. The assumption has been that resemblance between related individuals is determined 
chiefly by additive variation (Falconer and Mackay, 1996). An overview of analyses of many pheno-
types in many organisms concluded that there was little evidence for non-additive variation playing a 
large role in phenotypic variation (Hill et al., 2008). Indeed, the authors provided a theoretical argument 
that the total contribution of all interacting loci to variance is well approximated by their additive contri-
bution, when the allele frequencies are as predicted by the neutral model. The analysis presented here 
is powered chiefly to discover common interacting variants, however the result on the neutral model 
implies there may be many more examples of epistasis which are not statistically detectable without 
very large samples.

GEUVADIS cohort. (B) SNPs affecting TRIT1 expression are near regulatory elements. Position of v-eQTL (rs3131691), interacting epistasis SNP (rs230273) 
and a nearby eQTL (rs34387655) affecting TRIT1 expression are shown. ENCODE segmentation analysis shows regulatory elements around TRIT1 
(reverse strand gene). Colours indicating regions are: yellow = weak enhancer, orange = strong enhancer, red = strong promoter, light red = weak 
promoter, purple = poised promoter, dark green = transcriptional transition/elongation, light green = weakly transcribed, blue = insulator, and light 
grey = heterochromatin or repetitive/copy number variation.
DOI: 10.7554/eLife.01381.017
The following figure supplements are available for figure 2:

Figure supplement 1. Evidence for epistasis in twins against evidence for epistasis in 1000 Genomes for the 246 significant hits. 
DOI: 10.7554/eLife.01381.018

Figure supplement 2. Estimate of interaction effect size in 1000 Genomes and twins cohorts. 
DOI: 10.7554/eLife.01381.019

Figure supplement 3. ENSG00000164978 (NUDT2) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS cohorts. 
DOI: 10.7554/eLife.01381.020

Figure supplement 4. ENSG00000232629 (HLA-DQB2) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS 
cohorts. 
DOI: 10.7554/eLife.01381.021

Figure supplement 5. ENSG00000232629 (HLA-DQB2) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS 
cohorts. 
DOI: 10.7554/eLife.01381.022

Figure supplement 6. ENSG00000006282 (SPATA20) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS 
cohorts. 
DOI: 10.7554/eLife.01381.023

Figure supplement 7. ENSG00000204531 (POU5F1) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS cohorts. 
DOI: 10.7554/eLife.01381.024

Figure supplement 8. ENSG00000021355 (SERPINB1) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS 
cohorts. 
DOI: 10.7554/eLife.01381.025

Figure supplement 9. ENSG00000164111 (ANXA5) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS cohorts. 
DOI: 10.7554/eLife.01381.026

Figure supplement 10. ENSG00000137310 (TCF19) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS cohorts. 
DOI: 10.7554/eLife.01381.027

Figure supplement 11. ENSG00000204525 (HLA-C) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS cohorts. 
DOI: 10.7554/eLife.01381.028

Figure supplement 12. ENSG00000176531 (PHLDB3) expression is affected by an interaction between two SNPs in both TwinsUK and GEUVADIS 
cohorts. 
DOI: 10.7554/eLife.01381.029

Figure supplement 13. The distance in kilobases from the 246 variants in epistasis to the v-eQTL, plotted against the –log10 p value in 1000 Genomes 
sample. 
DOI: 10.7554/eLife.01381.030

Figure 2. Continued

http://dx.doi.org/10.7554/eLife.01381
http://dx.doi.org/10.7554/eLife.01381.017
http://dx.doi.org/10.7554/eLife.01381.018
http://dx.doi.org/10.7554/eLife.01381.019
http://dx.doi.org/10.7554/eLife.01381.020
http://dx.doi.org/10.7554/eLife.01381.021
http://dx.doi.org/10.7554/eLife.01381.022
http://dx.doi.org/10.7554/eLife.01381.023
http://dx.doi.org/10.7554/eLife.01381.024
http://dx.doi.org/10.7554/eLife.01381.025
http://dx.doi.org/10.7554/eLife.01381.026
http://dx.doi.org/10.7554/eLife.01381.027
http://dx.doi.org/10.7554/eLife.01381.028
http://dx.doi.org/10.7554/eLife.01381.029
http://dx.doi.org/10.7554/eLife.01381.030


Genes and chromosomes | Genomics and evolutionary biology

Brown et al. eLife 2014;3:e01381. DOI: 10.7554/eLife.01381	 9 of 16

Research article

Specifically in gene expression, progress has recently been made to move beyond a solely  
additive view of variation. Becker et al. (2012) produced evidence for the existence of cis-trans 
epistasis, though they do not report individual examples which were significant when controlling 
for all tests and did not consider the contribution of these interactions to phenotypic variation. 
Further work from Powell et al. (2013) looked to dissect the phenotypes into dominant and  
additive components. As with our dissection of cis-trans epistasis, additive genetic variation was 
most consistently observed, though 960 probes had a dominant component to variation; for a 
subset of these a non-additive eQTL was proposed. All in all, these global results together with 
the replicated epistatic interactions presented here suggest a moderate influence of non-additive 
genetic effects on gene transcription variation.

The majority of the interactions are close to 
each other and to the TSS (Figure 2—figure 
supplement 13), consistent with a direct molecular 
interaction. However, despite physical proximity 
they are, because of the statistical discovery 
strategy, in low linkage disequilibrium. There has 
been discussion in the literature about how inter-
actions between variants affecting fitness can 
change the linkage disequilibrium structure of a 
region, by bringing variants which alter the local 
recombination rate under indirect selection (Otto 
and Feldman, 1997). In the case of positive epis-
tasis, where the combined effect on fitness of the 
deleterious alleles is mitigated by their joint contri-
bution, selection would favour a decrease in the 
recombination rate between the loci. This was seen 
in Lappalainen et al. (2011): non-synonymous, 
possibly deleterious, coding mutations together 
with an eQTL which adjusts expression would be 
an example of positive epistasis. In support of the 
theoretical result, such variants were frequently 
observed in high linkage disequilibrium in their 
results. In contrast, the approach we take here 
requires linkage disequilibrium to have broken 

Table 2. Effect size estimates and significance for the ten most significant replicated interactions in TwinsUK and GEUVADIS

Gene Chr v-eQTL
Interacting 
epistasis SNP

Interaction 
variance in 
TwinsUK

Interaction 
variance in 
GEUVADIS

Additive 
variation in 
GEUVADIS

p-value in 
TwinsUK

p-value in 
GEUVADIS

NUDT2 9 rs10972055 rs10814083 −0.328 −0.128 0.310 1.88 × 10−53 5.43 × 10-22

HLA-DQB2 6 rs114183935 rs1049130 −0.337 −0.161 0.099 1.83 × 10−62 2.91 × 10−21

HLA-DQB2 6 rs114183935 rs9274666 −0.368 −0.119 0.158 3.45 × 10−18 1.04 × 10−16

SPATA20 17 rs12943759 rs1122634 0.301 0.078 0.404 3.12 × 10−69 1.42 × 10−15

POU5F1 6 rs116627368 rs115631087 0.311 0.116 0.008 6.95 × 10−34 6.63 × 10−14

SERPINB1 6 rs318452 rs6940344 −0.227 −0.102 0.117 2.40 × 10−36 7.66 × 10−14

ANXA5 4 rs6857766 rs12511956 −0.411 −0.104 0.056 3.09 × 10−37 3.81 × 10−13

TCF19 6 rs115523621 rs115921994 −0.585 −0.076 0.201 2.59 × 10−36 1.48 × 10−11

HLA-C 6 rs114916097 rs116012228 0.160 0.077 0.183 3.35 × 10−18 2.17 × 10−11

PHLDB3 19 rs10409591 rs2682547 −0.270 −0.0858 0.0569 1.67 × 10−14 4.83 × 10−11

Effect sizes are reported as the proportion of variance explained by the interaction. Sign of effect size reflects direction of interaction effect: 
positive implies combined effect of the alternate alleles is an increase in expression greater than predicted by separate additive effects, and 
negative that it is less.
DOI: 10.7554/eLife.01381.031

Figure 3. Variance explained by additive and interact-
ing variants for 57 replicated examples of epistasis in 
the GEUVADIS cohort. We show the variation explained 
by the interaction of two SNPs on phenotype, 
compared to the additive contribution of the SNPs.
DOI: 10.7554/eLife.01381.032
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down between variants in order to distinguish an interaction between two variants from a dominant 
effect of a single locus. As a consequence, we are powered more to detect epistasis which amplifies 
the effect of deleterious mutations, rather than positive epistasis as described by Lappalainen et al. 
(2011). Therefore, examples of epistasis of the type they describe would be missed by our method-
ology (indeed, the five non-synonymous SNPs we discover to be involved in interactions in the TwinsUK 
dataset are all predicted by PolyPhen score to be benign with the exception of a one (rs150369207) 
which is classed as possibly damaging for only one out of nine coding transcripts).

A recent paper has also looked for evidence of epistasis affecting transcription in humans 
(Hemani et al., 2014), using array expression from whole blood and searching the entire space of 
all possible pairwise interactions. They discover 501 interactions, affecting expression of 238 
genes in 846 samples, and replicate 30 examples in an independent dataset at Bonferroni signifi-
cance level. The interactions discovered are chiefly cis-trans; of the 501 there are 26 cis–cis inter-
actions and 13 trans–trans. The apparent lower replication rate compared to our study may reflect 
the greater success that has been seen replicating cis effects than trans effects for standard eQTL 
(Grundberg et al., 2012). Grundberg et al. (2012) also reported that LCLs (the tissue used in our 
study) showed stronger genetic effects compared to environmental contribution than seen in pri-
mary tissues. Finally, RNA-seq has been shown as a more reliable phenotype than array based 
measures (Marioni et al., 2008). We believe all these factors contribute to our success rate in 
replicating epistatic interactions.

In conclusion, we report 26 replicated variance eQTL and 57 replicated cis epistatic interactions, 
which explain up to 16% of the variance of our phenotypes. In almost a half of cases, more variance is 
explained by the interaction than by single additive effects. Furthermore, we have also shown substan-
tial evidence for gene by environment interactions. We have shown that a proportion of variation of 
molecular phenotypes can be ascribed to genetic interactions, and that v-eQTL are a valid way of 
discovering them. Densely phenotyped cohorts are now commonly collecting such molecular data, 
and therefore there is considerable scope to look both for more of this type of interactions, and for the 

Figure 4. Increased discordance within MZ twin pairs identifies GxE interactions. (A) We show discordance in expression between MZ twin pairs for the 
gene BAMBI broken down by v-eQTL genotype (rs10826519). Discordance is greatest in the GG genotype group (mean difference between MZ twins is 
1.12), decreasing with each additional copy of the A allele (mean discordance is 0.85 for GA genotype group, 0.60 for AA). Since MZ twins are genetically 
identical, genotype dependent discordance in expression must be a consequence of environment, pointing to GxE. We observe that the SNP also has 
an effect on the mean level of expression (p = 5.42 × 10−19). (B) −log10 p values for genotype dependent discordance in MZ twins against −log10 p values 
for peak v-eQTL. The blue dots represent points where there is a significant epistasis hit with the v-eQTL, orange where no such interaction was detected. 
For many of the strong v-eQTL with little evidence of discordance we can identify an epistatic interaction which explains the increase in variance. However, 
for some loci with strong evidence of genotype dependent MZ discordance we also detect an epistatic interaction, suggesting both epistasis and GxE 
acts on these genes.
DOI: 10.7554/eLife.01381.033
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particular environments involved in GxE. The ability to find genetic interactions affecting molecular 
phenotypes also suggests a hypothesis driven path by which genetic interactions underlying more 
complex traits may be identified.

Materials and methods
Genotying and imputation
Samples were genotyped on a combination of the HumanHap300, HumanHap610Q, 1 M-Duo and 
1.2MDuo 1M Illumnia arrays. Samples were pre-phased using IMPUTE2 (Howie et al., 2009) with no 
reference panel, then imputed into the 1000 Genomes Phase 1 reference panel (interim, data freeze, 
10 November 2010, The 1000 Genomes Project Consortium 2012). Post imputation, SNPs were 
removed if MAF <0.01 or IMPUTE info value <0.8.

RNA processing
Samples were prepared for sequencing with the Illumina TruSeq sample preparation kit (Illumina, San 
Diego, CA) according to manufacturer's instructions and were sequenced on a HiSeq2000 machine. 
Afterwards, the 49-bp sequenced paired-end reads were mapped to the GRCh37 reference genome 
(The International Human Genome Sequencing Consortium, 2001) with BWA v0.5.9 (Li and Durbin, 
2009). We use genes defined as protein coding in the GENCODE 10 annotation (Harrow et al., 2012), 
removing genes with more than 10% zero read count. RPKM values were root mean transformed. 
PEER software (Parts et al., 2011) was used to remove 50 latent factors; age and body mass index 
were included when factors were constructed, to prevent removal of important environmental factors. 
Data were then quantile normalised.

v-eQTL
GRAMMAR (Aulchenko et al., 2007) was used to remove correlations between related individuals. 
Expression of each gene was tested against every SNP within 1 Mbp of the TSS. First, any eQTL 
effects were removed by regressing expression on the posterior probability of being a heterozygote 
and the posterior probability of being a minor allele homozygote. The residuals were squared, 
giving a measure of distance from the mean expression of that genotype class for all individuals. 
A Spearman rank correlation test between this ‘distance’ and genotype dosage was used to assess 
evidence of variance effects. A set of five permutations, consistent across all tests to consider linkage 
disequilibrium structure between SNPs, was applied to the distance residuals and the spearman 
correlation test was applied as before to estimate the distribution of the test statistic under the 
complete null hypothesis of no variance effects. An FDR was calculated as the proportion of per-
muted statistics more significant, divided by 5. This two stage procedure where relatedness was 
regressed out separately from v-eQTL mapping was adopted to make the full scan for v-eQTL com-
putationally feasible.

Epistasis
The R package lme4 (Bolker, 2013) was used to fit linear mixed models using maximum likelihood to 
model expression as a function of genetic interactions. The models, with a full description of how the twin 
structure is captured, are presented in the section ‘Equations’. A forward stepwise scheme, as used in 
Lappalainen et al. (2013) to map standard eQTL, was used to discover independent examples of epistasis. 
Assuming the K-1 significant examples of epistasis had been discovered, a complete scan of every SNP in 
the cis window tested for evidence of epistasis with the v-eQTL (using a likelihood ratio test of Equation 2 
nested into Equation 1, testing the hypothesis cK = 0), conditioned on all previously discovered interac-
tions. If the most significant SNP was Bonferroni significant (p<1.98 × 10−8), the SNP was added to the list 
and the process continued, otherwise the list was considered complete. This revealed 275 examples of 
epistasis, affecting expression of 178 genes. To exclude the possibility that significant interactions could be 
explained by a non-additive genetic effect of the original v-eQTL appearing as epistasis between the 
v-eQTL and another variant in tight linkage disequilibrium, a further conditional analysis tested the epistasis 
term conditional on the model it was discovered in and a non-additive effect of the v-eQTL (testing nested 
models, Equation 3 and Equation 4 for cK = 0). SNPs which were not Bonferroni significant at the same 
threshold (p<1.98 × 10−8) were removed, leaving 256 epistatic interactions affecting 173 genes. Proportion 
of variance for linear mixed models was calculated as described in Nakagawa and Schielzeth (2012). 
Scripts to analyse the data are provided in Supplementary material.

http://dx.doi.org/10.7554/eLife.01381
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Equations
Denoting individual i, expression by yi, dosage of v-eQTL by Siv, dosage of the kth discovered epistatic 

SNPs by Sik, probability that the v-eQTL is a heterozygote by Shetiv , and the probability that the v-eQTL 

is a minor allele homozygote by Shomiv , we have modelled expression in the following ways:
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To correctly model the twin structure we require that βi = βj when i and j are twins, and γi = γj when 
i and j are MZ twins (capturing the increased genetic correlation of MZ twins).

Heritability
A variance components model was fitted in the program solar (Almasy and Blangero, 1998) where 
the covariance matrix for the trait is written:

Ω = Πcisσ2cis + Πtransσ2trans + Πcis−transσ2cis−trans + Iσ2e 	

Πcis  and Πtrans  are the proportion of cis and trans alleles that twins share inherited identically by 
descent and Πcis−trans  is the Hadamard product of these matrices. Parameters were estimated by 
maximum likelihood and proportion of variance explained by cis-trans interactions was estimated as:

σ2cis−trans
σ2cis + σ2trans + σ2cis−trans + σ2e 	

For comparison, the model without cis-trans interactions but with a common environment term was 
fitted, and the two models compared using likelihood.

Discordant QTL
Maximum expression of the two twins was regressed on minimum expression of the twin pair and 
genotype of the twin pair to detect whether the relationship between max and min expression was 
conditional on genotype.

GEUVADIS replication
Raw RPKM values were root transformed, 20 principal component factors were removed and then the 
data were quantile normalised. Evidence for v-eQTL and epistasis was calculated as before, with indi-
cator variables for study population (CEU, YRI, TSI, GBR, FIN) to control for population effects. Epistasis 
was assessed for each SNP individually, as LD induced multiple signals and dominance effects had 
been removed in the TwinsUK sample. To ensure that our results are not caused by heteroskedasticity, 
we have considered various transformations to remove this issue and found the results to be robust. In 
particular, of the 131 statistically significant interactions in the GEUVADIS cohort, 126 are also significant 
when log transformed data is analysed (a typical way of accounting for heteroskedasticity). To eliminate 

http://dx.doi.org/10.7554/eLife.01381
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confounding with eQTL variants, an identical forward stepwise cis eQTL scan to that used in Lappalainen 
et al. (2013) reported all eQTL significant at p<10−5 in the GEUVADIS dataset. A t test for each reported 
eQTL assessed significance of the interaction conditional on the v-eQTL, epistasis SNP and the eQTL. 
If the greatest p value, over all possible eQTL, did not meet the FDR cut-off the SNP was removed from 
the list of interactions. FDR was calculated using the qvalue package (Dabney and Storey, 2014) in R 
(R Development Core Team, 2008) using the default settings with the exception that lambda was 
restricted to lie within the range of the p values to prevent overly lenient correction. The replication 
dataset together with functions to reproduce the results are provided in Supplementary files 2–4.

ENCODE segmentation
Segmentation analysis for LCL cell line GM12878 was downloaded from the UCSC website on 
11/6/2013, url: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/
wgEncodeBroadHmmGm12878HMM.bed.gz.

Sequence data
Sequence data has been deposited at the European Genome-phenome Archive (EGA, http://www.
ebi.ac.uk/ega/) under accession number EGAS00001000805.

Acknowledgements
The TwinsUK study was funded by the Wellcome Trust; European Community's Seventh Framework 
Programme (FP7/2007-2013). The study also receives support from the National Institute for Health 
Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at 
Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. SNP Genotyping 
was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR.  
Some computation was performed at the Vital-IT centre for high-performance computing of the SIB 
Swiss Institute of Bioinformatics (http://www.vital-it.ch).

Additional information
Competing interests
ETD: Reviewing editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Wellcome Trust WT098051 Richard Durbin

Louis-Jeantet Foundation Emmanouil T Dermitzakis

National Institutes  
of Health

Emmanouil T Dermitzakis, 
Timothy D Spector

Swiss National Science 
Foundation

Emmanouil T Dermitzakis

European  
Research Council

Emmanouil T Dermitzakis, 
Timothy D Spector

Canadian Institutes  
of Health Research

Hou-Feng Zheng,  
J Brent Richards

Fonds de Recherche  
Sante de Quebec

Hou-Feng Zheng,  
J Brent Richards

Quebec Consortium  
for Drug Discovery

Hou-Feng Zheng,  
J Brent Richards

South East Norway  
Health Authority

2011060 Andrew Anand Brown

European Union 259749 Andrew Anand Brown,  
Alfonso Buil, Ana Viñuela,  
Timothy D Spector,  
Emmanouil T Dermitzakis,  
Richard Durbin

The funders had no role in study design, data collection and interpretation, or the  
decision to submit the work for publication.

http://dx.doi.org/10.7554/eLife.01381
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
http://www.ebi.ac.uk/ega/
http://www.ebi.ac.uk/ega/
http://www.vital-it.ch


Genes and chromosomes | Genomics and evolutionary biology

Brown et al. eLife 2014;3:e01381. DOI: 10.7554/eLife.01381	 14 of 16

Research article

Author contributions
AAB, Conception and design, Analysis and interpretation of data, Drafting or revising the article; 
AB, AV, TL, Acquisition of data, Drafting or revising the article; KSS, Conception and design, Drafting 
or revising the article; H-FZ, JBR, Imputed genotype data into 1000 Genomes reference panel, Approved 
final manuscript; TDS, Conception and design, Acquisition of data; ETD, RD, Conception and design, 
Acquisition of data, Drafting or revising the article

Ethics
Human subjects: This project was approved by the ethics committee at St Thomas' Hospital London, 
where all the biopsies were carried out. Volunteers gave informed consent and signed an approved 
consent form prior to the biopsy procedure. Volunteers were supplied with an appropriate detailed 
information sheet regarding the research project and biopsy procedure by post prior to attending for 
the biopsy. The St Thomas' Research Ethics Committee (REC) approved on 20th September 2007 the 
protocol for dissemination of data, including DNA, with the REC reference number RE04/015. On 
12th of March of 2008, the St Thomas' REC confirmed this approval extends to expression data.

Additional files
Supplementary files
• Supplementary file 1. A: peak vQTL hits in TwinsUK cohort with evidence of eQTL and discordant 
QTL and replication evidence in GEUVADIS cohort. B: significant epistasis hits in TwinsUK cohort with 
p values and effect size estimates in GEUVADIS cohort. C: contribution of cis variants, trans variants, 
interactions between the two and unique environment to variation in gene expression.
DOI: 10.7554/eLife.01381.034

• Supplementary file 2. R functions applied to data from the TwinsUK cohort to test individual SNPs for 
variance effects, to map all independent epistatic interactions with the v-eQTL in the cis window and 
to eliminate dominance effects from list of epistatic interactions.
DOI: 10.7554/eLife.01381.035

• Supplementary file 3. R workspace containing replication data from the GEUVADIS cohort (Lappalainen 
et al., 2013) together with functions to repeat the replication analysis.
DOI: 10.7554/eLife.01381.036

• Supplementary file 4. Read me file explaining objects present in SM2.
DOI: 10.7554/eLife.01381.037

Major dataset

The following dataset was generated:

Author(s) Year Dataset title
Dataset ID  
and/or URL

Database, license, and  
accessibility information

Brown AA,  
Buil A, Viñuela A,  
Lappalainen T, Zheng HF, 
Richards JB, Small KS,  
Spector TD,  
Dermitzakis ET,  
Durbin R

2013 Eurobats LCL  
RNA-seq data

EGAS00001000805 RNA-seq data are being deposited in 
EBI-EGA (http://www.ebi.ac.uk/ega/) 
for controlled access, release on 
publication. The DTR twin register is 
currently set up as a supported access 
resource for the research community. All 
data access requests are overseen by the 
TwinsUK Resource Executive Committee 
(TREC). Requests for collection of new 
or existing data/material should be 
processed by submitting a completed 
DTR Data/Material Access Proposal 
Form (http://www.twinsuk.ac.uk/
data-access/submission-procedure/).

References
Almasy L, Blangero J. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal 

of Human Genetics 62:1198–1211. doi: 10.1086/301844.
Ansel J, Bottin H, Rodriguez-Beltran C, Damon C, Nagarajan M, Fehrmann S, François J, Yvert G. 2008. Cell-to-cell 

stochastic variation in gene expression is a complex genetic trait. PLOS Genetics 4:e1000049. doi: 10.1371/journal.
pgen.1000049.

http://dx.doi.org/10.7554/eLife.01381
http://dx.doi.org/10.7554/eLife.01381.034
http://dx.doi.org/10.7554/eLife.01381.035
http://dx.doi.org/10.7554/eLife.01381.036
http://dx.doi.org/10.7554/eLife.01381.037
http://www.ebi.ac.uk/ega/
http://www.twinsuk.ac.uk/data-access/submission-procedure/
http://www.twinsuk.ac.uk/data-access/submission-procedure/
http://dx.doi.org/10.1086/301844
http://dx.doi.org/10.1371/journal.pgen.1000049
http://dx.doi.org/10.1371/journal.pgen.1000049


Genes and chromosomes | Genomics and evolutionary biology

Brown et al. eLife 2014;3:e01381. DOI: 10.7554/eLife.01381	 15 of 16

Research article

Aulchenko YS, De Koning D-J, Haley C. 2007. Genomewide rapid association using mixed model and regression: 
a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 
177:577–585. doi: 10.1534/genetics.107.075614.

Becker J, Wendland JR, Haenisch B, Nothen MM, Schumacher J. 2012. A systematic eQTL study of cis-trans epistasis 
in 210 HapMap individuals. European Journal of Human Genetics: EJHG 20:97–101. doi: 10.1038/ejhg.2011.156.

Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L. 2013. Finding the sources of missing heritability in a yeast 
cross. Nature 494:234–237. doi: 10.1038/nature11867.

Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: Linear mixed-effects models using Eigen and S4. R package 
version 1.0-6. http://CRAN.R-project.org/package=lme4

Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. 2012. Epistasis as the primary factor in 
molecular evolution. Nature 490:535–538. doi: 10.1038/nature11510.

Dabney A, Storey JD, with assistance from Warnes GR. 2014. qvalue: Q-value estimation for false discovery rate 
control. R package version 1.34.0.

The Encode Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. 
Nature 489:57–74. doi: 10.1038/nature11247.

Falconer D, Mackay T. 1996. Introduction to quantitative genetics. Longman.
Fraser HB, Schadt EE. 2010. The quantitative genetics of phenotypic robustness. PLOS ONE 5:e8635. doi: 10.1371/

journal.pone.0008635.
Grundberg E, Small KS, Hedman AK, Nica AC, Buil A, Keildson S, Bell JT, Yang TP, Meduri E, Barrett A, Nisbett J, 

Sekowska M, Wilk A, Shin SY, Glass D, Travers M, Min JL, Ring S, Ho K, Thorleifsson G, Kong A, Thorsteindottir U, 
Ainali C, Dimas AS, Hassanali N, Ingle C, Knowles D, Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, 
Parts L, Potter S, Surdulescu G, Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O'Rahilly S, Soranzo N, 
Lindgren CM, Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD, Mccarthy MI, Deloukas P, 
Dermitzakis ET, Spector TD & Multiple Tissue Human SExpression Resource, Consortium. 2012. Mapping cis- and 
trans-regulatory effects across multiple tissues in twins. Nature Genetics 44:1084–1089. doi: 10.1038/ng.2394.

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, 
Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, 
Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, 
Tress M, Rodriguez JM, Ezkurdia I, Van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, 
Guigo R, Hubbard TJ. 2012. GENCODE: the reference human genome annotation for the ENCODE Project. 
Genome Research 22:1760–1774. doi: 10.1101/gr.135350.111.

Hemani G, Knott S, Haley C. 2013. An evolutionary perspective on epistasis and the missing heritability. PLOS 
Genetics 9:e1003295. doi: 10.1371/journal.pgen.1003295.

Hemani G, Shakhbazov K, Westra H-J, Esko T, Henders AK, Mcrae AF, Yang J, Gibson G, Martin NG, Metspalu A, 
Franke L, Montgomery GW, Visscher PM, Powell JE. 2014. Detection and replication of epistasis influencing 
transcription in humans. Nature 508:249–253. doi: 10.1038/nature13005.

Hill WG, Goddard ME, Visscher PM. 2008. Data and theory point to mainly additive genetic variance for complex 
traits. PLOS Genetics 4:e1000008. doi: 10.1371/journal.pgen.1000008.

Howie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method for the next 
generation of genome-wide association studies. PLOS Genetics 5:e1000529. doi: 10.1371/journal.pgen.1000529.

Huang A, Xu S, Cai X. 2014. Whole-genome quantitative trait locus mapping reveals major role of epistasis on 
yield of rice. PLOS ONE 9:e87330. doi: 10.1371/journal.pone.0087330.

Huang W, Richards S, Carbone MA, Zhu D, Anholt RR, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, 
Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu YQ, 
Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TF. 2012. Epistasis dominates the genetic architecture of Drosophila 
quantitative traits. Proceedings of the National Academy of Sciences of the United States of America 
109:15553–15559. doi: 10.1073/pnas.1213423109.

Jimenez-Gomez JM, Corwin JA, Joseph B, Maloof JN, Kliebenstein DJ. 2011. Genomic analysis of QTLs and genes 
altering natural variation in stochastic noise. PLOS Genetics 7:e1002295. doi: 10.1371/journal.pgen.1002295.

Lappalainen T, Montgomery SB, Nica AC, Dermitzakis ET. 2011. Epistatic selection between coding and 
regulatory variation in human evolution and disease. American Journal of Human Genetics 89:459–463.  
doi: 10.1016/j.ajhg.2011.08.004.

Lappalainen T, Sammeth M, Friedlander MRT, Hoen PA, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, 
Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, Van Iterson M, Almlof J, Ribeca P, Pulyakhina I, Esser D, 
Giger T, Tikhonov A, Sultan M, Bertier G, Macarthur DG, Lek M, Lizano E, Buermans HP, Padioleau I, 
Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, 
Pirinen M, Montgomery SB, Donnelly P, Mccarthy MI, Flicek P, Strom TM, Lehrach H, Schreiber S, Sudbrak R, 
Carracedo A, Antonarakis SE, Hasler R, Syvanen AC, Van Ommen GJ, Brazma A, Meitinger T, Rosenstiel P, 
Guigo R, Gut IG, Estivill X, Dermitzakis ET, Geuvadis Consortium. 2013. Transcriptome and genome sequencing 
uncovers functional variation in humans. Nature 501:506–511. doi: 10.1038/nature12531.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 
[bioinformatics (oxford, England)] 25:1754–1760. doi: 10.1093/bioinformatics/btp324.

Mackay TF. 2014. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. 
Nature Reviews Genetics 15:22–33. doi: 10.1038/nrg3627.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Mccarthy MI, Ramos EM, Cardon LR, 
Chakravarti A. 2009. Finding the missing heritability of complex diseases. Nature 461:747–753. doi: 10.1038/
nature08494.

http://dx.doi.org/10.7554/eLife.01381
http://dx.doi.org/10.1534/genetics.107.075614
http://dx.doi.org/10.1038/ejhg.2011.156
http://dx.doi.org/10.1038/nature11867
http://CRAN.R-project.org/package=lme4
http://dx.doi.org/10.1038/nature11510
http://dx.doi.org/10.1038/nature11247
http://dx.doi.org/10.1371/journal.pone.0008635
http://dx.doi.org/10.1371/journal.pone.0008635
http://dx.doi.org/10.1038/ng.2394
http://dx.doi.org/10.1101/gr.135350.111
http://dx.doi.org/10.1371/journal.pgen.1003295
http://dx.doi.org/10.1038/nature13005
http://dx.doi.org/10.1371/journal.pgen.1000008
http://dx.doi.org/10.1371/journal.pgen.1000529
http://dx.doi.org/10.1371/journal.pone.0087330
http://dx.doi.org/10.1073/pnas.1213423109
http://dx.doi.org/10.1371/journal.pgen.1002295
http://dx.doi.org/10.1016/j.ajhg.2011.08.004
http://dx.doi.org/10.1038/nature12531
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1038/nrg3627
http://dx.doi.org/10.1038/nature08494
http://dx.doi.org/10.1038/nature08494


Genes and chromosomes | Genomics and evolutionary biology

Brown et al. eLife 2014;3:e01381. DOI: 10.7554/eLife.01381	 16 of 16

Research article

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008. RNA-seq: an assessment of technical reproducibility 
and comparison with gene expression arrays. Genome Research 18:1509–1517. doi: 10.1101/gr.079558.108.

Martin N, Rowell D, Whitfield J. 1983. Do the MN and Jk systems influence environmental variability in serum 
lipid levels? Clinical Genetics 24:1–14. doi: 10.1111/j.1399-0004.1983.tb00061.x.

Nakagawa S, Schielzeth H. 2012. A general and simple method for obtaining R2 from generalized linear 
mixed-effects models. Methods in Ecology and Evolution 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x.

Otto SP, Feldman MW. 1997. Deleterious mutations, variable epistatic interactions, and the evolution of 
recombination. Theoretical Population Biology 51:134–147. doi: 10.1006/tpbi.1997.1301.

Paré G, Cook NR, Ridker PM, Chasman DI. 2010. On the use of variance per genotype as a tool to identify 
quantitative trait interaction effects: a report from the Women's Genome Health Study. PLOS Genetics 
6:e1000981. doi: 10.1371/journal.pgen.1000981.

Parts L, Stegle O, Winn J, Durbin R. 2011. Joint genetic analysis of gene expression data with inferred cellular 
phenotypes. PLOS Genetics 7:e1001276. doi: 10.1371/journal.pgen.1001276.

Powell JE, Henders AK, McRae AF, Kim J, Hemani G, Martin NG, Dermitzakis ET, Gibson G, Montgomery GW, 
Visscher PM. 2013. Congruence of additive and non-additive effects on gene expression estimated from 
pedigree and SNP data. PLOS Genetics 9:e1003502. doi: 10.1371/journal.pgen.1003502.

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 
Vienna, Austria. URL http://www.R-project.org/

Reynolds CA, Gatz M, Berg S, Pedersen NL. 2007. Genotype–environment interactions: cognitive aging and 
social factors. Twin Research and Human Genetics 10:241–254. doi: 10.1375/twin.10.2.241.

Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, 
Heitner SG. 2013. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Research 
41:D56–D63. doi: 10.1093/nar/gks1172.

Storey JD. 2002. A direct approach to false discovery rates. Journal of the Royal Statistical Society: series B 
(Statistical Methodology) 64:479–498. doi: 10.1111/1467-9868.00346.

Sun X, Elston R, Morris N, Zhu X. 2013. What is the significance of difference in phenotypic variability across SNP 
genotypes? American Journal of Human Genetics 93:390–397. doi: 10.1016/j.ajhg.2013.06.017.

The 1000 Genomes Project Consortium. 2012. An integrated map of genetic variation from 1,092 human 
genomes. Nature 491:56–65.

The International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human 
genome. Nature 409:860–921.

Wang G, Yang E, Brinkmeyer-Langford CL, Cai JJ. 2014. Additive, epistatic, and environmental effects through the 
lens of expression variability QTL in a twin cohort. Genetics 196:413–425. doi: 10.1534/genetics.113.157503.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews 
Genetics 10:57–63. doi: 10.1038/nrg2484.

Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. 2007. Linking metabolic QTLs with 
network and cis-eQTLs controlling biosynthetic pathways. PLOS Genetics 3:1687–1701. doi: 10.1371/journal.
pgen.0030162.

Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, Rose LM, Thorleifsson G, Steinthorsdottir V, 
Magi R, Waite L, Smith AV, Yerges-Armstrong LM, Monda KL, Hadley D, Mahajan A, Li G, Kapur K, Vitart V, 
Huffman JE, Wang SR, Palmer C, Esko T, Fischer K, Zhao JH, Demirkan A, Isaacs A, Feitosa MF, Luan J, 
Heard-Costa NL, White C, Jackson AU, Preuss M, Ziegler A, Eriksson J, Kutalik Z, Frau F, Nolte IM, Van 
Vliet-Ostaptchouk JV, Hottenga JJ, Jacobs KB, Verweij N, Goel A, Medina-Gomez C, Estrada K,  
Bragg-Gresham JL, Sanna S, Sidore C, Tyrer J, Teumer A, Prokopenko I, Mangino M, Lindgren CM, Assimes TL, 
Shuldiner AR, Hui J, Beilby JP, McArdle WL, Hall P, Haritunians T, Zgaga L, Kolcic I, Polasek O, Zemunik T, 
Oostra BA, Junttila MJ, Gronberg H, Schreiber S, Peters A, Hicks AA, Stephens J, Foad NS, Laitinen J, Pouta A, 
Kaakinen M, Willemsen G, Vink JM, Wild SH, Navis G, Asselbergs FW, Homuth G, John U, Iribarren C, Harris T, 
Launer L, Gudnason V, O'Connell JR, Boerwinkle E, Cadby G, Palmer LJ, James AL, Musk AW, Ingelsson E, 
Psaty BM, Beckmann JS, Waeber G, Vollenweider P, Hayward C, Wright AF, Rudan I, Groop LC, Metspalu A, Khaw 
KT, van Duijn CM, Borecki IB, Province MA, Wareham NJ, Tardif JC, Huikuri HV, Cupples LA, Atwood LD, Fox CS, 
Boehnke M, Collins FS, Mohlke KL, Erdmann J, Schunkert H, Hengstenberg C, Stark K, Lorentzon M, Ohlsson C, 
Cusi D, Staessen JA, Van der Klauw MM, Pramstaller PP, Kathiresan S, Jolley JD, Ripatti S, Jarvelin MR, de Geus EJ, 
Boomsma DI, Penninx B, Wilson JF, Campbell H, Chanock SJ, van der Harst P, Hamsten A, Watkins H, Hofman A, 
Witteman JC, Zillikens MC, Uitterlinden AG, Rivadeneira F, Zillikens MC, Kiemeney LA, Vermeulen SH, Abecasis GR, 
Schlessinger D, Schipf S, Stumvoll M, Tönjes A, Spector TD, North KE, Lettre G, McCarthy MI, Berndt SI, Heath AC, 
Madden PA, Nyholt DR, Montgomery GW, Martin NG, McKnight B, Strachan DP, Hill WG, Snieder H, Ridker PM, 
Thorsteinsdottir U, Stefansson K, Frayling TM, Hirschhorn JN, Goddard ME, Visscher PM. 2012. FTO genotype is 
associated with phenotypic variability of body mass index. Nature 490:267–272. doi: 10.1038/nature11401.

Zuk O, Hechter E, Sunyaev SR, Lander ES. 2012. The mystery of missing heritability: genetic interactions create 
phantom heritability. Proceedings of the National Academy of Sciences of the United States of America 
109:1193–1198. doi: 10.1073/pnas.1119675109.

http://dx.doi.org/10.7554/eLife.01381
http://dx.doi.org/10.1101/gr.079558.108
http://dx.doi.org/10.1111/j.1399-0004.1983.tb00061.x
http://dx.doi.org/10.1111/j.2041-210x.2012.00261.x
http://dx.doi.org/10.1006/tpbi.1997.1301
http://dx.doi.org/10.1371/journal.pgen.1000981
http://dx.doi.org/10.1371/journal.pgen.1001276
http://dx.doi.org/10.1371/journal.pgen.1003502
http://www.R-project.org/
http://dx.doi.org/10.1375/twin.10.2.241
http://dx.doi.org/10.1093/nar/gks1172
http://dx.doi.org/10.1111/1467-9868.00346
http://dx.doi.org/10.1016/j.ajhg.2013.06.017
http://dx.doi.org/10.1534/genetics.113.157503
http://dx.doi.org/10.1038/nrg2484
http://dx.doi.org/10.1371/journal.pgen.0030162
http://dx.doi.org/10.1371/journal.pgen.0030162
http://dx.doi.org/10.1038/nature11401
http://dx.doi.org/10.1073/pnas.1119675109

