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Abstract Enhancers play a central role in cell-type-specific gene expression and are marked by 
H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases 
responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function 
on enhancers to regulate cell-type-specific gene expression is unclear. In this study, we identify 
MLL4 (KMT2D) as a major mammalian H3K4 mono- and di-methyltransferase with partial functional 
redundancy with MLL3 (KMT2C). Using adipogenesis and myogenesis as model systems, we show 
that MLL4 exhibits cell-type- and differentiation-stage-specific genomic binding and is predominantly 
localized on enhancers. MLL4 co-localizes with lineage-determining transcription factors (TFs) on 
active enhancers during differentiation. Deletion of Mll4 markedly decreases H3K4me1/2, H3K27ac, 
Mediator and Polymerase II levels on enhancers and leads to severe defects in cell-type-specific 
gene expression and cell differentiation. Together, these findings identify MLL4 as a major 
mammalian H3K4 mono- and di-methyltransferase essential for enhancer activation during cell 
differentiation.
DOI: 10.7554/eLife.01503.001

Introduction
Enhancers are gene regulatory elements critical for cell-type-specific gene expression in eukaryotes 
(Bulger and Groudine, 2011). Lineage-determining or signal-dependent transcription factors (TFs) 
bind to enhancers and recruit chromatin modifying and remodeling enzymes and the Mediator coactivator 
complex to initiate RNA polymerase II (Pol II)-mediated transcription at promoters (Roeder, 2005). 
Recent genome-wide analyses of histone modifications, binding of transcription coactivators p300 and 
MED1 and lineage-determining TFs, coupled with functional assays of gene regulatory elements, have 
enabled the identification of enhancer chromatin signatures (Heintzman et al., 2007; Lupien et al., 2008; 
Wang et al., 2008; Heintzman et al., 2009; Visel et al., 2009; Creyghton et al., 2010; Ghisletti et al., 
2010; Heinz et al., 2010; Ernst et al., 2011; Rada-Iglesias et al., 2011). In contrast to active promoters 
that are marked by H3K4me3, enhancers are marked by H3K4me1 and H3K4me2 (H3K4me1/2) but 
little H3K4me3, and are often bound by cell-type-specific TFs. Active enhancers are further marked by 
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histone acetyltransferases CBP/p300-mediated H3K27ac (Creyghton et al., 2010; Rada-Iglesias et al., 
2011). H3K4me1 on enhancers often precedes H3K27ac and activation of enhancers. A large number 
of recent publications have validated the predictive power of such enhancer chromatin signatures in 
identification of novel enhancers critical for cell-type-specific gene expression and cell differentiation 
(reviewed in Calo and Wysocka, 2013).

In yeast, the Set1 complex is the sole H3K4 methyltransferase. Through the enzymatic subunit 
SET1, it is responsible for all mono-, di- and tri-methylations on H3K4 (Ruthenburg et al., 2007). In 
Drosophila, there are three Set1-like H3K4 methyltransferase complexes that use dSet1, Trithorax (Trx) 
and Trithorax-related (Trr) as the respective enzymatic subunits (Mohan et al., 2011). Mammals possess 
six Set1-like H3K4 methyltransferase complexes (Figure 1—figure supplement 1A). Based on the 
sequence homology of enzymatic subunits and the subunit compositions (Cho et al., 2007; Ruthenburg 
et al., 2007; Vermeulen and Timmers, 2010; Cho et al., 2012), they fall into three sub-groups: MLL1/
MLL2 (also known as KMT2A and KMT2B, respectively), MLL3/MLL4 (MLL3 is also known as KMT2C; 
MLL4 is also known as KMT2D, ALR and sometimes MLL2), and SET1A/SET1B (also known as KMT2E 
and KMT2F, respectively), which correspond to Drosophila Trx, Trr and dSet1 complexes, respectively. 
dSet1 is responsible for the bulk of H3K4me3 in Drosophila (Ardehali et al., 2011; Mohan et al., 
2011). Consistently, depletion of the unique CFP1 subunit of SET1A/SET1B complexes in mammalian 
cells markedly decreases global H3K4me3 level, suggesting that SET1A/SET1B are the major H3K4 
tri-methyltransferases in mammals (Clouaire et al., 2012). In contrast, knockdown of Trr, the Drosophila 
homolog of MLL3/MLL4, decreases global H3K4me1 levels, indicating that Trr regulates H3K4me1 in 
Drosophila (Ardehali et al., 2011; Mohan et al., 2011). However, the histone methyltransferases 
(HMTs) responsible for H3K4me1/2 on mammalian enhancers remain elusive. Further, the functions 
of these H3K4 mono-/di-methyltransferases on enhancers and in regulating cell-type-specific gene 
induction and cell differentiation are unclear. Finally, how these HMTs are recruited to enhancers needs 
to be clarified (Calo and Wysocka, 2013).

Adipogenesis and myogenesis are robust and synchronized models of cell differentiation. Differentiation 
of preadipocytes towards adipocytes, that is adipogenesis, is regulated by a network of sequentially 
expressed adipogenic TFs (Rosen and MacDougald, 2006). Peroxisome Proliferator-Activated 
Receptor-γ (PPARγ) is considered the master regulator of adipogenesis and controls adipocyte gene 
expression cooperatively with CCAAT/enhancer-binding protein-α (C/EBPα) (Rosen et al., 2002; 
Lefterova et al., 2008). The early adipogenic TF C/EBPβ marks a large number of TF ‘hotspots’ before 
induction of adipogenesis. C/EBPβ not only controls the induction of PPARγ and C/EBPα expression 

eLife digest Almost every cell in a human body carries the same genes, but not every cell will 
express all of these genes as proteins. As different types of cells, such as brain, liver, fat or muscle 
cells, develop, they will express different genes; or they will express the same genes, but at different 
times and in different amounts. Enhancers are short stretches of DNA that boost the amount of 
protein that is produced when a gene is expressed, and they are particularly important for those 
genes that are expressed differently between cell types.

Enhancers bolster expression of a gene by interacting with the DNA nearby. Even genes 
separated from enhancers by a long stretches of DNA can benefit because the way that DNA is 
tightly packed inside the nucleus means that two distant sequences can actually end up close 
together. Proteins called transcription factors will bind to enhancers and recruit the cell’s protein 
‘machinery’ required to express nearby genes. Enhancers can be identified by specific chemical 
marks associated with their DNA, but little is known about the enzymes that leave these marks in 
mammals. Moreover, it is not clear which genes are influenced by these marks.

Now, by examining fat cells and muscle cells as they mature, Lee et al. have found that an 
enzyme called MLL4 is responsible for adding chemical marks to enhancers in both humans and 
mice. Further, MLL4 is required both to allow cells to specialize into different cell types, and to 
boost the expression of genes that are specific to each type of mature cells. Since faulty MLL4 has 
been implicated in several cancers and developmental defects, the findings of Lee et al. may lead to 
a better understanding of these diseases.
DOI: 10.7554/eLife.01503.002
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but also acts as a pioneer factor to facilitate the genomic binding of PPARγ, C/EBPα and other adipo-
genic TFs during adipogenesis (Siersbaek et al., 2011). Adipogenesis in cell culture is synchronized, 
with the vast majority of cells in the confluent population differentiating into adipocytes within 6–8 days, 
thus providing a robust model system for studying transcriptional and epigenetic regulation of gene 
expression during cell differentiation (Ge, 2012). Myogenesis is another robust model system for cell 
differentiation. Ectopic expression of the myogenic TF MyoD in fibroblasts and preadipocytes is suffi-
cient to induce muscle differentiation program characterized by expression of myogenesis markers such 
as Myogenin (Myog) and Myosin (Tapscott et al., 1988; Lassar et al., 1991).

Using adipogenesis and myogenesis as model systems, here we show MLL4 is partially redundant 
with MLL3 and is required for cell differentiation and cell-type-specific gene expression. By ChIP-Seq 
analyses, we observe cell-type- and differentiation-stage-specific genomic binding of MLL4. MLL4 is 
mainly localized on enhancers and co-localizes with lineage-determining TFs on active enhancers 
during differentiation. We demonstrate that MLL4 is partially redundant with MLL3 and is a major 
H3K4 mono- and di-methyltransferase in mouse and human cells. Furthermore, MLL4 is required for 
H3K4me1/2, H3K27ac, Mediator and Pol II levels on active enhancers, indicating that MLL4 is required 
for enhancer activation. Finally, we provide evidence to suggest that lineage-determining TFs recruit 
and require MLL4 to establish cell-type-specific enhancers.

Results
MLL4 is essential for adipogenesis and myogenesis
Among the six SET1-like H3K4 methyltransferases found in mammals, we initially knocked out Mll3 
and Mll4 individually in mice using gene trap approaches (Figure 1—figure supplement 1A–E and 
data not shown). Mll3 knockout (KO) mice died around birth with no obvious morphological abnor-
malities in embryonic development. Mll4 KO mice showed early embryonic lethality around E9.5. 
We then generated Mll4 conditional KO mice (Mll4f/f) (Figure 1A–B), which were viable and allowed us 
to investigate MLL4 function in a tissue-specific manner. Conditional KO of Mll4 was also verified 
in cell culture. Deletion of Mll4 led to the disruption of MLL4 complex in cells (Figure 1—figure 
supplement 2A-B).

To understand the role of MLL4 in adipogenesis and myogenesis, we generated Mll4f/f;Myf5-Cre 
mice by crossing Mll4f/f with Myf5-Cre mice (Tallquist et al., 2000). Myf5-Cre specifically deletes genes 
flanked by loxP sites in somitic precursor cells that give rise to both brown adipose tissue (BAT) and 
skeletal muscle in the back (Seale et al., 2008). Mll4f/f;Myf5-Cre pups and E18.5 embryos were 
obtained at the expected Mendelian ratio but displayed marked reduction in back muscles and died 
immediately after birth due to breathing malfunction that is controlled by muscle groups in the rib 
cage (Figure 1C–D and data not shown). Sagittal sections along the midline of E18.5 embryos were 
subjected to immunohistochemistry analysis using antibodies against BAT marker UCP1 and muscle 
marker Myosin (Figure 1E). Compared with littermate controls and Mll3 KO, Mll4f/f;Myf5-Cre embryos 
showed marked decreases of BAT and muscle mass, suggesting that MLL4 is required for adipogenesis 
and myogenesis.

To understand how MLL4 regulates BAT development, we induced adipogenesis in brown preadi-
pocytes in culture. KO of Mll4 led to a moderate differentiation defect along with a transient up-regulation 
of Mll3 expression in the early phase of adipogenesis whereas KO of Mll3 had no effect on adipogenesis 
(Figure 2—figure supplement 1A-F), suggesting a more prominent role of MLL4 in development and 
a partial compensation of MLL4 loss by MLL3. To eliminate the compensatory effect, we isolated 
primary brown preadipocytes from E18.5 Mll3−/−Mll4f/f embryos. After SV40T immortalization (Wang 
et al., 2010), cells were infected with adenoviral Cre (Ad-Cre) or GFP (Ad-GFP) to generate 
Mll3−/−Mll4−/− and Mll3−/− cells, respectively. Deletion of Mll4 by Cre from the immortalized Mll3−/−Mll4f/f 
brown preadipocytes had little effect on cell growth (Figure 2—figure supplement 1G-H), but led to 
severe defects in adipogenesis and associated expression of adipogenesis markers and key regulators 
Pparg and Cebpa as well as brown adipocyte markers Prdm16 and Ucp1 (Figure 2A–B and Figure 2—
figure supplement 1I), indicating that MLL3 and MLL4 are functionally redundant and are essential 
for adipogenesis. Furthermore, ectopic expression of PPARγ or C/EBPβ failed to rescue adipogen-
esis in Mll3/Mll4 double KO preadipocytes (Figure 2—figure supplement 1J and Figure 2C). 
Consistent with the results from brown preadipocytes, knockdown of Mll4 in 3T3-L1 white preadi-
pocytes inhibited adipogenesis (Figure 2—figure supplement 1K–M). Furthermore, MLL3 and MLL4 
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were also required for PPARγ-stimulated adipogenesis in mouse embryonic fibroblasts (MEFs) (Figure 2—
figure supplement 1N–P).

To understand how MLL4 regulates myogenesis, we used retroviral vector to stably express ectopic 
MyoD in Mll3−/−Mll4f/f brown preadipocytes. Cells were then infected with adenoviral Cre or GFP, fol-
lowed by induction of myogenesis (Figure 2F–H). We found that deletion of Mll4 from Mll3−/−Mll4f/f 
brown preadipocytes led to severe defects in MyoD-stimulated myogenesis of preadipocytes and the 

Figure 1. MLL4 is required for brown adipose tissue and muscle development. (A and B) Generation of Mll4 conditional KO mice (Mll4f/f). (A) Schematic 
representation of mouse Mll4 wild-type (WT) allele, targeted allele, conditional KO (flox) allele and KO allele. In the targeted allele, a single loxP site 
was inserted in the intron before exon 16. A neomycin (neo) selection cassette flanked by FRT sites and the second loxP site was inserted in the intron 
after exon 19. The locations of PCR genotyping primers P1, P2, and P3 are indicated by arrows. (B) PCR genotyping of cell lines using mixtures of 
P2 + P3 or P1 + P3 primers. The genotypes are indicated at the top. (C) Genotype of E18.5 embryos isolated from crossing Mll4f/+;Myf5-Cre with Mll4f/f 
mice. The expected ratios of the four genotypes are 1:1:1:1. Mll4f/f;Myf5-Cre mice died immediately after cesarean section because of breathing 
malfunction due to defects in muscles of the rib cage. (D) Representative pictures of E18.5 embryos of the indicated genotypes. (E) E18.5 embryos were 
sagittally sectioned along the midline. The sections of the cervical/thoracic area indicated in the schematic were stained with H&E (upper panels) or with 
antibodies recognizing BAT marker UCP1 (green) and skeletal muscle marker Myosin (red) (lower panels). Scale bar = 800 μm.
DOI: 10.7554/eLife.01503.003
The following figure supplements are available for figure 1:

Figure supplement 1. Generation of Mll3 and Mll4 whole body KO mice. 
DOI: 10.7554/eLife.01503.004

Figure supplement 2. Confirmation of Mll4 deletion. 
DOI: 10.7554/eLife.01503.005
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Figure 2. MLL4 controls induction of cell-type-specific genes during differentiation. (A–E) Adipogenesis of Mll3−/−Mll4f/f brown preadipocytes. (A and B) 
MLL4 is required for adipogenesis. Immortalized Mll3−/−Mll4f/f brown preadipocytes were infected with adenoviral GFP or Cre, followed by adipogenesis 
assay. (A) 6 days after induction of differentiation, cells were stained with Oil Red O. Upper panels, stained dishes; lower panels, representative fields 
under microscope. (B) qRT-PCR of Mll4, Pparg and Cebpa expression at indicated time points of adipogenesis. Quantitative PCR data in all figures are 
presented as means ± SD. D1, day 1. (C) MLL4 is required for C/EBPβ- and PPARγ-stimulated adipogenesis. Mll3−/−Mll4f/f brown preadipocytes were 
infected with retroviruses expressing vector (vec), C/EBPβ or PPARγ. After hygromycin selection, cells were infected with adenoviral GFP or Cre, followed 
Figure 2. Continued on next page
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associated expression of myogenesis markers such as Myog, Myh and Mck. Taken together, these data 
indicate that MLL4 is essential for adipogenesis and myogenesis.

MLL4 controls induction of cell-type-specific genes during 
differentiation
Next, we investigated how MLL4 regulates gene expression during differentiation. Adipogenesis 
was induced in Ad-GFP- or Ad-Cre-infected Mll3−/−Mll4f/f brown preadipocytes. Samples were col-
lected before (day 0) and during (day 2) adipogenesis for RNA-Seq (Figure 2D and Figure 2—figure 
supplement 2). In total there were 14,902 genes expressed in Ad-GFP-infected cells at either time 
point. Among them, 1,175 (7.9%) and 1,302 (8.7%) showed over 2.5-fold down- and up-regulation, 
respectively, from day 0 to day 2. Among the 1,302 up-regulated genes, a significant number (588, 
p=1.4E-268, hypergeometric test) was induced in an MLL4-dependent manner. Strikingly, gene 
ontology (GO) analysis revealed that only the MLL4-dependent up-regulated gene group was associ-
ated with fat cell differentiation (Figure 2E), suggesting that MLL4 selectively regulates the induction 
of adipogenesis genes.

RNA-Seq analysis of myogenesis of MyoD-expressing brown preadipocytes revealed a similar trend. 
1,108 (6.6%) and 2,774 (16.5%) genes showed over 2.5-fold down- and up-regulation, respectively, 
from brown preadipocytes to myocytes (Figure 2I). Among the 2,774 up-regulated genes, a significant 
number (836, p<1E-300, hypergeometric test) was induced in an MLL4-dependent manner. Furthermore, 
among those gene groups, only the MLL4-dependent up-regulated gene group was highly associated 
with muscle development (Figure 2J). Together, these results indicate that MLL4 is required for induc-
tion of cell-type-specific genes during differentiation.

Cell-type- and differentiation-stage-specific genomic binding of MLL4
To find out whether MLL4 directly regulates the induction of cell-type-specific genes during differenti-
ation, we performed ChIP-Seq of MLL4 in adipogenesis and myogenesis using an anti-MLL4 antibody. 
To exclude false-positive MLL4 targets as a result of off-target antibody binding, ChIP-Seq was done 
in both Ad-GFP- and Ad-Cre-infected Mll3−/−Mll4f/f cells (i.e., Mll3 KO and Mll3/Mll4 double KO cells). 
High-confidence MLL4 binding signals were obtained by filtering out non-specific signals observed in 
MLL4-deficient cells (Figure 3—figure supplement 1A-E). ChIP-Seq results were independently veri-
fied by quantitative ChIP assays at MLL4+ regions on multiple adipogenesis genes (Figure 3—figure 
supplement 2).

ChIP-Seq of MLL4 in adipogenesis was done at three time points, day 0 (preadipocytes), day 2 
(during adipogenesis) and day 7 (adipocytes). We identified 6,937, 14,581 and 25,005 high-confidence 
MLL4 genomic binding regions at day 0, day 2, and day 7, respectively (Figure 3A). The average 
length of MLL4 binding regions was 350–400bp. Interestingly, MLL4 binding regions changed dramat-
ically from day 0 to day 2 but were largely maintained from day 2 to day 7, suggesting differentiation-
stage-specific genomic binding of MLL4 during adipogenesis (Figure 3A). ChIP-Seq of MLL4 in 

by adipogenesis assay. (D–E) MLL4 is required for induction of cell-type-specific genes during adipogenesis. Adipogenesis was done as in (A). 
Cells were collected before (day 0) and during (day 2) adipogenesis for RNA-Seq. (D) Schematic of identification of MLL4-dependent and -independent 
up-regulated genes during adipogenesis. The threshold for up- or down-regulation is 2.5-fold. (E) Gene ontology (GO) analysis of gene groups 
defined in (D). (F–J) MLL4 is required for MyoD-stimulated myogenesis. Immortalized Mll3−/−Mll4f/f brown preadipocytes were infected with retroviruses 
expressing Vec or MyoD. After hygromycin selection, cells were infected with adenoviral GFP or Cre, followed by myogenesis assay. (F) Western 
blot analysis of MyoD expression before differentiation. RbBP5 was used as a loading control. The asterisk indicates a non-specific band. (G) 5 days 
after induction of differentiation, cell morphologies were observed under microscope. (H) qRT-PCR analysis of myogenic gene expression after 
differentiation. (I and J) MLL4 is required for induction of cell-type-specific genes during myogenesis. Brown preadipocytes and myocytes were 
collected for RNA-Seq. (I) Schematic of identification of MLL4-dependent and -independent up-regulated genes during myogenesis. The threshold 
for up- or down-regulation is 2.5-fold. (J) GO analysis of gene groups defined in (I).
DOI: 10.7554/eLife.01503.006
The following figure supplements are available for figure 2:

Figure supplement 1. MLL4 is required for adipogenesis. 
DOI: 10.7554/eLife.01503.007

Figure supplement 2. Confirmation of RNA-Seq data by qRT-PCR. 
DOI: 10.7554/eLife.01503.008

Figure 2. Continued
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myocytes identified 26,581 high-confidence MLL4 genomic binding regions. The MLL4-binding regions 
in adipocytes and myocytes were largely non-overlapping (Figure 3B), suggesting cell-type-specific 
genomic binding of MLL4.

Cell-type- and differentiation-stage-specific genomic binding of MLL4 was confirmed on Pparg and 
Myog gene loci that encoded the adipogenic TF PPARγ and the myogenic TF Myog, respectively 
(Figure 3C). MLL4 was also found to bind gene loci encoding other adipogenesis markers such as 
C/EBPα, KLF15, aP2 (Fabp4), LPL and UCP1 at day 2 and day 7 of adipogenesis (Figure 3—figure 
supplement 1F–K). Interestingly, MLL4 was largely absent from the Cebpb gene locus encoding the 
pioneer adipogenic TF C/EBPβ.

To identify MLL4-associated genes, we used proximity to assign the top 2,000 emergent MLL4 
binding regions at each time point to the nearest genes. GO analysis of MLL4-associated genes identi-
fied brown fat cell differentiation and fat cell differentiation as the top two functional categories at 
day 2 (during adipogenesis) and day 7 (adipocytes) but not at day 0 (preadipocytes) or in myocytes 

Figure 3. Cell-type- and differentiation-stage-specific genomic binding of MLL4. Adipogenesis and myogenesis were done as in Figure 2A,F,G, 
respectively. Cells were collected for ChIP-Seq analysis of MLL4. (A) Venn diagram of MLL4 binding regions at day 0 (preadipocytes), day 2 (during 
adipogenesis) and day 7 (adipocytes) of adipogenesis. (B) Venn diagram of MLL4 binding regions in adipocytes and myocytes. (C) ChIP-Seq profiles of 
MLL4 binding on gene loci encoding PPARγ and myogenin (Myog) at indicated time points and cell types. (D) GO analysis of genes associated with 
emergent MLL4 binding regions at indicated time points and cell types.
DOI: 10.7554/eLife.01503.009
The following figure supplements are available for figure 3:

Figure supplement 1. MLL4 binds to adipogenesis genes. 
DOI: 10.7554/eLife.01503.010

Figure supplement 2. ChIP-qPCR confirmation of ChIP-Seq data. 
DOI: 10.7554/eLife.01503.011
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(Figure 3D). GO analysis also identified muscle organ/tissue development and muscle cell differentia-
tion as the top functional categories specifically in myocytes (Figure 3D). These results are consistent 
with GO analysis of RNA-Seq data and suggest that cell-type- and differentiation-stage-specific genomic 
binding of MLL4 is directly involved in the regulation of genes critical for cell differentiation.

Genomic co-localization of MLL4 with lineage-determining TFs during 
differentiation
Next, we performed motif analysis of the top 2,000 emergent MLL4 binding regions at each time point 
(Figure 4A). At preadipocyte stage before adipogenesis (day 0), MLL4 binding regions were enriched 
with motifs of TFs functioning in various developmental lineages. However, at day 2 and day 7 of adi-
pogenesis, MLL4 binding regions were highly enriched with motifs of major adipogenic TFs, including 
C/EBPα, C/EBPβ, PPARγ, EBF1 and GR (Rosen and MacDougald, 2006; Ge, 2012). In myocytes, 
MLL4 binding regions were highly enriched with motifs of myogenic TF MyoD and its binding partner 
TCF3 (also known as E2A) (Lassar et al., 1991), as well as myogenic TFs Runx1 and TEAD4 (MacQuarrie 
et al., 2013).

To experimentally validate the predicted motifs, we performed ChIP-Seq of C/EBPα, C/EBPβ and 
PPARγ at day 2 of adipogenesis and of MyoD in myocytes. By comparing the genomic localizations of 
MLL4 with those of C/EBPα, C/EBPβ and PPARγ, we found that consistent with the motif analysis, 
∼64% of MLL4 binding regions overlapped with those of C/EBPα/β or PPARγ at day 2 of adipogenesis 
(Figure 4B–C). In particular, genomic co-localization of MLL4 with C/EBPβ, C/EBPα, and PPARγ 
was observed on Pparg and Cebpa loci at day 2 but not day 0 of adipogenesis (Figure 4—figure 
supplement 1 and 2). In myocytes, 40% of MLL4 binding regions overlapped with those of MyoD 
(Figure 4D–E). Consistent with these results, we observed a physical interaction of MLL4 with C/EBPβ 
during adipogenesis (Figure 4F). We also found that PPARγ associated with MLL3/MLL4-containing 
H3K4 methyltransferase complex in cells (Figure 4—figure supplement 3), which is consistent 
with the reported direct interaction between PPARγ and MLL3/MLL4 complex (Lee et al., 2008). 
Together, these results indicate significant genomic co-localization of MLL4 with lineage-determining 
TFs during adipogenesis and myogenesis.

MLL4 co-localizes with lineage-determining TFs on active enhancers 
during differentiation
To characterize the genomic features of MLL4 binding regions during differentiation, we performed 
ChIP-Seq of H3K4me1/2/3, H3K27ac and Pol II during adipogenesis. Then, we used histone marks to 
define four types of gene regulatory elements: active enhancer, silent enhancer, active promoter, and 
silent promoter (Figure 5A) (Creyghton et al., 2010; Rada-Iglesias et al., 2011). Average profile plots 
revealed that at day 2 of adipogenesis, MLL4 and adipogenic TFs C/EBPα, C/EBPβ and PPARγ were 
enriched on active enhancers (Figure 5B). Genomic distribution analyses showed that among the 
14,581 MLL4 binding regions at day 2 of adipogenesis, 9,642 (66.1%) and 1,836 (12.6%) were located 
on active and silent enhancers while only 451 (3.1%) and 29 (0.2%) were located on active and silent 
promoters, respectively, indicating that MLL4 mainly bound to enhancers and preferentially active 
enhancers (p<1E-300, binomial test) (Figure 5C).

Genomic distribution analyses also revealed preferential localization of C/EBPs and PPARγ on 
active enhancers during adipogenesis (Figure 5C). Interestingly, 57.3% of the C/EBP-binding and 
80.0% of the PPARγ-binding active enhancers were MLL4+, significantly higher than the genome-
wide level of co-localization (31.3% for C/EBPs and 56.3% for PPARγ, respectively), indicating that 
MLL4 preferentially co-localizes with these TFs on active enhancers than on other genomic locations 
(p<1E-300 for either C/EBPs or PPARγ, hypergeometric test).

At day 2 of adipogenesis, 11,280 active enhancers were bound with adipogenic TFs C/EBPα, C/
EBPβ or PPARγ. These 11,280 active enhancers, which we termed adipogenic enhancers, could be 
clustered into 3 groups: C/EBP+PPARγ− (C/EBPα- or β-positive but PPARγ-negative, 8,098 active 
enhancers), C/EBP−PPARγ+ (1,219), and C/EBP+PPARγ+ (1,963) (Figure 5D). MLL4 binding was found 
on 46.9% and 61.7% of C/EBP+PPARγ− and C/EBP−PPARγ+ adipogenic enhancers, respectively. 
Remarkably, MLL4 binding was found on 91.3% of C/EBP+PPARγ+ adipogenic enhancers, which were 
high-confidence adipogenic enhancers (Lefterova et al., 2008) (Figure 5D).

Similarly, MLL4 and the myogenic TF MyoD were enriched on active enhancers in myocytes 
(Figure 5—figure supplement 1A-B). We identified 8,091 myogenic enhancers that were active 
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enhancers bound with MyoD. Among the 8,091 myogenic enhancers, 5,228 (64.6%, p<1E-300, hyper-
geometric test) were MLL4+ (Figure 5—figure supplement 1C). Together, these results indicate that 
MLL4 co-localizes with lineage-determining TFs on active enhancers during differentiation.

MLL3 and MLL4 are major H3K4 mono- and di-methyltransferases in cells
The enrichment of H3K4 methyltransferase MLL4 on active enhancers, which are marked by 
H3K4me1/2 and H3K27ac, prompted us to examine the enzymatic properties of MLL4. For this purpose, 
we affinity-purified endogenous SET1A/SET1B complex (SET1A/B.com) and MLL3/MLL4 complex 

Figure 4. Genomic co-localization of MLL4 with lineage-determining TFs during differentiation. (A) Adipogenic TF binding motifs are enriched at MLL4 
binding regions during adipogenesis while myogenic TF binding motifs are enriched at MLL4 binding regions in myocytes. Top 2,000 emergent MLL4 
binding regions at each time point were used for motif analysis. Only TFs that are expressed at the indicated cell type or differentiation stage are 
included. (B and C) Venn diagram (B) and heat maps (C) of genomic co-localization of MLL4 with C/EBPs (C/EBPα or β) and PPARγ at day 2 of adipogenesis. 
(D and E) Venn diagram (D) and heat maps (E) of genomic co-localization of MLL4 with MyoD in myocytes. (F) MLL4 physically interacts with C/EBPβ 
during adipogenesis. Nuclear extracts prepared at day 2 of adipogenesis were immunoprecipitated with MLL4 antibody. The immunoprecipitates were 
analyzed by Western blot using antibodies against MLL3/MLL4 complex components (UTX, PTIP, RbBP5 and PA1), Menin, or C/EBPβ.
DOI: 10.7554/eLife.01503.012
The following figure supplements are available for figure 4:

Figure supplement 1. ChIP-Seq and RNA-Seq data on Pparg gene during adipogenesis. 
DOI: 10.7554/eLife.01503.013

Figure supplement 2. ChIP-Seq and RNA-Seq data on Cebpa gene during adipogenesis. 
DOI: 10.7554/eLife.01503.014

Figure supplement 3. PPARγ interacts with MLL3/MLL4-containing H3K4 methyltransferase complex in cells. 
DOI: 10.7554/eLife.01503.015

http://dx.doi.org/10.7554/eLife.01503
http://SET1A/B.com
http://dx.doi.org/10.7554/eLife.01503.012
http://dx.doi.org/10.7554/eLife.01503.013
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Figure 5. MLL4 co-localizes with lineage-determining TFs on active enhancers during differentiation. ChIP-Seq analyses of MLL4, TFs, H3K4me1/2/3 and 
H3K27ac were done at day 2 of adipogenesis. (A) Table depicting histone modifications used to define gene regulatory elements. TSS, transcription start 
site. (B and C) MLL4 is mainly localized on active enhancers during adipogenesis. (B) Average binding profiles of MLL4, adipogenic TFs C/EBPα, C/EBPβ 
and PPARγ, and RNA polymerase II (Pol II) around the center of each type of gene regulatory elements. (C) Pie charts depicting the genomic distributions of 
MLL4, C/EBPα, C/EBPβ, PPARγ and Pol II binding regions. (D) MLL4 co-localizes with adipogenic TFs on active enhancers during adipogenesis. The binding 
profiles of C/EBPα, C/EBPβ, PPARγ and MLL4 on the three types of adipogenic enhancers (C/EBP+PPARγ−, C/EBP−PPARγ+ and C/EBP+PPARγ+) are shown in 
heat maps. Adipogenic enhancers are defined as active enhancers bound with C/EBPα, C/EBPβ or PPARγ at day 2 of adipogenesis.
DOI: 10.7554/eLife.01503.016
The following figure supplements are available for figure 5:

Figure supplement 1. MLL4 co-localizes with lineage-determining TFs on active enhancers during myogenesis. 
DOI: 10.7554/eLife.01503.017
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(MLL3/4.com) from 293 cells expressing FLAG-tagged CFP1 and PA1, the unique subunit of SET1A/B.
com and MLL3/4.com, respectively (Lee and Skalnik, 2005; Cho et al., 2007). In an in vitro HMT assay 
using core histones as substrate, we found that compared with SET1A/B.com, the major H3K4 tri-
methyltransferase in mammalian cells, MLL3/4.com carried much stronger mono- and di-methyltransferase 
activities but much weaker tri-methyltransferase activity on H3K4 (Figure 6A). Time-course HMT 
assays confirmed H3K4me1/2 methyltransferase activity of MLL3/4.com in vitro (Figure 6B).

In Mll3 single KO brown preadipocytes, we observed a moderate decrease of H3K4me1 (Figure 6—
figure supplement 1A). Deletion of Mll4 from Mll3−/−Mll4f/f cells led to global decreases of H3K4me1 
and H3K4me2 but much less effect on H3K4me3 levels at day 0 and day 2 of adipogenesis. H3K27ac 
levels also decreased significantly (Figure 6C). In Mll3/Mll4 double KO myocytes and human colon 
cancer cells (Guo et al., 2012), we also observed significant decreases of H3K4me1 (Figure 6—figure 
supplement 1B and Figure 6D). ChIP-Seq analyses of MLL4 and histone modifications also revealed 
that among the 14,581 MLL4 binding sites during adipogenesis, 12,783 (87.7%) were marked by both 
H3K4me1 and H3K4me2 (Figure 6E). These data indicate that endogenous MLL3 and MLL4 are major 
H3K4 mono- and di-methyltransferases in mammalian cells.

MLL4 is required for enhancer activation and cell-type-specific gene 
expression during differentiation
The enrichment of H3K4 mono- and di-methyltransferase MLL4 on active enhancers during differenti-
ation prompted us to investigate whether MLL4 is required for H3K4me1/2 on these enhancers. ChIP-Seq 

Figure 6. MLL4 is a major H3K4 mono- and di-methyltransferase in cells. (A and B) In vitro histone methyltransferase 
(HMT) assay. (A) SET1A/SET1B complex (SET1A/B.com) and MLL3/MLL4 complex (MLL3/4.com) that were affinity-
purified from 293T nuclear extracts were incubated with core histones in an HMT assay for 3 hr, followed by Western 
blot analysis. (B) Time-course HMT assay with MLL3/4.com. (C) Mll3−/−Mll4f/f brown preadipocytes were infected 
with adenoviral GFP or Cre as in Figure 2. Cells were collected at day 0 and day 2 of adipogenesis for Western 
blot analysis of histone modifications. (D) Western blot analysis of histone modifications in MLL3−/−MLL4−/− HCT116 
human colon cancer cells. (E) 87.7% of MLL4-binding regions at day 2 of adipogenesis were marked by H3K4me1/2 
as revealed by ChIP-Seq analyses of MLL4 and H3K4me1/2.
DOI: 10.7554/eLife.01503.018
The following figure supplements are available for figure 6:

Figure supplement 1. MLL3 and MLL4 are H3K4 mono- and di-methyltransferases in mammalian cells. 
DOI: 10.7554/eLife.01503.019
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analyses revealed a dramatic increase of MLL4 levels on the 6,342 MLL4+ adipogenic enhancers from 
day 0 to day 2 of adipogenesis (Figure 7A). Consistently, we observed marked increases of H3K4me1/2 
on these enhancers. H3K27ac, Mediator (represented by the MED1 subunit) and Pol II levels also 
increased markedly on MLL4+ adipogenic enhancers from day 0 to day 2. Deletion of Mll4 from 
Mll3−/−Mll4f/f cells prevented the marked increases of not only H3K4me1/2 but also H3K27ac, 
Mediator and Pol II on the 6,342 MLL4+ adipogenic enhancers from day 0 to day 2 (Figure 7A). On Pparg 
and Cebpa gene loci, deletion of Mll4 also prevented the increases of H3K4me1/2, H3K27ac, Mediator 
and Pol II on MLL4+ adipogenic enhancers during adipogenesis (Figure 4—figure supplement 1 and 2). 
On the 480 MLL4+ promoters identified during adipogenesis, MLL4 was required for H3K4me1/2 but 
not H3K4me3 levels. However, the effect of Mll4 deletion on promoter H3K4me1/2 is not as severe as 
on enhancers (Figure 7—figure supplement 1 vs Figure 7A).

During myogenesis, MLL4 and MyoD levels increased dramatically on the 5,228 MLL4+ 
myogenic enhancers. Deletion of Mll4 from Mll3−/−Mll4f/f cells also prevented the marked increases 
of H3K4me1 and H3K27ac on MLL4+ myogenic enhancers during myogenesis (Figure 7—figure 
supplement 2A-B). Thus, MLL4 is the major H3K4 mono- and di-methyltransferase on adipogenic 
and myogenic enhancers. Because H3K27ac is a mark for active enhancers, these results indicate 
that MLL4 is required for the activation of cell-type-specific enhancers during adipogenesis and 
myogenesis.

We next asked how MLL4 affects the induction and expression of genes regulated by cell-type-
specific enhancers. To focus on the direct effect of MLL4, we examined genes associated with 
MLL4+ adipogenic enhancers (C/EBP+PPARγ−, C/EBP−PPARγ+, or C/EBP+PPARγ+). We first looked 
at the induction of genes from day 0 to day 2 of adipogenesis (Figure 7B). Genes associated with 
MLL4+ adipogenic enhancers at day 2 were better induced than those associated with MLL4− adi-
pogenic enhancers (p=1.5E-22, Wilcoxon test). The induction was even stronger if the associated 
MLL4+ adipogenic enhancers were C/EBP+PPARγ+ (p=1.5E−76, Wilcoxon test). We then examined 
how MLL4 affects expression of genes at day 2 of adipogenesis. As shown in Figure 7C, deletion 
of Mll4 significantly decreased expression of genes associated with MLL4+ adipogenic enhancers 
(C/EBP+PPARγ− or C/EBP−PPARγ+, p=2.2E−10, Wilcoxon test). An even stronger effect of Mll4 dele-
tion was observed if the associated MLL4+ adipogenic enhancers were C/EBP+PPARγ+ (p=1.8E−31, 
Wilcoxon test). In contrast, the deletion of Mll4 had little effect on the expression of genes asso-
ciated with MLL4− adipogenic enhancers. In myocytes, deletion of Mll4 significantly decreased 
expression of genes associated with MLL4+ myogenic enhancers but not those associated with MLL4− 
myogenic enhancers (Figure 7—figure supplement 2C). Together, these results indicate that 
MLL4 is required for activation of enhancers that are important for cell-type-specific gene expres-
sion during differentiation.

C/EBPβ recruits and requires MLL4 to establish a subset of adipogenic 
enhancers
The physical interaction and the genome-wide co-localization of C/EBPβ with MLL4 during adipo-
genesis suggest that the early adipogenic TF C/EBPβ may recruit MLL4 to establish at least a 
subset of adipogenic enhancers. To directly test this possibility, we ectopically expressed C/EBPβ 
in preadipocytes (Figure 8A), followed by ChIP-Seq of C/EBPβ, MLL4, H3K4me1 and H3K27ac 
without inducing differentiation. Of the 4,965 C/EBPβ+ MLL4+ active enhancers identified at day 
2 of adipogenesis, 66.6% (3,309/4,965) were bound by ectopic C/EBPβ in undifferentiated preadi-
pocytes. Ectopic C/EBPβ was able to recruit MLL4 to a subset of enhancers (666 out of 3,309) 
(Figure 8B). Among them, 88.7% (591/666) showed the characteristics of active enhancers, as indi-
cated by the presence of H3K4me1 and H3K27ac (Figure 8C). Among the 591 recovered C/EBPβ+ 
MLL4+ active enhancers, 375 displayed ectopic C/EBPβ-induced de novo MLL4 binding, which led 
to significant increases of H3K4me1 and H3K27ac. The remaining 216 recovered C/EBPβ+ MLL4+ 
adipogenic enhancers, which were pre-marked by MLL4 in the control cells, showed ectopic C/
EBPβ-enhanced MLL4 binding as well as H3K4me1 and H3K27ac (Figure 8C). Importantly, deletion 
of Mll4 markedly decreased H3K4me1 and H3K27ac on over 90% of the 591 recovered C/EBPβ+ 
MLL4+ adipogenic enhancers (Figure 8C–D). MLL4-dependent de novo H3K4me1 and H3K27ac 
were also observed on the C/EBPβ+ adipogenic enhancers located on Pparg gene locus (Figure 8E). 
Together, these results suggest that lineage-determining TF C/EBPβ recruits and requires MLL4 to 
establish at least a subset of adipogenic enhancers.

http://dx.doi.org/10.7554/eLife.01503
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Figure 7. MLL4 is required for enhancer activation during differentiation. Mll3−/−Mll4f/f brown preadipocytes were 
infected with adenoviral GFP or Cre as in Figure 2. Cells were collected at day 0 and day 2 of adipogenesis for 
ChIP-Seq of H3K4me1/2/3, H3K27ac, MED1 and Pol II, and RNA-Seq. (A) Deletion of Mll4 dramatically decreases 
H3K4me1/2, H3K27ac, MED1 and Pol II levels on MLL4 positive (MLL4+) adipogenic enhancers. Average profiles of 
histone modifications, MED1 and Pol II on MLL4+ adipogenic enhancers are shown. (B) MLL4 promotes induction of 
genes associated with MLL4+ adipogenic enhancer during adipogenesis. (C) Deletion of Mll4 reduces expression of 
MLL4+ adipogenic enhancer-associated genes. Gene expression fold changes were obtained by comparing 
Cre-infected with GFP-infected cells at day 2 of adipogenesis and are shown in the box plot.
DOI: 10.7554/eLife.01503.020
The following figure supplements are available for figure 7:

Figure supplement 1. MLL4 is required for H3K4me1/2 on MLL4+ promoters. 
DOI: 10.7554/eLife.01503.021

Figure supplement 2. MLL4 is required for enhancer activation during myogenesis. 
DOI: 10.7554/eLife.01503.022
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Figure 8. C/EBPβ recruits and requires MLL4 to establish a subset of adipogenic enhancers. Mll3−/−Mll4f/f brown preadipocytes were infected with 
retroviral C/EBPβ or Vec only, and then infected with adenoviral GFP or Cre. Cells were collected 2 days after confluence without induction of differentia-
tion for Western blot (A) and for ChIP-Seq of C/EBPβ, MLL4, H3K4me1 and H3K27ac (B–E). (A) Western blot analyses of C/EBPβ expression and histone 
modifications. Nuclear protein RbBP5 was used as a loading control. (B) Ectopic expression of C/EBPβ in undifferentiated preadipocytes leads to MLL4 
binding on a subset of C/EBPβ+ MLL4+ active enhancers identified at day 2 of adipogenesis. (C) Heat maps of the relative signals of C/EBPβ, MLL4, 
H3K4me1 and H3K27ac on the recovered C/EBPβ+ MLL4+ active enhancers. (D) MLL4 is required for H3K4me1 on the recovered C/EBPβ+ MLL4+ active 
enhancers. (E) Genome browser view of ectopic C/EBPβ-induced MLL4 binding as well as H3K4me1 and H3K27ac on Pparg locus. (F) Model depicting 
the role of MLL4 in transcriptional regulation of adipogenesis. The early adipogenic TF C/EBPβ serves as a pioneer TF and recruits MLL4 to establish 
active enhancers on Pparg and Cebpa loci. After PPARγ and C/EBPα are induced, they recruit MLL4 and cooperate with other adipogenic TFs to shape 
the enhancer landscape important for adipocyte gene expression. (G) Model depicting the role of MLL4 in the step-wise enhancer activation.
DOI: 10.7554/eLife.01503.023
The following figure supplements are available for figure 8:

Figure supplement 1. Time-course ChIP-qPCR on C/EBPβ+MLL4+ enhancers on Pparg gene locus. 
DOI: 10.7554/eLife.01503.024
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Consistently, by quantitative time-course ChIP assays performed during the first 48 hr of adipogen-
esis, we observed sequential enrichments of lineage-determining TF C/EBPβ, H3K4me1/2 methyl-
transferase MLL4, H3K4me1/2, and H3K27ac on C/EBPβ+MLL4+ adipogenic enhancers identified on 
Pparg gene locus (Figure 8—figure supplement 1). Combined with our earlier observations, these 
results suggest a step-wise model of enhancer activation during cell differentiation (Figure 8G and 
‘Discussion’).

Discussion
In this paper, we identify MLL4 as a major H3K4 mono- and di-methyltransferase enriched on mamma-
lian enhancers. We show MLL4 is essential for enhancer activation, cell-type-specific gene expression, 
and cell differentiation. Our findings also shed new light on how histone modifying enzymes coordi-
nate with lineage-determining transcription factors on enhancers to regulate gene expression and cell 
differentiation.

MLL4 is a major H3K4me1/2 methyltransferase on mammalian 
enhancers
Drosophila Trr and its mammalian homologs MLL3/MLL4 represent the major candidate methyl-
transferases for H3K4me1 on enhancers (Calo and Wysocka, 2013). Our in vitro HMT assays show 
that MLL3/4.com carries predominantly H3K4 mono- and di-methyltransferase activity with little 
H3K4 tri-methyltransferase activity, in agreement with two recent studies (Tang et al., 2013; Wu 
et al., 2013). By generating Mll3/Mll4 double KO cells, we demonstrate that endogenous MLL3 
and MLL4 are major H3K4me1/2 methyltransferases in mammalian cells and that MLL4 has a par-
tial functional redundancy with MLL3 in cells.

False-positive signals due to potential cross-reactivity of antibodies are a major concern in ChIP-
Seq analyses (Kidder et al., 2011). To exclude false-positive signals and identify bona fide MLL4 
binding regions, we performed ChIP-Seq of MLL4 in both Mll3 KO and Mll3/Mll4 double KO cells. The 
results provide the direct evidence that MLL4 is a major H3K4me1/2 methyltransferase on enhancers 
during cell differentiation. More importantly, our data indicate that MLL4 is required for enhancer 
activation, which suggests that H3K4me1/2 may be important for enhancer activation. The partial 
functional redundancy between MLL3 and MLL4 in cells suggests that endogenous MLL3 is likely 
an H3K4me1/2 methyltransferase on enhancers and is likely involved in the activation of cell-type-
specific enhancers.

Significant levels of H3K4me1/2 remain in Mll3/Mll4 double KO cells (Figure 6C), indicating that 
other H3K4 methyltransferases contribute to H3K4me1/2 in cells. Studies have shown possible roles of 
MLL1 and Set7 in catalyzing H3K4me1 on specific enhancers (Blum et al., 2012; Kaikkonen et al., 
2013), but whether these enzymes are required for enhancer activation remains to be determined. It 
was shown recently that knockdown of several H3K4 methyltransferases including MLL1, MLL3, MLL4 
in macrophages led to significant decreases of H3K4me1/2 on latent enhancers (Kaikkonen et al., 
2013). Our data indicate that MLL4 is required for the activation of cell-type-specific enhancers during 
differentiation. Whether MLL4 is also required for the activation of latent enhancers remains to be 
determined.

Lineage-determining TFs recruit MLL4 to establish cell type-specific 
enhancers
During adipogenesis and myogenesis, MLL4 exhibits cell-type- and differentiation-stage-specific 
genomic binding and co-localizes with lineage-determining TFs and H3K4me1/2 on active enhanc-
ers. Thus, MLL4 appears to mark lineage-determining enhancers during differentiation. It will be 
interesting to test whether MLL4 binding can predict enhancers in other cell types. Interestingly, 
MLL4-dependent H3K4me1/2 distribute well beyond the binding sites of lineage-determining TFs 
and MLL4. A similar observation can be made for p300 and H3K27ac (Rada-Iglesias et al., 2011), 
where H3K27ac is distributed much broader than p300. We speculate that lineage-determining TFs 
along with MLL4 may induce physical proximity of neighboring nucleosomes to MLL4, which enables 
MLL4-mediated H3K4me1/2 over a much broader region.

C/EBPβ is a lineage-determining TF for adipogenesis. It can bind to relatively closed chromatin and 
thus behaves as a pioneer factor in adipogenesis (Siersbaek et al., 2011). By ectopic expression of C/EBPβ 
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in preadipocytes without inducing differentiation, we show that C/EBPβ recruits and requires MLL4 to 
establish a subset of adipogenic enhancers. Our data are consistent with earlier reports that genomic 
binding of the lineage-determining TF PU.1 leads to H3K4me1 in macrophages and B cells and that 
ectopic expression of PU.1 in non-hematopoietic fibroblasts induces H3K4me1 on macrophage-
specific enhancers (Ghisletti et al., 2010; Heinz et al., 2010). Although it remains to be determined 
whether MLL4 and/or MLL3 play a major role in establishing enhancers in macrophages, B cells and 
other cell types, the available results suggest that lineage-determining TFs recruit H3K4me1/2 meth-
yltransferases to prime enhancer-like regions in a particular cell type.

Ectopic expression of C/EBPβ in preadipocytes without differentiation only recovers a subset of 
endogenous C/EBPβ+MLL4+ enhancers, indicating that the recruitment of MLL4 to enhancers during 
adipogenesis involves additional mechanisms and factors. Because differentiation-dependent phos-
phorylation of C/EBPβ increases its DNA binding activity, the optimal genomic binding of C/EBPβ 
and the subsequent recruitment of MLL4 are likely dependent on induction of adipogenesis. Similarly, 
the binding of MyoD to myogenic enhancers on Myog locus is differentiation-dependent (Figure 7—
figure supplement 2B). The direct interaction between MLL3/4.com and PPARγ and the genomic 
co-localization of MLL4 with PPARγ and C/EBPα suggest that PPARγ and C/EBPα also play critical 
roles in recruiting MLL4 to establish adipogenic enhancers.

Motif analyses of MLL4 binding sites during adipogenesis and myogenesis have identified motifs 
of additional lineage-determining TFs, such as adipogenic TFs EBFs, GR and NFIC and myogenic TFs 
TCF3, Runx1 and TEAD4 (Figure 4A). Future ChIP-Seq analyses will tell whether these additional lineage-
determining TFs can recruit MLL4 to regions that are not bound by C/EBPα/β, PPARγ or MyoD. On the 
other hand, MLL4 is absent from many genomic regions that are occupied by C/EBPα/β or PPARγ 
during adipogenesis or by MyoD in myocytes (Figure 4B,D), suggesting that lineage-determining TFs 
alone are not always sufficient for recruiting MLL4 to establish enhancers and that additional mecha-
nisms and factors may be involved.

Ectopic expression of C/EBPβ in preadipocytes partially mimics the early phase of adipogenesis 
when PPARγ and C/EBPα have not been induced yet. Nevertheless, endogenous C/EBPβ co-localizes 
with MLL4 on active enhancers located on both Pparg and Cebpa gene loci (Figure 4—figure 
supplements 1 and 2). Because C/EBPβ not only transcriptionally activates Pparg and Cebpa gene 
expression but also facilitates PPARγ and C/EBPα genomic binding during adipogenesis (Rosen et al., 
2002; Siersbaek et al., 2011), our data suggest the following model on how MLL4 regulates adi-
pogenesis (Figure 8F). The pioneer TF C/EBPβ recruits MLL4 to activate adipogenic enhancers on, 
and the subsequent induction of, Pparg and Cebpa gene expression. After the master adipogenic 
TFs PPARγ and C/EBPα are induced, they cooperate to recruit MLL4 to establish the downstream 
enhancer landscape critical for adipocyte gene expression.

In cell culture, MLL3 and MLL4 are partially redundant in adipogenesis. In mice, deletion of Mll4 
alone causes severe defects in BAT development. Deletion of Mll3 in mice has been shown to decrease 
white adipose tissue size (Lee et al., 2008). These results suggest that while MLL4 is the dominant one 
during mouse embryonic development, MLL3 is partially redundant with MLL4 in mice. The critical 
roles of MLL3 and MLL4 in adipogenesis are consistent with our previous report that PTIP, a compo-
nent of the MLL3/4.com, is essential for Pparg and Cebpa expression and adipogenesis (Cho et al., 
2009).

How does MLL4 work on enhancers?
The presence of H3K4me1 on enhancers often precedes the active enhancer mark H3K27ac and 
gene expression, suggesting that H3K4me1 broadly defines a window of future active enhancers 
(Calo and Wysocka, 2013). Consistently, our time-course ChIP assays revealed sequential appear-
ances of H3K4me1/2 and H3K27ac on C/EBPβ+MLL4+ active enhancers on Pparg gene locus in 
the early phase of adipogenesis (Figure 8—figure supplement 1). Further, we show that the 
H3K4me1/2 methyltransferase MLL4 is required for H3K27ac, Mediator and Pol II on enhancers, 
which indicates that MLL4 is required for enhancer activation and suggests that MLL4 exerts its 
function in enhancer commissioning through H3K4me1/2. Collectively, our data suggest a step-
wise model of enhancer activation during adipogenesis (Figure 8G). Step 1, pioneer TF binding. 
Pioneer TFs such as C/EBPβ bind enhancer-like regions. Step 2, enhancer commissioning by MLL4. 
Lineage-determining TFs, such as C/EBPβ, PPARγ and C/EBPα, cooperatively recruit MLL4 to perform 
H3K4me1/2 on enhancer-like regions. Step 3, enhancer activation by H3K27 acetyltransferase p300, 
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followed by Pol II recruitment, establishment of enhancer–promoter interaction, and activation of 
cell-type-specific gene expression. Thus, the enhancer-associated H3K4me1/2 methyltransferase 
MLL4 appears to perform the opposite function of LSD1, an H3K4me1/2 demethylase required for 
decommissioning of embryonic stem (ES) cell-specific enhancers during ES cell differentiation (Whyte 
et al., 2012).

MLL3/MLL4 mutations in diseases
Frequent loss-of-function mutations in MLL4 (sometimes called MLL2) and its homolog MLL3 have 
been identified in developmental diseases such as Kabuki syndrome (Ng et al., 2010), congenital 
heart disease (Zaidi et al., 2013), and in cancers such as medulloblastoma (Parsons et al., 2011; 
Jones et al., 2012; Pugh et al., 2012), non-Hodgkin lymphomas (Morin et al., 2011; Pasqualucci et 
al., 2011), breast cancer (Ellis et al., 2012), and prostate cancer (Grasso et al., 2012). Our findings 
suggest that loss-of-function mutations in MLL3 and MLL4 would impair H3K4me1/2 on enhancers, 
which lead to defects in enhancer activation, cell-type-specific gene expression and cell differentiation. 
Such a mechanism may contribute to the pathogenesis of these developmental diseases and cancers.

Materials and methods
Plasmids and antibodies
The retroviral plasmids pMSCVhygro-PPARγ2, pWZLhygro-C/EBPβ, and MSCVpuro-Cre have been 
described (Ge et al., 2008; Wang et al., 2010). MyoD cDNA was subcloned from MSCVpuro-MyoD 
into pWZLhygro. The shRNA sequence-targeting mouse Mll4 gene (GCATGTTCTTCAAGGACAAGA) 
was cloned into lentiviral vector pLKO.1.

The following homemade antibodies have been described: anti-UTX (Hong et al., 2007); anti-
PTIP, anti-PA1#2, anti-MLL4#3 (Cho et al., 2009). Anti-C/EBPα (sc-61X), anti-C/EBPβ (sc-150X), 
anti-PPARγ (sc-7196X), and anti-MyoD (sc-760) were from Santa Cruz Biotechnology (Dallas, TX, 
USA). Anti-Menin (A300-105A), anti-RbBP5 (AA300-109A), and anti-MED1/TRAP220 (A300-793A) were 
from Bethyl Laboratories (Montgomery, TX, USA). Anti-H3K4me1 (ab8895) was from Abcam (Cambridge, 
MA, USA). Anti-Pol II (17-672) and anti-H3K4me3 (07-473) were from Millipore (Billerica, MA, USA). 
Other histone methylation and acetylation antibodies have been described (Jin et al., 2011).

Generation of mouse strains
Mll3+/− and Mll4+/− mice were generated from BayGenomics gene trap ES cell lines following standard 
procedures at NIDDK Mouse Knockout Core (Stryke et al., 2003). Mll3+/− mice were derived from ES 
cell line XM083, in which the gene trap vector pGT0lxf was inserted between exon 9 and 10 of one 
Mll3 allele. Mll4+/− mice were derived from ES cell line XT0709, in which the gene trap vector pGT0lxf 
was inserted between exon 19 and 20 of one Mll4 allele.

To generate Mll4 conditional KO mice, the loxP/FRT-flanked neomycin cassette was inserted at the 3’ 
of exon 19 and the single loxP site was inserted at the 5’ of exon 16. The targeted region includes exons 
16–19 (Figure 1A). The Mll4floxneo/+ ES cell was injected into blastocysts to obtain male chimera mice that 
were crossed with wild-type C57BL/6J females to screen for germ line transmission. Mice bearing germ-
line transmission (Mll4floxneo/+) were crossed with FLP1 mice (Jackson no. 003946) to generate Mll4f/+ 
(i.e., Mll4flox/+) mice. Mll4f/+ mice were crossed with Myf5-Cre (Jackson no. 007893). The resulting 
Mll4f/+;Myf5-Cre were then crossed with Mll4f/f to generate Mll4f/f;Myf5-Cre mice. Deletion of exons 
16–19 by Cre causes open reading frame shift and creates a stop codon in exon 20. The resulting Mll4 
KO allele encodes a truncated MLL4 protein lacking the C-terminal ∼4200aa. For genotyping the Mll4 
alleles, allelic PCR was developed as shown in Figure 1A–B. P1:5′-GTTCACTCAGTGGGGCTGTG-3′; P2: 
5′-ATTGCATCAGGCAAATCAGC-3’; P3: 5’-GCAGAAGCCTGCTATGTCCA-3′. Genotyping of Myf5-Cre 
was done by PCR using the following three primers: 5’-CGTAGACGCCTGAAGAAGGTCAACCA-3’, 
5’-CACATTAGAAAACCTGCCAACACC-3’, and 5’-ACGAAGTTATTAGGTCCCTCGAC-3’. PCR amplified 
wild-type (603 bp) and Myf5-Cre allele (400 bp).

All mouse work was approved by the Animal Care and Use Committee of NIDDK, NIH.

Histology and immunohistochemistry
E18.5 embryos were dissected out by Cesarean section and fixed in 4% paraformaldehyde overnight 
at 4°C. The embryos were further dehydrated and embedded in paraffin and sectioned at 7–10 µm 
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with a microtome. H&E staining and immunohistochemistry (IHC) on paraffin sections were done as 
described (Feng et al., 2010). The primary antibodies used for IHC were 1:20 dilution of anti-Myosin 
(MF20; Developmental Studies Hybridoma Bank) and 1:400 dilution of anti-UCP1 (ab10983; Abcam). 
Fluorescent secondary antibodies used were Alexa Fluor 488 goat anti-mouse IgG2b and Alexa Fluor 
555 goat anti-rabbit IgG (Life Technologies, Carlsbad, CA, USA).

Immortalization of primary brown preadipocytes, virus infection, 
adipogenesis and myogenesis assays
Primary brown preadipocytes were isolated from interscapular BAT of E18.5 embryos and were 
immortalized with SV40T-expressing retroviruses pBabepuro-large T as described (Wang et al., 
2010). Adenoviral infection of preadipocytes was done at 50 moi. Adipogenesis of immortalized 
brown preadipocytes and 3T3-L1 white preadipocyte cell line was done as described (Wang et al., 
2013). PPARγ- or C/EBPβ-stimulated adipogenesis and MyoD-stimulated myogenesis were done as 
described (Ge et al., 2002). Myogenesis was induced in near-confluent cells.

qPCR
Total RNA extraction and qRT-PCR were done as described (Cho et al., 2009). Taqman probe 
for Mll3 (assay ID Mm01156965_m1) was from Life Technologies. qRT-PCR of Mll4 was done using SYBR 
green primers: forward 5’-GCTATCACCCGTACTGTGTCAACA-3’ and reverse 5’-CACACACGATACAC 
TCCACACAA-3’. Taqman probes for Pparg1 and Pparg2 and other SYBR green primers for qRT-
PCR have been described (Wang et al., 2013). SYBR green primers for ChIP-qPCR are listed in 
Supplementary file 1B.

ChIP-Seq and RNA-Seq
ChIP was performed by following a protocol from Myers’ laboratory (http://www.hudsonalpha.
org/myers-lab/protocols) with modifications. The cells were crosslinked with 1–2% formaldehyde 
for 10 min at room temperature. Crosslinking reaction was stopped by adding 125 mM glycine. 
The cells were washed with cold PBS twice. 2 × 107 cells were collected in 10 ml Farnham lysis 
buffer (5 mM PIPES pH 8.0/85 mM KCl/0.5% NP-40, supplemented with protease inhibitors) and 
centrifuged at 4,000 g for 5 min at 4°C. Cell pellet was washed with 10 ml Farnham lysis buffer, 
followed by centrifugation. Resulting nuclear pellet was resuspended in 1 ml TE buffer (10 mM 
Tris-Cl pH 7.7/1 mM EDTA, supplemented with protease inhibitors) and sonicated for 17 min (30 s 
on/off cycle). Lysates were supplemented with detergents to make 1X RIPA buffer (10 mM Tris-Cl 
pH 7.7/1 mM EDTA/0.1% SDS/0.1% Na-DOC/1% triton X-100) and centrifuged to remove  
debris. For each ChIP, 6–8 µg antibodies were prebound to 50 µl Dynabeads Protein A (100.02D; 
Life Technologies) overnight at 4°C. Next day, antibody-beads complex was added to chromatin from  
2 × 107 cells and further incubated overnight at 4°C. The beads were washed twice with RIPA 
buffer, twice with RIPA + 0.3M NaCl, twice with LiCl buffer (50 mM Tris-Cl pH 7.5/250 mM LiCl/0.5% 
NP-40/0.5% Na-DOC) and twice with PBS. DNA was eluted and reverse crosslinked in 200 µl elu-
tion buffer (1% SDS/0.1M NaHCO3, supplemented with 20 µg proteinase K) overnight at 65°C. 
DNA was purified by QIAquick PCR Purification Kit (QIAGEN) and quantified. DNA and libraries 
were constructed as described (Wei et al., 2012). All ChIP-Seq and RNA-Seq samples were 
sequenced on Illumina HiSeq 2000.

Computational analysis
Summary of computational analysis
Identification of ChIP-enriched regions was performed using the island approach ‘SICER’ (Zang et al., 
2009). Gene ontology (GO) study was carried out using DAVID (Huang et al., 2009). Motif search 
around MLL4 binding regions was conducted using SeqPos (He et al., 2010).

Illumina pipeline analysis for ChIP-Seq and RNA-Seq data
The sequence reads were of 50bp in length and aligned to reference genome assembly NCBI37/
mm9. The output of the Illumina Analysis Pipeline was converted to browser extensible data  
(BED) files detailing the genomic coordinates of each mapped read. To visualize the data on the 
UCSC genome browser (Karolchik et al., 2008), reads were collected and converted to wiggle 
(WIG) format using in-house script. The numbers of mapped reads are listed in Supplementary 
file 1A.
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Gene expression calculation using RNA-Seq data
For RNA-Seq datasets, we collected only reads that locate on exons as annotated in NCBI Reference 
Sequence Database (RefSeq) for assembly mm9, and calculated reads per kilobase per million 
(RPKM) for each gene as measure of expression level. Genes with RNA-Seq exonic RPKM>1 were 
regarded as expressed. In comparing gene expression levels before (D0, day 0) and during (D2, day 2) 
adipogenesis (or comparing gene expression levels in preadipocyte vs after myogenesis), we set 
a fold change cutoff of 2.5 to identify up-regulated and down-regulated genes. MLL4-dependent 
genes were defined as genes with over 2.5-fold down-regulation in MLL4-deficient cells (Mll3−/−Mll4−/−) 
compared with control cells (Mll3−/−) (Figure 2D,I). Out of 14,902 genes expressed at D0 or D2 in 
adipogenesis, 1,531 were MLL4-dependent. Meanwhile, in the 1,302 up-regulated genes, 588 were 
MLL4-dependent. The p-value for the enrichment of MLL4-dependent genes in up-regulated genes 
was 1.4E−268 using hypergeometric test. The same approach was used for calculating the signifi-
cance of MLL4-dependent induction in myogenesis. Genome-wide, 1,155 out of 16,805 expressed 
genes were MLL4-dependent. On the other hand, 836 out of 2,774 up-regulated genes were MLL4-
dependent. The significance of MLL4-dependency in upregulated genes was p<1E−300 using 
hypergeometric test. GO studies were carried out using DAVID with the whole genome as back-
ground, and for each group of genes the GO terms with p≤10−7 were listed (Figure 2E,J).

Identification of ChIP-enriched regions
To eliminate background noise in ChIP-Seq datasets, we determined ChIP-enriched regions for each 
ChIP-Seq sample using the SICER method (Zang et al., 2009). In particular, to eliminate non-specific 
binding of MLL4 antibody, we compared MLL4 ChIP-Seq sample from MLL4-deficient (Mll3−/−Mll4−/−) 
cells against that from control (Mll3−/−) cells, and kept only the identified MLL4 binding regions with 
enrichment level significantly higher in control cells than in the MLL4-deficient cells, with an estimated 
false discovery rate (FDR) of less than 10−15. The same FDR threshold was also applied to C/EBPα 
and C/EBPβ ChIP-Seq samples when analyzed against the input libraries. For PPARγ ChIP-Seq at D0 
(day 0) and D2 (day 2) of brown adipogenesis, MLL4 ChIP-Seq in C/EBPβ over-expressing brown 
preadipocytes, and MLL4 and MyoD ChIP-Seq in myocytes, the FDR threshold was set to be 10−5 
due to the limited coverage of sequenced reads. For the ChIP-Seq datasets of histone modifications 
(H3K4me1/2/3 and H3K27ac), the window size was chosen to be 200 bp and the FDR threshold was 
chosen to be 10−3. For the ChIP-Seq datasets of MLL4, Pol II, MyoD and adipogenic factors (C/EBPα, 
C/EBPβ, and PPARγ), the window size was chosen to be 50 bp. Another required parameter in SICER, 
gap size, was chosen to be equal to 1 window.

Genome-wide co-localization study
Specific MLL4-enriched regions identified at D0, D2, D7 (day 0, 2, 7) during adipogenesis as well 
as in myocytes were compared, and co-localization was defined as two regions overlapping for at 
least 1bp (Figure 3A–B). All D0 MLL4 regions, D2 MLL4 regions that did not overlap with D0 
regions, D7 MLL4 regions that didn’t overlap with either D0 or D2, and identified MLL4 peaks in 
myocytes but not in preadipocytes, were regarded as emergent MLL4 binding sites. Top 2,000 in 
each group as ranked by FDR against MLL4-deficient control were used later for GO and motif 
analyses. Each of the top 2,000 emergent MLL4 binding sites was assigned to its closest transcrip-
tion start sites (TSS). The resulting gene list was imported into DAVID for GO analysis. The enriched 
GO terms in biological process with p<10−5 were listed (Figure 3D). The same top emergent MLL4 
sites were used as input to SeqPos (He et al., 2010) for motif search. All motifs found with calcu-
lated p<10−10 were listed (Figure 4A). By the same 1bp-overlapping definition of co-localization, 
MLL4 binding sites at D2 were compared with C/EBPα, C/EBPβ, and PPARγ binding sites. Given 
the motif similarity and functional redundancy between C/EBPα and C/EBPβ, we first calculated 
the union of their binding sites and regarded them as C/EBPs (Figure 4B). The heat maps were 
generated with 50 bp resolution and ranked according to the intensity of MLL4 at the center of 
400 bp window (Figure 4C). Using the same approach we checked co-localization between MLL4 
and MyoD in myocytes (Figure 4D–E).

Identification of enhancers and promoters during adipogenesis
By definitions described in Figure 5A, we identified enhancers and promoters along the genome. 
The definitions were applied in a mutually exclusive way, that is, for each genomic region, we first 
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checked whether it was promoter or enhancer (or others), then further pinned it down to active  
or silent ones (Figure 5C). The total length of the all active enhancers was 43% of total length of 
all enhancers and promoters. On the other hand, 9,642 of 11,948 (80.6%) MLL4 binding sites on 
enhancers and promoters were located on active enhancers. Therefore, the significance of MLL4 
enrichment on active enhancers was p<1E−300 using binomial test. Average profiles were plotted 
using the number of ChIP-Seq reads (normalized to the size of each library) in 5 bp bins from the 
center of each regulatory element to 10 kb on both sides. The centers of regulatory elements were 
defined as the corresponding TSSs for promoters and the centers of H3K4me1 enriched regions 
for enhancers (Figure 5B). Furthermore, the active adipogenic enhancers were defined as C/EBPα, 
C/EBPβ, and PPARγ binding sites that were on active enhancers. Again C/EBP refers to the union 
of C/EBPα and C/EBPβ.

Genome-wide, out of the 26,348 C/EBP sites at D2, 8,235 (31.3%) were MLL4+. On the other hand, 
out of the 10,061 C/EBP sites on active enhancers, 5,762 (57.3%) were MLL4+. The significance for the 
preferential enrichment of the co-localization of MLL4 with C/EBP on active enhancers was p<1E−300 
using hypergeometric test. Similarly, genome-wide, out of the 6,148 PPARγ sites at D2, 3,461 (56.3%) 
were MLL4+. On the other hand, out of the 3,182 PPARγ sites on active enhancers, 2,544 (80.0%) 
were MLL4+. The significance for the preferential enrichment of co-localization of MLL4 with PPARγ 
on active enhancers was p<1E−300 using hypergeometric test.

The heat maps were generated with 50 bp resolution and ranked according to the co-localization 
of C/EBPα, C/EBPβ, and PPARγ binding sites (Figure 5D). The 6,342 adipogenic enhancers that 
co-localize with MLL4 were used to profile various histone modifications, Pol II and MED1 in both 
control and MLL4-deficient cells (Figure 7A). Each active adipogenic enhancer was assigned to 
the nearest TSS within 1,000 kb, and the corresponding fraction of genes that were induced  
(fold change > 2.5) at D2 of adipogenesis and gene expression fold change (in base 2 logarithm) 
in KO cells were plotted using box plot, with outliers not shown to highlight the majority (Figure 7B–C). 
In Figure 7B,C, we classified genes associated with adipogenic enhancers into three mutually 
exclusive groups: C/EBP+PPARγ−, C/EBP−PPARγ+, or C/EBP+PPARγ+. A gene might be simultaneously 
associated with adipogenic enhancers with different patterns of TF occupation (i.e., C/EBP+PPARγ−, 
C/EBP−PPARγ+, or C/EBP+PPARγ+), resulting in ambiguity in designation. To resolve this ambiguity, we 
adopted the following rule: a promoter (and the corresponding gene) was categorized as C/EBP+PPARγ+ 
if at least one of its associated adipogenic enhancer was C/EBP+PPARγ+. A promoter was catego-
rized as C/EBP+PPARγ− or C/EBP−PPARγ+, if none of the associated adipogenic enhancer was 
C/EBP+PPARγ+, but at least one of them is C/EBP+PPARγ− or C/EBP−PPARγ+. Similarly, a promoter 
is categorized as MLL4− if none of the associated adipogenic enhancer is MLL4+.

Identification of recovered C/EBPβ+ active adipogenic enhancers in C/EBPβ 
over-expressing preadipocytes
Among the 4,965 C/EBPβ+MLL4+ active enhancers identified at D2 of adipogenesis, we found 
3,309 of them had C/EBPβ binding in C/EBPβ over-expressing preadipocytes. 666 of 3,309 had 
MLL4 binding as well (Figure 8B). 591 of them also had H3K4me1 and H3K27ac enriched and were 
regarded as recovered C/EBPβ+MLL4+ active enhancers (Figure 8C). Based on the MLL4 enrich-
ment in vector-expressing preadipocytes, we grouped recovered C/EBPβ+MLL4+ active enhancers 
into two categories, with MLL4 in vector-expressing preadipocytes (premarked) and without MLL4 
in vector-expressing preadipocytes (de novo). We computed C/EBPβ, MLL4, H3K4me1 and 
H3K27ac enrichment intensities (as by normalized ChIP-Seq read count) in control and MLL4-
deficient preadipocytes, with or without C/EBPβ over-expression (Figure 8C). We found that in 
both groups, H3K4me1 and H3K27ac were induced in C/EBPβ over-expressing cells, and the induction 
was MLL4-dependent: in using MLL4-deficient cells, over 95% of H3K4me1 islands corresponding 
to the recovered C/EBPβ+ active adipogenic enhancers exhibited significant (FDR < 10−3) decreased 
enrichment (Figure 8D).

Identification of enhancers and promoters during myogenesis
By definitions described in Figure 5A, we identified enhancers and promoters along the genome. 
Then we checked the binding profile of MLL4 and MyoD on genomic regulatory elements to reveal 
the preferential binding pattern. Furthermore, we identified MyoD+ active enhancers, and gener-
ated heat maps for MyoD and MLL4 at 50bp resolution (Figure 5—figure supplement 1A-C). 
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Genome-wide, 10,699 out of the 30,496 MyoD binding sites were MLL4+. On the other hand, 5,228 
out of 8,091 MyoD binding sites on active enhancers were MLL4+. The significance for the prefer-
ential enrichment of co-localization of MLL4 with MyoD on active enhancers was p<1E−300 using 
hypergeometric test. The 5,228 active myogenic enhancers that co-localized with MLL4 were used 
to profile various histone modifications in both control and MLL4-deficient cells (Figure 7—figure 
supplement 2A). Each active myogenic enhancer was assigned to the nearest TSS within 1,000 kb, 
and the corresponding gene expression fold change (in base 2 logarithm) in MLL4-deficient cells 
were plotted using box plot, with outliers not shown to highlight the majority (Figure 7—figure 
supplement 2C).
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