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Abstract Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable 
properties under varying environmental conditions. However, the mechanisms that regulate ion channels 
abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes 
a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates neuronal excitability via a 
protein-independent mechanism. We demonstrate that the mRNA 3′UTR of ppk29 affects neuronal 
firing rates and associated heat-induced seizures by acting as a natural antisense transcript (NAT) that 
regulates the neuronal mRNA levels of seizure (sei), the Drosophila homolog of the human Ether-à-go-go 
Related Gene (hERG) potassium channel. We find that the regulatory impact of ppk29 mRNA on sei is 
independent of the sodium channel it encodes. Thus, our studies reveal a novel mRNA dependent 
mechanism for the regulation of neuronal excitability that is independent of protein-coding capacity.
DOI: 10.7554/eLife.01849.001

Introduction
The neuronal action potential is sensitive to abrupt changes in environmental temperatures (Peng 
et al., 2007; Buzatu, 2009). Thus, the failure of neurons to adjust their physiological properties in 
response to a fast rise in temperature can lead to neurological disorders such as febrile seizures (Bassan 
et al., 2013). Previous theoretical and experimental studies suggested that one of the main mechanisms 
for maintaining normal neuronal excitability, circuit integrity, and behavioral robustness under varying 
environmental temperatures depends on changes in the abundance and membrane half-life of various 
voltage-dependent ion channels (Marder and Prinz, 2003; O’Leary et al., 2013; Rinberg et al., 2013; 
Rosati and McKinnon, 2004; Tang et al., 2010, 2012). However, the actual molecular mechanisms 
that mediate these processes are largely unknown.

Several whole genome transcriptomics studies revealed that natural antisense non-coding transcripts 
(NATs) are prevalent in eukaryotes (Lapidot and Pilpel, 2006; Okamura et al., 2008). Although the func-
tion of the majority of NATs is still unknown, evidence suggests that at least some cis-NATs are likely to act 
as regulatory RNAs of protein-coding transcripts (Borsani et al., 2005; Okamura et al., 2008; Watanabe 
et al., 2008), including a recent report about a non-coding NAT that regulates a neuronal potassium 
channel (Zhao et al., 2013). Furthermore, some NATs have been shown to play a role in the physiological 
response to various stresses in plants (Borsani et al., 2005; Katiyar-Agarwal et al., 2006). Whether NATs 
play a role in the post-transcriptional regulation of ion channels and neuronal excitability was unknown.

Results and discussion
ppk29 and sei are convergently transcribed ion channels
The response of neurons to acute heat stress is likely to require rapid changes in ion channel func-
tions. We hypothesized that NATs play a role in the posttranscriptional regulation of ion channel 
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function in response to stress. Therefore, we screened the well-annotated genome of the fruit fly 
Drosophila melanogaster to identify known excitability-related ion channels that might be regulated 
by endogenous NATs.

Using this approach, we found that the gene seizure (sei), which encodes the sole fly homolog of 
the human Ether-à-go-go Related Gene (hERG) inward rectifying K+ channel (Titus et al., 1997; Wang 
et al., 1997), is located downstream of the degenerin/epithelial sodium channel (DEG/ENaC) ppk29 
(Liu et al., 2012; Thistle et al., 2012; Zelle et al., 2013). The two genes are convergently transcribed 
on opposite DNA strands, and have complementary 3′UTRs that overlap by 88 nucleotides, which we 
confirmed by fully sequenced cDNAs deposited in NCBI and 3’RACE analysis (Figure 1A). The two 
opposing physiological functions of sei and ppk29 (K+ and Na+ channels respectively), and the realiza-
tion that their transcripts could form natural sense/antisense RNA duplexes (Katayama et al., 2005; 
Czech et al., 2008) led us to hypothesize that the mRNAs of sei and ppk29 may regulate each other 
via the formation of natural endogenous dsRNAs. Since mRNA-dependent interaction between sei 
and ppk29 requires that the two genes will be co-transcribed we first analyzed expression data from 
the modENcode (Cherbas et al., 2011) and the FlyExpress (Robinson et al., 2013) projects. Although 
previous studies suggested that ppk29 function might be a sensory-specific (Liu et al., 2012; Thistle 
et al., 2012), our analysis revealed that sei and ppk29 are co-expressed in neuronal cell lines (Figure 
1—figure supplement 1A) and are both enriched in the fly central nervous system (Figure 1—figure 
supplement 1B). In situ hybridization in the fly brain also demonstrated neuronal co-expression 
(Figure 1B–D). Furthermore, we used cell-specific mRNA enrichment (Thomas et al., 2012) to dem-
onstrate that both genes are co-expressed in motor neurons in vivo (Figure 1E). Together, these 
data support spatial co-expression of sei and ppk29.

Previous studies suggested that transcriptional changes in ion channel transcript abundance could 
play a role in the adaptation of neurons to changes in environmental temperatures (Marder, 2011). 
Thus, as a first test of our hypothesis that these two ion channels might interact antagonistically to 

eLife digest Neurons communicate with one another via electrical signals known as action 
potentials. These signals are generated when a stimulus causes sodium and potassium ion channels 
in the cell membrane to open, leading to an influx of sodium ions, followed by an efflux of 
potassium ions. Changes in temperature affect the rate at which ion channels open and close, and 
thus affect how easy it is for a stimulus to trigger an action potential. In response to a sudden rise in 
temperature, neurons must adjust the number of ion channels in their membranes to ensure that 
they do not become hyperexcitable, which could result in epilepsy.

Now, Zheng et al. have revealed one possible mechanism for how neurons do this. In the fruit fly, 
Drosophila, a gene for a potassium channel is found on the same chromosomal location as a gene 
for a sodium channel, and some of the genetic elements that regulate the expression of these two 
genes even overlap. However, the genes are on opposite strands of the DNA double helix. This 
means that when the genes are transcribed to produce molecules of messenger RNA (mRNA), 
which is usually single stranded, some of the mRNA molecules will pair up to form double-stranded 
mRNA molecules. This is significant because such RNA ‘duplexes’ have been shown to inhibit the 
translation of conventional single-stranded mRNA molecules into proteins, or to lead to their 
complete degradation.

Zheng et al. found that flies with mutations in the potassium channel gene display seizures in 
response to sudden changes in temperature. However, insects with mutations in the sodium channel 
gene are not affected because, surprisingly, they have a higher than expected number of potassium 
channels. It turns out that the mutant sodium channel mRNA molecules are unable to form RNA 
duplexes with potassium channel mRNA molecules: these duplexes would normally limit the number 
of potassium channels so, in their absence, the number of potassium channels increases, and this 
protects the flies from seizures.

Zheng et al. also uncovered a novel mechanism by which mRNA molecules can regulate gene 
expression independent of their role as templates for proteins. Further work is required to 
determine whether this mechanism is also present in other organisms, including humans.
DOI: 10.7554/eLife.01849.002
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Figure 1. sei and ppk29 are co-expressed in the nervous system. (A) The chromosomal architecture of sei and 
ppk29 (2R:19,934,934- 19,944,660). Coding exons are in black. 3′ and 5′ untranslated regions (UTRs) are in gray. 
AY058350, fully sequenced sei cDNA; BT029266, fully sequenced ppk29 cDNA. Black triangles represent 
Figure 1. Continued on next page
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regulate the neuronal response to heat we measured the relative expression levels of both genes in 
wild type animals that were adapted to variable environmental temperatures. In agreement with our 
hypothesis, we found that when animals adapted to high temperature (37°C) the transcripts levels of 
sei went up and ppk29 went down relative to their levels at 25°C. In contrast, adaptation to colder 
temperature (13°C) led to an opposite effect on the expression of both genes (Figure 2). We conclude 
that both sei and ppk29 are likely to play opposite roles in the regulation of neuronal activity in 
response to changes in ambient temperature, and that the possible interaction between these two 
genes is physiologically relevant.

Mutations in ppk29 and sei have opposing effects on the behavioral 
and neuronal responses to heat stress
The data presented in Figure 2, and previous reports that indicated that mutations in sei are highly 
sensitive to heat stress (Titus et al., 1997; Wang et al., 1997), led us to hypothesize that mutations in 
ppk29 might lead to a protection from heat stress. Based on our model presented in Figure 6, such a 
protective effects for ppk29 mutations may arise from the loss of sodium currents or alternatively due 
to the upregulation of SEI-dependent potassium currents. As was previously reported, we found that 
multiple independent mutations in sei lead to rapid seizures and paralysis in response to acute heat 
stress (Figure 3A). In contrast, flies carrying independent insertional alleles of ppk29 demonstrated 

protection from the effects of heat stress relative 
to wild type and sei mutant animals (Figure 3A, 
Figure 3—figure supplement 1A,B; ppk29P1 and 
ppk29P2 are described in Figure 1A). These data 
confirmed our hypothesis that sei and ppk29 play 
opposing roles in the neuronal response to heat 
stress, and are likely playing an important adaptive 
role in environmentally induced neuronal plasticity. 
We also observed contrasting behavioral responses 
to heat stress in animals that carry single copy 
insertional alleles of sei or ppk29 in trans with a 
chromosomal deficiency that covers both loci 
(Figure 3—figure supplement 1C,D). These data 
indicate that the effects of either mutation on 
behavior are specific and not due to other back-
ground mutations.

Previous studies indicated that the temperature-
sensitive phenotype of sei mutants is associ-
ated with heat-induced neuronal hyperexcitability 
(Kasbekar et al., 1987). Therefore, we hypothe-
sized that mutations in ppk29 will lead to a 
hypoexcitable neuronal phenotype under heat 
stress. We found that the spontaneous neuronal 
activity of larval motor neurons is not different 
between ppk29, sei and wild type animals at 25°C. 

transposons insertion sites. Arrows represent direction of transcription. Yellow boxes, sei 3′RACE product. Green 
boxes, ppk29 3′RACE product. (B) In situ hybridization shows sei and ppk29 are co-expressed in neuronal tissues. 
Antisense riboprobes. Scale bar, 100 μm. (C) Higher magnification of white box in B. White arrowheads, optic lobe 
neurons. Red, ppk29 signal; Green, sei signal; Blue, DAPI nuclear stain. Scale bar, 10 μm. (D) Sense riboprobe 
controls. Scale bar, 100 μm. (E) Translating Ribosome Affinity Purification (TRAP) of mRNAs from larval motor 
neurons shows that sei and ppk29 are co-enriched in these cells relative to total body RNA. mRNA levels for each 
gene were measured with Real-Time qRT-PCR. N = 4 per gene. **p<0.01.
DOI: 10.7554/eLife.01849.003
The following figure supplements are available for figure 1:

Figure supplement 1. ppk29 and sei are co-expressed in Drosophila neuronal tissues. 
DOI: 10.7554/eLife.01849.004

Figure 1. Continued

Figure 2. sei and ppk29 transcripts are inversely 
regulated in response to changes in ambient temperature. 
(A) Temperature adaptation protocol. Total time from 
25–37°C or 25–13°C is 7 hr. (B) Real-time qRT-PCR data. 
Different letters above bars represent statistically 
significant post hoc analyses (Tukey’s, p<0.05,  
N = 4 per group).
DOI: 10.7554/eLife.01849.005
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In contrast, at 38°C wild type neurons show a small but significant increase in neuronal activity, while 
sei mutant neurons become hyperexcitable. In contrast to sei null and wild type animals, ppk29 mutants 
are unable to increase neuronal firing rates in response to heat stress, which is consistent with a hypoex-
citability phenotype (Figure 3B,C). We also confirmed that the larval excitability phenotypes of sei and 
ppk29 mutants are correlated with behavior. As in our neurophysiological studies, we found that at 
25°C all genotypes show normal larval locomotion (Videos 1–3). However, exposure to 38°C lead to 

Figure 3. RNAi-dependent knockdowns of ppk29 and sei expression lead to opposing effects on heat-induced paralysis. (A) The behavioral response to 
heat stress in sei and ppk29 mutants. Left panel, cumulative paralyzed flies over time. Right panel, same data as in left panel presented as time to total 
paralysis (n = 16, p<0.001, one-way ANOVA). Different letters above bars represent significantly different groups (Tukey post hoc analysis, p<0.05). 
(B) Representative extracellular recordings from motor neurons from each genotype at 25°C and 38°C. (C) Summary neurophysiological data (n = 
8-10 per genotype, **p<0.01, ***p<0.001, one-way ANOVA with a Tukey post-hoc test). (D) Neuronal downregulation of sei or ppk29 with gene-specific 
RNAi constructs. Data presented as in A (n = 16, p<0.001, one-way ANOVA). (E) sei and ppk29 mRNA levels in sei and ppk29 mutant lines. Analyses were 
by relative real-time quantitative RT-PCR analyses. Left panel, sei mRNA. Right panel, ppk29 mRNA (n = 4 per genotype, p<0.05, one-way ANOVA). 
(F) sei and ppk29 mRNA levels in sei and ppk29 RNAi-knockdown lines. Analyses as in E (n = 4 per genotype, p<0.05, one-way ANOVA). Data are 
presented as mean ± SEM. Different letters above bars represent significantly different groups (Tukey post hoc analysis, p<0.05).
DOI: 10.7554/eLife.01849.006
The following figure supplements are available for figure 3:

Figure supplement 1. ppk29 mutations confer protection from heat-induced paralysis. 
DOI: 10.7554/eLife.01849.007

Figure supplement 2. Mutations in sei and ppk29 do not affect gross locomotion at room temperature. 
DOI: 10.7554/eLife.01849.008
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an abnormal seizure-like locomotion in wild type 
animals (twitching and rolling). This phenotype 
is significantly higher in sei mutant and RNAi 
knockdown larvae but completely absent in ppk29 
mutant larvae (Figure 3—figure supplement 1E,F; 
Videos 4–6). We conclude that sei and ppk29 
affect the behavioral sensitivity to heat stress via 
the contrasting regulation of neuronal excitability 
in both larval and adult stages.

Similarly to the mutant adult phenotypes, neu-
ronal RNAi-dependent knockdown of sei and 
ppk29 mRNAs with the neuronal elav-GAL4 
driver lead to contrasting phenotypes that are 
identical to the phenotypes observed in mutants 
(Figure 3D). These data demonstrate that the 
observed phenotypes are neuronal-specific and 
suggest that quantitative changes in neuronal 
mRNA levels of either sei or ppk29 are sufficient 
to induce high-sensitivity or protective pheno-
types respectively. Analyses of mRNA levels in 
mutants and RNAi-expressing animals support 
the hypothesis that downregulation of ppk29 
mRNA is associated with increased sei mRNA 
levels, but the converse effect is not evident 
(Figure 3E,F). Together, these data demonstrate 
that the regulatory interaction between the mRNAs 
of sei and ppk29 is not symmetric; changes in 
ppk29 mRNA level downregulate sei mRNA, but 
not the other way around. We also observed con-
trasting phenotypes when we expressed the same 
gene-specific RNAi constructs in adult neurons 
only by using the hormonally-induced GeneSwitch 
version of the elav-GAL4 (Osterwalder et al., 
2001; Figure 3—figure supplement 1G). These 
data show that the contrasting effects of sei and 
ppk29 mRNA dowregulation on the neuronal 
response to heat stress are physiological rather 
than developmental. We did not observe any 
general locomotion defects in sei or ppk29 mutants 
at 25°C (Figure 3—figure supplement 2).

Together, data presented in Figures 2 and 3 
suggest that the protective effect of mutations in 
ppk29 are symptomatic in the sense that they lead 
to a pre-stress increase in sei transcript levels, which 
leads to a higher ability of the nervous system to 
deal with the acute heat stress even without prior 
adaptation to slow temperature increase.

The Protective effect of ppk29 
mutations are mediated by sei 
channel activity
Although our data suggest that the contrasting 
heat-induced phenotypes of sei and ppk29 

mutants are possibly mediated via mRNA-dependent interactions, they do not exclude the possibility 
that the two channels also interact at the protein level. Therefore, we investigated whether the protection 
from heat stress in ppk29 mutants is mediated by the loss of PPK29 channel activity or the up-regulation 

Video 1. Wild type larva at 25°C.
DOI: 10.7554/eLife.01849.009

Video 2. seiP larva at 25°C.
DOI: 10.7554/eLife.01849.010

Video 3. ppk29P1 larva at 25°C.
DOI: 10.7554/eLife.01849.011
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of sei mRNAs (As shown in Figure 3E,F). To test 
this we first blocked SEI channel activity in wild 
type and ppk29 mutant animals by using two dif-
ferent hERG channel blockers (Afrasiabi et al., 
2010). These studies reveal that blocking SEI 
activity in wild type animals phenocopies the heat 
sensitivity phenotype of the sei mutation, which 
indicate that the drugs are successfully blocking 
SEI channels in the fly. Similar to wild type animals, 
blocking SEI activity in ppk29 mutants reduce their 
resistance to heat stress to a level comparable to 
wild type animals in a dose-dependent manner 
(Figure 4A, Figure 4—figure supplement 1). 
These data are in agreement with the expression 
data (Figure 3E,F), and strongly indicate that the 
ppk29-mediated protection from heat stress is 
due, at least in part, to increased SEI K+ channel 
activity rather then the loss of ppk29-dependent 
Na+ currents.

The ppk29 mRNA affects sei 
function by serving as a natural 
antisense regulatory RNA
Our hypothesis predicts that the 3’UTR of ppk29 
can regulate sei function by acting as a natural 
antisense RNA. To test directly this hypothesis we 
generated transgenic fly lines that can express 
the cDNAs of either sei or ppk29 with or without 
their endogenous 3′UTR, or their 3′UTRs alone 
(Figure 4B) by using the UAS-GAL4 system. 
Remarkably, we found that the expression of the 
ppk29 endogenous 3′UTR alone or the cDNA with 
the 3′UTR is sufficient to rescue the ppk29 muta-
tion. In contrast, expression of ppk29 cDNA alone 
is not sufficient to completely rescue the pheno-
type of the ppk29 mutation (Figure 4C). In agree-
ment with the pharmacological studies, these 
data demonstrate that the main protective  
effect of ppk29 mutations is mediated via 3′UTR-
dependent regulation of SEI, independent of 
PPK29 channel functions. Nevertheless, we also 
found that a complete rescue of the ppk29 
mutation phenotype require the expression of 
the ppk29 cDNA with its endogenous 3′UTR. 
Therefore, PPK29 channel activity may also con-
tribute neuronal excitability independent of sei 
regulation. In addition, since the observed effects 
of ppk29 transgenes on sei function are in trans, 
these data show that the two genes can interact at 
the transcript level independent of their chromo-
somal proximity. Unlike for ppk29, the neuronal 
expression of sei cDNA with or without its endog-
enous 3′UTR, but not the 3′UTR alone, is sufficient 

to rescue the sei mutation (Figure 4D). These data further show that sei is the focal physiological 
element in the neuronal response to heat stress, and that the mRNA 3′UTR-dependent interaction 
between sei and ppk29 is not symmetric.

Video 4. Wild type larva at 38°C.
DOI: 10.7554/eLife.01849.012

Video 5. seiP larva at 38°C.
DOI: 10.7554/eLife.01849.013

Video 6. ppk29P1 larva at 38°C.
DOI: 10.7554/eLife.01849.014
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We next investigated the role of ppk29 3′UTR in regulating sei mRNA expression and heat-induced 
seizures and paralysis. Consistent with our model, neuronal overexpression of sei cDNA (with or with-
out its endogenous 3′UTR but not the 3′UTR alone) is sufficient to protect animals from heat stress as 
in ppk29 mutants (Figure 5A). We also found that neuronal overexpression of a ppk29 cDNA with its 
endogenous 3′UTR or ppk29 3′UTR alone, but not the cDNA alone, is sufficient to induce heat sensi-
tivity as in sei mutants (Figure 5B). In agreement with the behavioral data, overexpression of the 
ppk29-3′UTR is sufficient to reduce endogenous sei mRNA levels but overexpression of sei-3′UTR 
alone does not have a similar effect on ppk29 (Figure 5C). These data demonstrate that elevated 
levels of ppk29-3′UTR alone in trans are sufficient to affect neuronal physiology by downregulating sei 
mRNA levels. Expression of the ppk29 related constructs specifically in the adult nervous system by 

Figure 4. The Protective Effect of ppk29 Mutations is Mediated by SEI Channel Activity. (A) Blocking SEI channel 
activity in ppk29 mutants with the hERG channel blocker Cisapride eliminate the protective effect in a dose dependent 
manner (n = 8 per genotype, p<0.01, two-way ANOVA; genotype, dose, and genotype by dose showed significant 
effects, p=<0.001). (B) Schematic representation of transgenic constructs. (C) Neuronal expression of ppk29-3′UTR 
is sufficient to rescue the majority of the protective effect of the ppk29 mutation (n = 12, p<0.01, one-way ANOVA). 
Data are presented as mean ± SEM. Different letters above bars represent significantly different groups (Tukey post 
hoc analysis, p<0.05). (D) Neuronal expression of sei cDNA with or without its endogenous 3′UTR, but not the 
3′UTR alone, is sufficient to rescue the sei mutation (n = 12, p<0.001, one-way ANOVA).
DOI: 10.7554/eLife.01849.015
The following figure supplements are available for figure 4:

Figure supplement 1. The protective effect of ppk29 mutations depends on SEI K+ channel activity. 
DOI: 10.7554/eLife.01849.016
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using the GeneSwitch elav-GAL4 driver demonstrate that the observed effects of ppk29-3′UTR over-
expression on sei function and behavior are physiological and not developmental (Figure 5D). Thus, 
our data prove that downregulation of sei expression leads to neuronal heat sensitivity while increased 
sei expression leads to a protection, and that the relative abundance of sei transcripts in neurons is 
affected by the expression levels of ppk29.

The mRNA-dependent interaction between ppk29 and sei depends on 
the canonical endogenous siRNA pathway
The above data show that ppk29 mRNA can serve as a regulatory antisense RNA in addition to its 
capacity to encode for a DEG/ENaC subunit. The processing of endo-siRNAs depends on Dicer2 
(Dcr-2) in flies (Czech et al., 2008). Thus, we investigated whether the regulatory impact of ppk29-3′UTR 
on sei mRNA levels and behavior depends on the RNAi machinery. We find that in the background of 

Figure 5. ppk29-dependent regulation of sei depends on the canonical RISC pathway. (A) Neuronal overexpression of sei cDNA with or without its 
endogenous 3′UTR in wild type animals leads to a protection from heat-induced paralysis (n = 12, p<0.001, one-way ANOVA). (B) Neuronal overexpression 
of the ppk29 cDNA with its endogenous 3′UTR or the 3′UTR alone, but not the ppk29 cDNA lone, is sufficient to induce sei mutant-like heat sensitivity 
phenotype (n = 12, p<0.001, one-way ANOVA). (C) Real-time qRT-PCR analyses of sei and ppk29 mRNA level. Overexpression of ppk29 cDNA with its 
3′UTR or the 3′UTR alone, but not the cDNA alone, is sufficient to downregulate endogenous sei mRNA levels (left panel) but not conversely (right panel) 
(n = 4, p<0.05, one-way ANOVA). (D) Adult-specific neuronal overexpression of ppk29-3′UTR with the hormone inducible GeneSwitch elav-GAL4 is 
sufficient to induce sei mutant-like phenotype (n = 12, ***p<0.001; two-way ANOVA, genotype, RU486, and their interaction are significant, p=<0.001). 
(E and F) The effect of ppk29 3′UTR overexpression on heat sensitivity and sei mRNA downregulation is abolished in the Dcr-2 mutant background (n = 12, 
one-way ANOVA). (F) Real-time qRT-PCR (n = 4, NS, one-way ANOVA). Data are presented as mean ± SEM. Different letters above bars represent significantly 
different groups (Tukey post hoc analysis, p<0.05).
DOI: 10.7554/eLife.01849.017
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the Dcr-2 mutation neuronal overexpression of the ppk29-3′UTR has no effect on the behavioral 
response to heat stress (Figure 5E) or on the expression levels of sei (Figure 5F). These data demon-
strate that the regulatory function of ppk29-3′UTR depends on the endogenous siRNA pathway.

The finding that ppk29 can regulate sei mRNA levels via the canonical siRNA pathway may also explain 
why the mRNA 3′UTR-dependent interaction between sei and ppk29 is not symmetric. Recent studies 
of the molecular mechanism that underly the specificity of the RNAi machinery indicate that the protein 
complex that mediate the recognition of the target RNA by the short dsRNA are not symmetrical. Thus, via 
mechanisms that are not fully understood, RISC treats only one of the strands as a guide (Tomari et al., 
2004; Rand et al., 2005; Betancur and Tomari, 2012; Noland and Doudna, 2013). It is likely that a similar 
mechanism is at play here. Our data indicate that when forming siRNA duplexes, ppk29 3′UTR is the 
preferred guide strand during RISC loading and the subsequent mRNA target identification.

Concluding remarks
Here we describe a novel mechanism for the regulation of ion channel functions and neuronal excita-
bility via a natural antisense mRNA (Figure 6). While this is a novel mechanism, it is by no means the 
only known RNA-dependent mechanism for the regulation of ion channel functions. For example, the 
double-stranded RNA helicase maleless (mle) regulates the Drosophila voltage-gated sodium channel 
paralytic (para) via A-to-I RNA editing. Mutations in mle lead to aberrant editing of para, splicing 
errors, and subsequent low channel activity (Reenan et al., 2000). Other examples include the puta-
tive transcription factor down and out (dao), which seem to affect sei transcription levels (Fergestad 
et al., 2010), the potassium-independent effects of the sei-related mammalian EAG potassium channel 
on cellular signaling (Hegle et al., 2006), and other diverse mechanisms for the co-regulation of various 
ion channels (MacLean et al., 2005; Ransdell et al., 2013).

It is unlikely that the type of interaction we have identified between the mRNAs of sei and ppk29 is 
unique. Bioinformatic analyses of genome sequences show that at least two of the three fly and three 
out of the eight human eag-like (KCNH-type) channels are organized in a chromosomal architecture 
that is similar to that of sei and ppk29 (Table 1). The functional diversity of the converging genes in each of 
the pairs we uncovered suggest that, like in the case of sei/ppk29, the actual protein identity is secondary 
to the mRNA level interactions. However, to conclusively test this hypothesis will require additional 
experimental molecular and biochemical analyses of these loci in the fly and mammalian systems.

Our findings also indicate that the regulatory interaction between sei and ppk29 may play a role 
in the homeostatic response to slow changes in environmental temperature (Figure 2). However, our 

Figure 6. Cartoon depicting a model for the molecular interaction between sei and ppk29. The chromosomal 
organization of these two genes suggest they could generate endogenous siRNA by convergent transcription. (I) 
The complementary 3′UTRs of sei and ppk29 mRNAs form a dsRNA. (II) Dicer-2 cleaves dsRNAs into siRNAs. (III) 
The loaded RISC complex targets sei transcripts for degradation via the canonical siRNA pathway.
DOI: 10.7554/eLife.01849.018
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current genetic and transgenic tools make it im-
possible for us to completely disentangle the 
direct effects of temperature changes on sei and 
ppk29 transcription and the indirect effects via 
the interactions of their mRNAs. Thus, more 
studies will be needed to further establish ppk29 
mRNA as a homeostatic factor, beyond its effects 
on the acute heat response.

In contrast to the linear simplicity of the ‘cen-
tral dogma of molecular biology’ (Crick, 1970), 
we now know that the true molecular landscape 
of cells is complex and far from linear. In this 
regard, our studies provide an additional layer of 
regulatory complexity, and support the idea that 
mRNAs, which are typically thought to solely act 
as the template for protein translation, can also 
serve as regulatory RNAs, independent of their 

protein-coding capacity. Thus, the abundance of convergent transcription of protein-coding genes in 
eukaryotic genomes suggests that many other mRNAs might serve dual functions that are not neces-
sary associated with the same cellular or physiological processes. Furthermore, although the phenom-
enon of mRNA-dependent interaction between the two genes we describe here occurs in cis (Figure 6), 
we currently have no reason to assume that similar interactions between RNAs cannot occur in trans 
as well. Consequently, it is likely that some of the evolutionary changes observed in mRNAs, including 
those that are considered ‘neutral’, should be re-evaluated in light of the possible regulatory function 
that some mRNAs might exert independently of the proteins they encode.

Materials and methods
Fly strains
Flies (Drosophila melanogaster) were raised on standard cornmeal-agar food at 25°C and 60% relative 
humidity with a 12 hr light: dark cycle. Unless stated differently, the w1118 strain was used a ‘wild type’. 
In our hands, the heat-induced behavior and physiology of these flies were not different from the 
Canton-S strain. The original stocks for ppk29P1 and seiP were obtained from the Bloomington Stock 
Center (Stock No. 19016, and 21935). The ppk29P2 stock (f04205) was from the Exelixis collection at 
Harvard Medical School. All insertional alleles used in our studies were backcrossed into the w1118 
background for six generation. The seits1 EMS-allele was from the Ganetzki lab (U of Wisconsin). The 
deficiency lines Df(2R)BSC136 and Df(2R)BSC652 (9424 and 25742), elav-GAL4; UAS-Dicer2 (25750), 
UAS-ppk29RNAi (27241), elav-Gal4 (33805) ,elav-GeneSwitch-GAL4 (43642) and Dicer-2 mutant (32064) 
were from the Bloomington Stock Center (stock no.). UAS-seiRNAi was from VDRC (v3606GD).

Transgenic constructs
The transgene seiΔ3′UTR was generated by amplifying sei coding sequence (variant RA, NP_476713) 
with primers 5′-AAAAGCGGCCGCATGTCCCACAAATCTTGCGT-3′ and 5′-AAAATCTAGACTAATT
ATTATTATCGAACAAGTCAAGGTG-3′ from cDNA clone GH12235. The transgene sei-3′UTR was 
generated by amplifying the same sei coding sequence plus its 3′UTR (sei-RA, length = 95) with primers 
5′-AAAAGCGGCCGCATGT-CCCACAAATCTTGCGT-3′ and 5′-AAAATCTAGATTTTCGGTTAGGACC
TTTATTGC-3′. The transgene ppk29Δ3′UTR was generated by amplifying ppk29 coding sequence 
(variant PD, NP_001097442) with 5′-AAAAGCGGCCGCATGTGGCGGAAGTCAGTA-ATG-3′ and 
5′-AAAATCTAGACTAACCGAAAATCATGGTCTTGA-3′ from cDNA clone IP06558. The transgene 
ppk29-3′UTR was generated by amplifying the same ppk29 coding sequence plus its 3′UTR (ppk29-RD, 
length = 112) with primers 5′-AAAAGCGGC-CGCATGTGGCGGAAGTCAGTAATG-3′ and 5′-AAATCT
AGATTGACTTGTTCGATAAT-AATAATTAGGGC-3′.  The transgene GFP-3′UTRsei was generated by 
amplifying the EGFP ORF from the pEGFP-N3 vector with primers 5′-AAAAGCGGCCGCATGGTGA-
GCAAGGGCGA-3′ and 5′-CTTGTGCACAAATAAATAAGATTCACTTGTACAGCTCGT-CCATG-3′ and 
the sei-3′UTR from cDNA clone GH12235 with primers 5′-CATGGACG-AGCTGTACAAGTGAGGC
TCACTTATGCTCGCTCAATCCGAATTATCTTATTTATTTGTGCACAAGCTGTTGCGAGGCTAAAGAG-3′ 

Table 1. Fly and human eag-like channels that 
are possibly regulated via convergent 
transcription with an unrelated mRNA

Species eag-like gene Converging gene

Drosophila sei ppk29

eag hiw

Human KCNH1 HHAT

KCNH3 MCRS1

KCNH7 GCA

Please note that the converging genes are functionally 
diverse, which suggest that their protein identities 
might not play a role in their regulatory functions.
DOI: 10.7554/eLife.01849.019
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and 5′-AAAATCTAGATTTTCGGTTAGGA-CCTTTATTGCTTTTCGCTCTTTAGCCTCGCAACAGCTTGTGC
ACAAATAAATAAGAT-3′ followed by PCR fusion of the two DNA fragments. The transgene mCherry-
3′UTRppk29 was generated by amplifying the mCherry ORF from the pCAMBIA-1300 vector with primers 
5′-AAAAGCGGCCGCATGGTGAGCAAGGGCGA-3′ and 5′-TAAAGAGCGAA-AAGCAATAAAGGTCTT
ACTTGTACAGCTCGTCCATGC-3′ and ppk29-3′UTR from cDNA clone IP06558 with primers 5′-GCA
TGGACGAGCTGTACAAGTAAGACCTTTATTGCTTTTCGCTCTTTAGCCTCGCAACAGC 
TTGTGCACAAATAAATAAGATAATTCGGATTG-3′ and 5′-AAAATCTAGATTGACTTGTTCGATAATAATA
ATTAGGGCTCACT-TATGCTCGCTCAATCCGAATTATCTTATTTATTTGT-3′ followed by PCR fusion of 
the two DNA fragments. All transgenes were verified by sequencing and subsequently subcloned into 
the pUASTattB plasmid. Each of the six individual transgenes was transformed by PhiC31 integrase-
based transgenesis into two different landing chromosomal landing sites (2L:1476459 and 3L:11837236) 
(Bateman et al., 2006).

Adult heat-induced paralysis assay
20–30 flies (2–3 days post eclosion) were anesthetized by CO2 and transferred to standard Drosophila 
vials containing fresh food for 24 hr. On test day, 10 flies (1:1 male/female ratio) were transferred to an 
empty polystyrene vial (Genesee Scientific, San Diego, CA) without anesthesia. Flies were allowed 
to recover for 10 min before vials were immersed in a 41 ± 1°C water bath (ISOTEMP105; Fisher 
Scientific, Pittsburgh, PA). The number of cumulative paralyzed flies was counted every 15 s until all 
flies were paralyzed at the bottom of the vial. The proportion of paralyzed flies and the time it takes to 
reach total paralysis for all 10 flies were used to generate heat-induced paralysis scores.

Negative geotaxis assay
We used the negative geotaxis response as an assay for general locomotion as we previously described 
(Lu et al., 2012). In short, groups of ten flies were introduced into an empty vial without anesthesia. 
Additional empty vial was taped on top. To assay locomotion, bottom vial was tapped down lightly 
and the number of flies that climbed above a marked 15 cm line in 15 s was recorded.

Larval locomotion
Feeding stage 3rd-instar larvae were used. Each larva was briefly washed in distilled water to remove 
all food debris and then transferred to a 3% agar plate that was equilibrated to 25 ± 1°C or 38 ± 1°C. 
Recording of behavior started 3 min post introduction by videotaping animals for 2 min. The total 
numbers of larval side-twitching events were used to quantify larval ‘seizure’ like behavior (Videos 1–6).

Pharmacological treatments
Stock solutions of hERG blockers were kept as 10 mM Cisapride (Sigma-Aldrich, St. Louis, MO, USA) 
in DMSO and 100 mM E 4301 (Alomone labs, Jerusalem, Israel) in distilled water. Working solution 
were made by diluting the stock solutions in in 2% (wt/vol) sucrose solution. Flies were treated in 
groups of 20 adults (1–2 days post eclosion, 1:1 mixed sex) in a vial containing a Kimwipe tissue paper 
soaked with 1 ml of the drug. Flies were allowed to feed on the drug for three days at 25°C and 60% 
humidity. Prior to the heat stress test, treated flies were transferred to a new vial containing standard 
fly food without drugs for two hours. Heat-induced paralysis was assayed as above.

RU-486 activation of the elav-GeneSwitch GAL4 line
A 10 mM stock solution of RU486 (mifepristone, Sigma-Aldrich, St. Louis, MO, USA) was prepared 
in 80% ethanol. Then, the RU486 working solution was diluted to the final concentration (500 μM) in 
2% sucrose. The drug was delivered to flies as described above. Flies were treated with RU-486 or 2% 
sucrose for 7 days at 25°C and 60% humidity. During the feeding period 200 μl RU486 working 
solution or a 2% sucrose solution control were added to each vial every 2 days. Prior to behavioral 
tests, flies were transferred into vials containing fresh standard fly food without drugs for two hours. 
Heat-induced paralysis was assayed as above.

Extracellular electrophysiological recording
Extracellular recordings of larval segmental nerves were as previously reported (Simon et al., 2009). 
Although these neuronal bundles include both motor and sensory fibers, previous studies demonstrated 
that the majority of the burst firing activity patterns observed in this preparation are generated by 
motor neurons alone (Fox et al., 2006). Feeding stage 3rd-instar larvae were dissected in HL-3 solution 
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containing 2.0 mM CaCl2, 70 mM NaCl, 5 mM KCl, 4 mM MgCl2, 10 mM NaHCO3, 5 mM trehalose, 115 
mM sucrose, 5 mM HEPES, pH 7.2. Segmental nerves connecting to the ventral nerve cord were left 
intact. We preferentially recorded from segmental nerves that innervate the anterior segments with a 
polished glass electrode to suck up the nerves. Neuronal signals were filtered by a high-pass filter set 
at 100 Hz and a low-pass filter set at 10 kHz (Clampex software package). The extracellular tempera-
ture was manipulated in the recording chamber by using a temperature-control perfusion system 
(Multi Channel Systems MCS, Baden-Württemberg, Germany) using the following protocol: (1) Recording 
of neuronal activity started once the perfusion system was stable at 25°C for at least 1 min. Neuronal 
spikes were recorded at baseline for 3 min. (2) To acutely raise the temperature, perfusion was turned 
off until it reached 38°C stabley for at least 1 min. (3) Recording at 38°C was initiated 1 min after per-
fusion was turned on again for 3 min.

Real-time qRT-PCR
Total RNA from adult fly heads or whole flies was extracted with the TRIzol reagent (Applied Biosystems, 
Grand Island, NY). First strand cDNA pool was made from total RNA (1 μg) with random hexamere 
oligos SuperScript II reverse transcriptase (Invitrogen, Grand Island, NY) in 20 μl reacting volume. 
cDNA pool was diluted (1:5) in distilled water. Gene specific assays were used to quantify genes with 
the SybrGreen method using the PowerSYBR Green Super PCR Mix (ABI Inc., Grand Island, NY) on an 
ABI7500 machine (Applied Biosystems) using default parameters. Gene specific assays were designed 
with the PrimeTime qPCR Assay design tool (Integrated DNA Technologies). The housekeeping gene 
rp49 was used as an RNA loading control as previously described (Lu et al., 2012). Data were trans-
formed and analyzed according to the ΔΔCt method and are represented as relative fold differences 
(Lu et al., 2012). Primer sequences used are: sei-forward: 5′-TTATTCAAAGGCTGTACTCGGG-3′; sei-
reverse: 5′-GATGCCATTCGTATAGGTCCAG-3′; ppk29-forward: 5′-CCTCTCAGGTATTCTTCGTTGG-3′; 
ppk29-reverse: 5′-TCGGTG-GAGATGGTATAGGTC-3′; rp49-forward: 5′-CACCAAGCACTTCATCCG-3′; 
rp49-reverse: 5′-TCGATCCGTAACCGATGT-3′.

Double fluorescence in situ hybridization
The double fluorescence in situ hybridization in fresh brain sections was performed following published 
protocols (Jones et al., 2007). Briefly, templates for the anti-sense (AS) and sense (S) control riboprobes 
targeting either ppk29 or sei transcripts were synthesized by PCR reactions from pUAST-ppk29 or 
pUAST-sei plasmids with the following primers: sei-AS left: 5′-TAATACGACTCA-CTATAGGGCATCGATTT
GATTGTGGACG-3′;sei-AS right: 5′-CAGTATTCGGTGC-CACATTG-3′; sei-S left: 5′-CATCGATTTGATT
GTGGACG-3′; sei-S right: 5′-TAATAC-GACTCACTATAGGGCAGTATTCGGTGCCACATTG-3′; ppk29-
AS left: 5′-TAATACG-ACTCACTATAGGGAATACGAAATGTGGCGGAAG-3′; ppk29-AS right: 5′-GCATTTC
TTCGATGCTGTCA-3′; ppk29-S left: 5′-AATACGAAATGTGGCGGAAG-3′; ppk29-S right: 5′-TAATACG
ACTCACTATAGGGGCATTTCTTCGATGCTGTCA-3′. The sei riboprobes were labeled by DIG (DIG 
RNA Labeling Kit, Roche), and the ppk29 riboprobes were labeled by fluorescein (Fluorescein RNA 
Labeling Kit, Roche). Freshly dissected female brains (4–5 days old) were embedded in cryo-embedding 
medium (Tisse-Tek OCT, Fisher Scientific, Pittsburgh, PA). Frozen tissue were cryo-sectioned at 15 μm and 
fixed in 4% paraformaldehyde for 5 min. Probes were used at 2 ng/μl standard ISH hybridization 
buffer, 65°C overnight. Post-hybridization, tissues were blocked with TNB for 30 min followed by an 
incubation with a peroxidase-conjugated anti-DIG antibody in TNB buffer (1:500; Anti-Digoxigenin-
POD, Fab fragments, Roche) for 2 hr to detect sei-specific signal. To increase signal-to-noise ratio, the 
Tyramide Signal Amplification system (TSA) with Horseradish Peroxidase (HRP) was used. Samples 
were treated for 1 hr (1:50, TSA Plus Cy3, PerkinElmer, Waltham, MA). Then, samples were transferred 
to 0.3% hydrogen peroxide in TNT buffer to quench HRP activity for 20 min. Subsequently, the ppk29 
antisense riboprobe was detected with a peroxidase-conjugated anti-Fluorescein antibody in TNB 
buffer (1:500; Anti-Fluorescein-POD, Fab fragments, Roche) for 2 hr. To amplify ppk29 signal, samples 
were treated with the primary antibody in TSA signal amplification buffer (1:50, TSA Plus Fluorescein, 
PerkinElmer) for 1 hr. Tissue sections were mounted with Vectashield mounting medium with DAPI 
and imaged with a confocal microscope.

3′RACE
The FirstChoice RLM-RACE Kit (Life Technologies, Grand Island, NY) was used to characterize the 
3′UTRs of sei and ppk29 by following manufacturer′s instructions. Total RNA was isolated from mixed 
adults and 5 μg total RNA was used for first strand cDNA synthesis. Gene specific primers for PCRs were: 
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ppk29: 5′-ACTTGCGACTGCTCTCTATTC-3′; sei: 5′-AAACTGCACAGGGACGATTT-3′; 3′RACEOuterPrimer: 
5′-GCGAGCACAGAATTAATACGACT-3′. Positive PCR products were sequenced from both ends 
with the PCR primers.

Motor neuron mRNA profiling
Translating Ribosome Affinity Purification (TRAP) was used to isolate mRNAs specifically from larval 
motor neurons according to a recently published protocol (Thomas et al., 2012). In short, a GFP 
tagged version of the ribosomal protein RpL10A was specifically expressed in larval motor neurons 
with the motor-neuron specific driver OK6-GAL4 (Aberle et al., 2002; Xiong et al., 2010). Total RNA 
was extracted using the TRizol reagent (Life Sciences, Grand Island, NY) from 35 3rd instar larvae. 
Enrichment for sei and ppk29 transcripts in motor neurons was measured with Real-Time qRT-PCR in 
TRAPped mRNAs by comparing enriched vs total RNA from the OK6-Gal4>UAS-GFP::RpL10A geno-
type. Real-time qRT-PCR was performed as described above.

Statistical analyses
All quantitative behavioral, molecular, and neurophysiological data were analyzed using the most 
recent version of the SAS package (SAS Inc.). One-way and Two-way ANOVAs were used to analyze 
parametric data followed by a Tukey post hoc analyses (p<0.05) when comparisons between individual 
groups were required. Data distributions are presented as error bars that denote Standard Error of the 
Mean.
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