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It has been known since the late 1970s that 
many DNA sequences are transcribed but 
not translated. Moreover, most protein-coding 

genes in mammals are fragmented, with only a 
small fraction of the primary RNA transcript  
being spliced together to form messenger RNA. 
For many years it was assumed that untrans-
lated RNA molecules served no useful purpose 
but, starting in the mid-1990s, a small body  
of researchers, including the present author 
(Mattick, 1994), have been arguing that these 
RNAs transmit regulatory information, possibly 
associated with the emergence of multicellular  
organisms. This is supported by the observa-
tion that the proportion of noncoding genomic 
sequences broadly correlates with developmen-
tal complexity, reaching over 98% in mammals 
(Liu et al., 2013), although others have argued 
that the increase in genome size is due to the 
inefficiency of selection against non-functional 

elements as body size goes up and population 
size goes down (Lynch, 2007).

High-throughput sequencing analyses over 
the past decade have shown that the majority of 
mammalian genome is transcribed, often from 
both strands, and have revealed an extraordinarily 
complex landscape of overlapping and interlac-
ing sense and antisense, alternatively spliced, 
protein-coding and non-protein-coding RNAs, the 
latter generally referred to as long noncoding 
RNAs (lncRNAs). Moreover, the repertoire of these 
lncRNAs is different in different cells (Carninci 
et al., 2005; Cheng et al., 2005; Birney et al., 
2007; Mercer et al., 2012). While some transcripts 
may encode previously unrecognized small pro-
teins, the function or otherwise of the vast majority 
of lncRNAs remains to be determined.

Because many lncRNAs appear to be expressed 
at low levels, and many have lower sequence 
conservation than messenger RNAs, one inter-
pretation has been that these RNAs represent 
transcriptional noise from complex genomes 
cluttered with evolutionary debris. However, 
assessments of sequence conservation rely on 
assumptions about the non-functionality and 
representative distribution of reference sequences, 
which are not verified and cannot be directly 
tested (Pheasant and Mattick, 2007). Nonetheless, 
many lncRNAs show patches of relative sequence 
conservation (Derrien et al., 2012), and even 
more do so at the secondary structural level (Smith 
et al., 2013).

Expression analyses have shown that lncRNAs 
originate from all over the genome and are 
expressed at different times during differentia-
tion and development (Dinger et al., 2008), 
often exhibiting highly cell-specific patterns 
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(Mercer et al., 2008). The precision of lncRNA 
expression is consistent with evidence suggesting 
that many are associated with chromatin-modifying 
complexes, thereby acting as regulators of the 
epigenetic control of differentiation and develop-
ment (Mercer and Mattick, 2013).

A number of lncRNAs have also been linked 
to complex diseases like cancer (Mattick, 2009) 
and other complex physiological processes (see, 
for example, Rapicavoli et al., 2013). However, 
these results seem at odds with the fact that 
few lncRNAs have been identified in traditional 
genetic screens. The reason for this is likely  
a combination of phenotypic, technical and 
expectational bias: mutations in protein-coding 
regions of the genome generally have pheno-
types that are more severe, and are easier to 
identify, than those in non-coding regions. By 
contrast, in this context, it is worth noting that 
∼95% of all variants associated with complex (as 
opposed to monogenic) diseases in humans map 
to non-coding, presumably regulatory, sequences 
(Freedman et al., 2011).

Still, the gold standard in this field is the tar-
geted in vivo silencing or deletion of specific genes, 
and since few of these have been conducted to 
date, some researchers have remained sceptical 
about the biological significance of lncRNAs. Now, 
in eLife, John Rinn, Paolo Arlotta and co-workers 
at Harvard, MIT, the Broad Institute, Rutgers 
and Regeneron Pharmaceuticals—including Martin 
Sauvageau, Loyal Goff and Simona Lodata as joint 
first authors—report the results of the first large-
scale attack on the question (Sauvageau et al., 
2013). They selected 18 lncRNA genes in the 
mouse genome that had been stringently assessed 
for lack of protein-coding capacity and that did 
not overlap with known protein-coding genes or 
other known gene annotations—hence the name 
long intergenic noncoding RNAs (lincRNAs)—
and generated knockout mouse mutants by 
replacing the lncRNA gene with a lacZ reporter 
cassette.

Sauvageau, Goff, Lodata et al. report discern-
able developmental problems in five of the 18 
mutants, with three exhibiting embryonic or post-
natal lethality, two of which exhibited growth 
defects in the survivors. The phenotypes of two 
of the mutants were analyzed in detail: one of the 
mutants that died showed defects in multiple 
organs (including the lung, heart and gastrointes-
tinal tract), and one of the mutants that survived 
with growth defects also showed defects in the 
cerebral cortex. Other mutants that did not exhibit 
overt developmental defects showed brain-specific 
expression patterns and may be associated with 

cognitive defects that are not grossly apparent at 
the developmental level.

Another group (Grote et al., 2013) recently 
generated a different knockout allele for one of 
the 18 lincRNAs interrogated by Sauvageau et al., 
and also reported an embryonic lethal pheno-
type, albeit with some differences. Importantly, 
the approach used by Grote et al. also provided 
strong evidence that the mutant defects were 
not caused by an indirect effect on an overlap-
ping genomic element, such as an enhancer for 
a nearby gene.

The work of Sauvageau, Goff, Lodata et al. is 
a mini tour-de-force that shows that there are 
lncRNAs with important developmental functions 
in vivo, and it joins a small number of studies 
from other pioneering groups that show the same 
thing (Lewejohann et al., 2004; Gutschner et al., 
2013; Li et al., 2013), although not all of the 
targeted lncRNAs showed a phenotype. Similarly, 
other knockout experiments of widely expressed 
lncRNAs, as well as some of the most highly con-
served elements in the mammalian genome, also 
did not yield discernable phenotypes (Ahituv 
et al., 2007; Nakagawa et al., 2011), which 
should sound a note of caution about the inter-
pretation of negative results.

Indeed, since most lncRNAs are expressed in 
the brain (Mercer et al., 2008) and many are 
primate-specific (Derrien et al., 2012), it may 
be that much of the lncRNA-mediated genetic 
information in humans (and in mammals generally) 
is devoted to brain function, and therefore not 
easily detectable in developmental, as opposed to 
cognitive, screens. A good example is a noncoding 
RNA called BC1 that is widely expressed in the 
brain: knockout of BC1 causes no visible anatom-
ical consequences, but it leads to a behavioural 
phenotype that would be lethal in the wild 
(Lewejohann et al., 2004).

Although evidence for the hypothesis that 
lncRNAs have a role in mammalian development, 
brain function and physiology is growing, there 
is also a clear need for more sophisticated and 
comprehensive phenotypic screens, especially 
with respect to cognitive function.
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