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Abstract In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the 
output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are 
mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) 
channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-
GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes 
GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. 
Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective 
disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in 
learning and memory. We further report that RGS7 is selectively modulated by its membrane 
anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results 
demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation.
DOI: 10.7554/eLife.02053.001

Introduction
Signaling through G protein-coupled receptors for the inhibitory neurotransmitter GABA (GABABR) has 
been recognized to play key roles in mood, nociception, memory, reward, and movement (Bowery, 2006; 
Padgett and Slesinger, 2010). In the hippocampus, activation of postsynaptic GABABR on pyramidal neu-
rons produces slow inhibitory postsynaptic currents (sIPSCs), which counteract the excitatory influence of 
ionotropic glutamate receptors to shape neuronal output (Ulrich and Bettler, 2007; Luscher and Slesinger, 
2010). As a result, GABABR signaling profoundly affects hippocampal synaptic plasticity and has marked 
effects on memory formation (Davies et al., 1991; Wagner and Alger, 1995; Schuler et al., 2001).

A large share of the postsynaptic inhibitory effect of GABABR stimulation in the hippocampus is 
mediated by activation G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channels, which inhibit 
neuronal excitability via hyperpolarizing K+ efflux (Luscher and Slesinger, 2010). In the hippocampus, 
GIRK channels are predominantly formed by GIRK1 and GIRK2 subunits, which co-localize and may 
interact directly with GABABR protomers (Koyrakh et al., 2005; Fajardo-Serrano et al., 2013). 
Activation of GABABR releases G protein βγ subunits, which bind to GIRK channels and increase 
channel gating (Padgett and Slesinger, 2010). Blockade of GABABR or GIRK channels by either 
pharmacological manipulations or genetic knockout ablates the slow IPSC, and blunts a form of 
hippocampal synaptic plasticity known as depotentiation (Luscher et al., 1997; Chung et al., 2009). 
Conversely, enhanced GABABR-GIRK signaling seen in a mouse model of Down syndrome disrupts 
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both excitatory and inhibitory synaptic plasticity, and is linked to cognitive impairment (Kleschevnikov 
et al., 2004; Cramer et al., 2010; Cooper et al., 2012).

GABABR-GIRK signaling is negatively modulated by the Regulators of G protein Signaling (RGS) 
proteins, which accelerate G protein inactivation (Hollinger and Hepler, 2002; Padgett and 
Slesinger, 2010). Among more than 30 RGS genes found in mammalian genomes, the R7 family of 
RGS proteins (R7 RGS) stands out for its prominent roles in a range of fundamental neuronal proc-
esses, from vision to motor control to reward-related behavior (Anderson et al., 2009). The four 
members of this group (RGS6, RGS7, RGS9 and RGS11) form heterotrimers with two subunits (Gβ5 
and R7BP), and these interactions regulate the localization and/or expression of the complexes 
(Anderson et al., 2009; Jayaraman et al., 2009).

Previous studies have shown that Gβ5 serves as a central scaffold that bridges the catalytic (RGS) and 
targeting (R7BP) subunits and ensures the stability of R7 RGS protein (Cheever et al., 2008; Sandiford 
et al., 2010; Masuho et al., 2011). Elimination of Gβ5 also resulted in dramatic slowing of GIRK channel 
deactivation kinetics, prolongation of synaptically-evoked slow IPSCs in hippocampal pyramidal neurons, 
and increased behavioral sensitivity to GABABR stimulation (Xie et al., 2010). However, the identity of 
the RGS isoform that modulates GABABR-GIRK signaling in hippocampus, as well as the relative impact 
of the R7BP subunit, are unknown. Furthermore, the relevance of RGS-dependent modulation of 
GIRK-dependent signaling to hippocampal circuit function, plasticity, and behavior remain unclear.

In this study, we examined the importance of RGS and R7BP subunits to hippocampal physi-
ology and hippocampal-dependent behavior. We report that ablation of Rgs7 results in alterations of 
GABABR-GIRK signaling, disrupts synaptic plasticity in the hippocampus, and impairs contextual 
learning and memory. Moreover, the function of the RGS7/Gβ5 complex is fine-tuned by R7BP, which 
sets the sensitivity range of GABABR-GIRK signaling.

Results
RGS7 and R7BP modulate GABABR-GIRK signaling in cultured 
hippocampal neurons
We began by characterizing the expression of RGS complex subunits in the mouse hippocampus. 
We detected robust expression of RGS6, RGS7, R7BP and Gβ5 by western blotting (Figure 1A). To 

eLife digest Neurons communicate with one another at junctions called synapses. The arrival of 
an electrical signal known as an action potential at the first cell causes molecules known as 
neurotransmitters to be released into the synapse. These molecules diffuse across the gap between 
the neurons and bind to receptors on the receiving cell. Some neurotransmitters, such as glutamate, 
activate cells when they bind to receptors, thus making it easier for the second neuron to ‘fire’ 
(i.e., to generate an action potential). By contrast, other neurotransmitters, such as GABA, usually 
make it harder for the second neuron to fire.

Many of the effects of GABA involve a type of receptor called GABAB. When GABA binds to one 
of these receptors, a molecule called a G-protein is recruited to the receptor. This activates the 
G-protein, triggering a cascade of events inside the cell that lead ultimately to the opening of 
potassium ion channels, which as known as GIRKs, in the cell membrane. Positively charged potassium 
ions then leave the cell through these channels, and this makes it more difficult for the cell to fire.

Now, Ostrovskaya et al. have revealed that a complex of three proteins regulates the interaction 
between GABAB receptors and GIRK channels. In neurons that lack either of these proteins, the 
receptors have less influence on GIRKs than in normal cells. Moreover, mice that lack one of the 
proteins (called RGS7) perform less well in various learning and memory tests: for example, they 
take longer than normal animals to learn the location of an escape platform in a water maze, or to 
retain a memory of a fearful event.

By identifying the proteins that regulate the interaction between GABAB receptors and GIRKs, 
Ostrovskaya et al. have helped to unravel a key signaling cascade relevant to cognition. Given that 
GIRK channels have recently been implicated in Down’s syndrome, these insights may also increase 
understanding of cognitive impairments in neuropsychiatric disorders.
DOI: 10.7554/eLife.02053.002
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Figure 1. RGS7 and R7BP modulate GABABR-GIRK signaling in cultured hippocampal neurons. (A) Western blot 
analysis of protein expression in hippocampi extracted from wild-type (WT) mice, or mice lacking RGS7 (Rgs7−/−), 
RGS6 (Rgs6−/−) or R7BP (R7bp−/−). (B) Quantification of Western blotting data, with protein levels arrayed as a function 
of genotype, ***p<0.01, One-Way ANOVA n = 3 mice. ND-undetectable. (C) Representative normalized traces of GIRK 
currents evoked by a saturating concentration of the GABABR agonist baclofen (100 µM). (D–E) Rgs6, Rgs7, and R7bp 
knockouts do not affect GIRK current amplitudes (D), desensitization (E) and current onset kinetics (F) evoked by 
100 μM Baclofen. p>0.05, One-Way ANOVA, n = 8–29 cells for each genotype. (G) Current deactivation rate following 
removal of baclofen was slower in neurons from Rgs7−/− and R7bp−/− mice as compared to WT controls, *p<0.05 
and **p<0.01 vs WT, †††p<0.001 Rgs7−/− vs R7bp−/−. One-Way ANOVA, Bonferroni’s post hoc test, n = 8–29 cells.
DOI: 10.7554/eLife.02053.003

understand the contribution of individual subunits to GABABR-GIRK signaling, we studied the effects 
of selective knockout of Rgs6, Rgs7, and R7bp in mice. Elimination of RGS7 dramatically reduced lev-
els of Gβ5 and R7BP in the hippocampus (Figure 1A,B). In contrast, elimination of RGS6 had no sig-
nificant effect on the expression of R7BP or Gβ5. Similarly, loss of one RGS protein did not affect the 
expression of the other, or the GIRK channel subunit GIRK2. Given the interdependence of subunit 
expression in R7 RGS complexes (Chen et al., 2003; Anderson et al., 2007; Grabowska et al., 2008), 
these results suggested that RGS7 was likely the dominant catalytic subunit in the hippocampus.
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We next compared GABABR-GIRK responses in hippocampal pyramidal neurons from Rgs6, Rgs7, 
and R7bp knockout (−/−) and wild-type (WT) mice (Figure 1C–F). Application of a saturating con-
centration (100 μM) of the GABABR agonist baclofen elicited currents with similar maximal amplitudes 
in neurons of all genotypes (Figure 1D). We also measured the activation and deactivation kinetics 
of the baclofen-induced currents. At this saturating concentration of baclofen, we observed no 
significant differences between genotypes in the activation phase of the response (Figure 1C,F). 
Desensitization of current during the timeframe of agonist application was negligible and similar 
across genotypes, suggesting that the response at the steady-state is not compounded by the GIRK 
channel inactivation (Figure 1C,E). While no change in the current deactivation kinetics was observed 
in Rgs6−/− neurons, elimination of RGS7 markedly slowed response deactivation (Figure 1C,G). The 
rate of GIRK current deactivation in R7bp–/– neurons was also slower than in wild-type neurons, but the 
effect was substantially smaller than seen in neurons from Rgs7−/− mice (Figure 1C,G). Importantly, 
there were no detectable changes in any of the measured response parameters in Rgs6−/− neurons as 
compared to wild-type, arguing that GABABR-GIRK signaling in hippocampal neurons is modulated by 
RGS7 and R7BP, but not RGS6.

RGS7 and R7BP differentially affect the sensitivity of GABABR-GIRK 
coupling
Given the observed changes in the kinetics of GIRK channel modulation by GABABR, we next sought 
to determine the impact of ablating Rgs7 and R7bp on the sensitivity of the GIRK response to GABABR 
activation. Increasing baclofen concentrations caused a progressive enhancement in GIRK-mediated 
currents in all genotypes (Figure 2A). However, pronounced differences in the concentration-response 
relationship were evident (Figure 2B). First, in both Rgs7−/− and R7bp−/− neurons, curves were shifted 
to the left relative to wild-type neurons, indicating that ablation of RGS7 or R7BP increased GABABR-
GIRK coupling sensitivity. Second, while RGS7 ablation resulted in a largely parallel leftward shift 
of the curve, its shape in R7bp−/− neurons was markedly steeper. Indeed, response amplitudes resem-
bled those seen in wild-type neurons at lower agonist concentrations, but at higher concentrations, 
the responses more resembled those seen in Rgs7−/− neurons.

We next tested whether GABABR-GIRK current kinetics exhibited a similar dependence on agonist 
concentration. Comparing activation rates across different concentrations of baclofen revealed that 
onset kinetics were affected by RGS7 ablation only at low baclofen concentrations, whereas no effect 
of R7BP elimination was seen at any level of GABABR stimulation (Figure 2C). Since GIRK activation 
kinetics could be influenced by the G protein deactivation cycle (Doupnik et al., 1997; Lambert et al., 
2010), we did not put significant emphasis on the analysis of the differences in the raising phases of 
the response. The impact of RGS7 ablation on deactivation rates was consistent at different agonist 
concentrations (Figure 2D). In contrast, R7BP ablation significantly affected deactivation kinetics only 
at higher agonist concentrations, consistent with the effects on response sensitivity (Figure 2D).

Analysis of the responses also revealed that elimination of RGS7 and R7BP resulted in a significant 
delay between agonist removal and the beginning of current deactivation (Figure 2E). This lag time 
showed an exponential dependence on agonist concentration that continued to develop past the 
saturation point for the maximal GIRK response (∼10 μM baclofen) in all genotypes (Figure 2F). While 
there was no difference in lag time between genotypes at non-saturating baclofen concentrations 
(∼EC60), it became pronounced as the current response reached saturation (∼EC90) (Figure 2G). 
Combined with the observations that GABABR continues to increase the amount of activated G pro-
teins past the saturation point of the GIRK channel response (Hensler et al., 2012), these data suggest 
that the lag time reflects the clearance of free βγ subunit produced above the stoichiometric level 
relative to the GIRK channel.

To provide an independent evidence that increase in the lag time reflects changes in stoichiometry 
of Gβγ subunits relative to their effector molecule, we utilized a bioluminescence resonance energy 
transfer (BRET)-based approach that monitors interactions of Gβγ with a reporter derived from an 
effector (GRK3) upon reconstitution in transfected cells (Figure 3A). In this assay, we induced 
production of free Gβγ subunits via GABABR activation and then measured delay time between 
antagonizing GABABR and the onset of signal decay, while changing the Gβγ to GRK3 effector ratio 
(Figure 3B). In agreement with the electrophysiological recordings of GIRK channel activity, BRET 
experiments showed that the increase in Gβγ stoichiometry over an effector results in prolonga-
tion of the response deactivation lag (Figure 3C,D).

http://dx.doi.org/10.7554/eLife.02053
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Loss of R7BP reduces targeting of RGS7 to the plasma membrane
In transfected cells, R7BP is essential for the membrane localization of RGS7 (Drenan et al., 2005; 
Narayanan et al., 2007). Furthermore, we previously reported that knockout of R7bp resulted in a 
reduction of the total membrane-bound RGS7 protein in hippocampal tissue (Panicker et al., 2010). 
To analyze the effect of R7BP on RGS7 localization in hippocampal pyramidal neurons, we performed 
high-resolution immunoelectron microscopy. Consistent with the earlier findings, immunoparticles for 

Figure 2. Timing and sensitivity of GABABR-GIRK signaling is differentially controlled by RGS7 and R7BP. (A) 
Representative traces of GIRK currents evoked by increasing concentrations of baclofen. (B) Dose-response 
curves fit by Hill equation. EC50 values are 1.48–2.14 μM for WT, 0.35–0.58 μM for Rgs7−/−, and 0.65–0.81 μM for 
R7bp−/− (95% CI). Hill coefficients were 1.48 ± 0.17 in WT, 1.23 ± 0.21 in Rgs7−/−, and 2.04 ± 0.28 in R7bp−/−. 
p<0.0001 for difference in EC50 or each curve; p=0.04 for difference in Hill coefficients, Extra sum-of-squares F test, 
n = 10–22 cells. (C) Rgs7−/− cultured hippocampal neurons show slower current activation at lower concentra-
tions of baclofen. ***p<0.001 vs WT, †††p<0.001 for Rgs7−/− vs R7bp−/−, Two-Way ANOVA, Bonferroni’s post hoc 
test, n = 10–22 cells. (D) Dependence of GIRK current deactivation kinetics on agonist concentration. *p<0.05 and 
***p<0.001 vs WT; ††p<0.01, †††p<0.001 for Rgs7−/− vs R7bp−/−, Two-Way ANOVA, Bonferroni’s post hoc test, 
n = 10–22 cells. (E–G) Differences in the lag times before the onset of response deactivation (Lag Deactivation). 
(E) Representative traces of currents evoked by 100 µM baclofen show Lag time measurement as time between 
the onset of agonist removal and the point at which 10% of the current deactivated: 1560, 4900 and 3000 ms for 
WT, Rgs7−/−, R7bp−/−, respectively. (F) Semi-log plot of lag time dependence on concentration. The data were fitted 
with a linear regression, R2 = 0.66, 0.67, and 0.84; and slopes 619 ± 69, 1440 ± 151, and 952 ± 84 for WT, Rgs7−/−, 
R7bp−/−, correspondingly. p<0.0001 for differences in slopes, two way ANOVA, n = 10–22 cells. (G) Comparison of 
lag times at baclofen concentrations that generated equivalent responses. Lag times were significantly different in 
genotypes at saturating (EC90) but not submaximal (EC60) concentrations, *p<0.05 and ***p<0.001 vs WT, ††p<0.01 
Rgs7−/− vs R7bp−/−, Two-Way ANOVA, Bonferroni’s post hoc test, n = 10–22 cells.
DOI: 10.7554/eLife.02053.004
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Figure 3. Changing the ratio of Gβγ to an effector affects response deactivation lag in a reconstituted system. 
(A) Schematic representation of the assay principle. The assay measures interaction of YFP-tagged Gβγ with its 
effector reporter GRK, tagged with N-luc, producing BRET signal. Gβγ subunits are released upon GABABR 
stimulation with GABA increasing BRET signal. Inactivation of GABABR with an antagonist CGP 54626 results in 
dissociation of Gβγ from GRK and re-association with Gαo to form inactive heterotrimer. (B) Time course of changes 
in BRET signal upon stimulation of cells with GABA and subsequent deactivation by CGP 54626. Cells were trans-
fected with varying amounts of constructs encoding Gβγ and GRK reporter (from black to green). (C) Deactivation 
phase of the response showing kinetics of signal decay. The lag deactivation time (dotted line for the trace in black) 
is defined as the time that it takes to quench the BRET signal by 10% from its steady state value in the presence of 
an agonist. (D) Quantification of a lag deactivation time as a function of Gβγ/GRK ratio. Error bars are SEM values, 
n = 4 per condition.
DOI: 10.7554/eLife.02053.005

RGS7 were abundant on the extrasynaptic plasma membrane of dendritic spines and dendritic shafts 
of pyramidal cells, as well as at intracellular sites (Fajardo-Serrano et al., 2013). In the hippocampus 
of R7bp−/− animals, immunoparticles for RGS7 were distributed similarly to the wild-type, but they 
were more frequently observed just beneath the plasma membrane and more broadly distributed 
in somata (Figure 4). Indeed, quantitative analysis indicated that in R7bp−/− mice, RGS7 was less 
frequently detected in the plasma membrane and tended to accumulate within 100 nm of the plasma 
membrane. We also detected a significant increase in RGS7 labelling in the rough endoplasmic retic-
ulum (rER) in the soma of R7bp−/− pyramidal neurons (2489 vs 3371 immunoparticles in wild-type and 
R7bp−/− neurons, respectively). These findings indicate that knockout of R7BP caused a modest but 
significant redistribution of RGS7 away from the plasma membrane.

Loss of RGS7 decreases the excitability of hippocampal pyramidal 
neurons
The slower kinetics and increased sensitivity of GIRK channels to GABABR activation suggested that 
there was a net up-regulation of GIRK-dependent inhibition in hippocampal neurons lacking RGS7. 
Since GIRK channels significantly contribute to setting neuronal excitability (Chen and Johnston, 
2005), we next determined how deletion of RGS7 influences the excitability of CA1 pyramidal neu-
rons. To characterize intrinsic electrophysiological properties of different genotypes, the responses of 

http://dx.doi.org/10.7554/eLife.02053
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Figure 4. Change in subcellular localization of RGS7 in the hippocampus of the R7bp−/− mice. Electron micrographs 
of the stratum radiatum of the hippocampal CA1 region showing immunoparticles for RGS7, as detected using a 
pre-embedding immunogold method. Dendritic spines (s) and axon terminals (at) are marked. Arrows indicate 
locations of immunoparticles at the plasma membrane, while arrowheads identify RGS7 immunoparticles found just 
below the membrane. Quantitative analysis showed that RGS7 is less frequently detected in the plasma membrane, 
and accumulates within the first 100 nm from the plasma membrane, samples from R7bp−/− mice, *p<0.05, One-way 
ANOVA followed by the Bonferroni’s post hoc test, n = 3 mice. Scale bar: 0.2 μm.
DOI: 10.7554/eLife.02053.006

CA1 neurons to somatic current injections ranging from −150 pA to +300 pA were measured (Figure 5A). 
While membrane resistance was similar in both genotypes (Rin = 120 ± 10 MΩ vs 105 ± 11 MΩ, 
p=0.31, in wild-type and Rgs7−/− cells, respectively), resting membrane potential (RMP) was significantly 
hyperpolarized in Rgs7−/− neurons (−64.7 ± 0.5 mV vs −68.5 ± 0.7 mV in wild-type and Rgs7−/−, respec-
tively; Figure 5B). In addition, the current required to elicit action potentials (APs) was significantly 
higher in RGS7−/− neurons (I = 104.3 ± 8.8 pA vs 146.4 ± 17.0, in WT and Rgs7−/− cells, respectively; 
Figure 5C). Finally, Rgs7−/− neurons fired significantly fewer action potentials in response to depolarizing 
current as compared to wild-type controls (Figure 5D). Collectively, these observations argued that 
hippocampal pyramidal neurons from Rgs7−/− mice were less excitable than wild-type counterparts.

We further examined whether decreased intrinsic excitability of Rgs7−/− neurons is caused by 
dysregulated net excitatory transmission. For this purpose, we measured spontaneous EPSCs (sEPSC) 
in CA1 pyramidal neurons (Figure 5E–G). There were no significant differences in either amplitudes or 
frequencies of sEPSC events between Rgs7−/− and wild-type neurons (Figure 5F–G). These observa-
tions indicate that excitatory input into CA1 pyramidal neurons is unchanged by elimination of RGS7 
and suggest that the observed decrease in neuronal excitability is caused by changes in the intrinsic 
membrane properties of CA1 neurons, likely stemming from enhanced activity of the postsynaptic 
GIRK channel.

RGS7 ablation disrupts hippocampal synaptic plasticity
Previous studies have implicated GIRK channels in several forms of hippocampal synaptic plasticity, 
including long-term potentiation (LTP) (Cramer et al., 2010), long-term depression (LTD) (Cooper 
et al., 2012) and depotentiation (DP) (Chung et al., 2009; Cooper et al., 2012). Because GABAB recep-
tors play key roles in these processes and since GABAB-GIRK signaling is severely dysregulated in 
Rgs7−/− neurons, we next examined the impact of RGS7 ablation on hippocampal synaptic plasticity.

http://dx.doi.org/10.7554/eLife.02053
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Figure 5. Altered intrinsic excitability and excitatory transmission in CA1 hippocampal neurons from Rgs7−/− mice. 
(A) Representative traces of responses elicited by current injections of −150, −50, 0, +50, and +300 pA in WT and 
Rgs7−/− CA1 neurons. (B) Hyperpolarized resting membrane potential (RMP) in Rgs7−/− neurons, ***p=0.0001, t test, 
n = 14–23 cells. (C) Current required to evoke an action potential (firing threshold) is higher in Rgs7−/− neurons, 
*p=0.02, t test, n = 14–23 cells. (D) Lower intrinsic excitability in Rgs7−/− neurons. **p<0.01 and *p<0.05, two-way 
ANOVA with Bonferroni’s posttest, n = 14–23 cells. (E) Representative traces of slow excitatory synaptic currents 
(sEPSCs) in WT and Rgs7−/− cells. (F) Cumulative distribution and mean values for sEPSCs amplitudes (14.9 ± 1.9 vs 
12.8 ± 0.9 pA in WT and Rgs7−/− correspondingly, p=0.3, unpaired t test; n = 11 cells and 1100 events for each 
genotype). (G) Cumulative distribution and mean values for sEPSCs and frequencies (3.4 ± 0.6 vs 3.1 ± 0.6 Hz in WT 
and Rgs7−/− correspondingly, p=0.7, unpaired t test, n = 11 cells and 1100 events for each genotype).
DOI: 10.7554/eLife.02053.007
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A high-frequency stimulation protocol of 2 tetanized stimuli (TS, 100 Hz for 1s each) produced 
robust LTP in both genotypes (Figure 6A,D). The extent of the potentiation in Rgs7−/− slices was not 
significantly different from that measured in wild-type slices, arguing that elimination of RGS7 has no 
effect on LTP. A low-frequency stimulation (LFS, 2 Hz for 10 min, 1200 pulses) elicited LTD in both 
wild-type and Rgs7−/− hippocampal slices (Figure 6B,D). However, the extent of inhibition was signifi-
cantly smaller in Rgs7−/− slices. Interestingly, the magnitude of the first fEPSP after the train of LFS 
stimulation was significantly reduced in knockout mice (51 ± 6% and only 72 ± 6% in wild-type and 
Rgs7−/− slices correspondingly, *p=0.03, t test, n = 6), suggesting that the LTD impairment in Rgs7−/− is 

Figure 6. RGS7 ablation disrupts hippocampal synaptic plasticity. Field EPSP (fEPSP) slope change following 
induction of: (A) LTP in Rgs7−/−, 166 ± 9% vs wild-type, 155 ± 6% slices; p=0.33, t test, n = 6–10; (B) LTD in Rgs7−/−, 
90 ± 2% vs wild-type, 81 ± 2%; *p=0.01, t test, n = 6–7; (C) depotentiation (DP) in Rgs7−/−, 111 ± 3% vs wild-type, 
128 ± 6%; *p=0.013, t test, n = 6–11. Insets show representative fEPSP traces at baseline and 1 hr following 
induction protocol in WT (black and grey) and Rgs7−/− (red and pink) slices. (D) Quantification of the EPSP slope 
change 55–60 min following induction of each form of plasticity after normalization to pre-induction baseline. 
(E) Paired Pulse Ratio (PPR) dependence on the inter stimulus interval for wild-type (WT) and Rgs7−/−. Significant 
inter-stimulus interval but not genotype effect was observed, p<0.0001 and p=0.5, correspondingly. Two-way 
ANOVA, n = 4 slices per genotype. (F–H) Basal synaptic transmission properties in Rgs7−/− slices. Dependence of 
fEPSP slope (F) and FV amplitude (G) on stimulus intensity. (H) Linear regression plot of fEPSP slope dependence 
on FV amplitude. The data were fitted with a linear regression, R2 = 0.67 and 0.53; and slopes 1.9 ± 0.1 and 
1.5 ± 0.2 for WT and Rgs7−/−correspondingly. p=0.1 for differences in slopes, two way ANOVA, n = 12–13 cells.
DOI: 10.7554/eLife.02053.008
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due to a deficit in an induction mechanism(s). The depotentiation produced by consecutive application 
of TS and LFS was also significantly impaired in Rgs7−/− mice (Figure 6C,D).

We further investigated the impact of RGS7 ablation on paired-pulse facilitation (PPF), a form of 
short-term plasticity that results from the enhancement of presynaptic vesicle release in response to 
two closely-spaced stimuli (Zucker, 1989; Dobrunz and Stevens, 1997). We found that fEPSP 
facilitation was similar between genotypes across the examined range of 10–1000 ms interpulse inter-
vals (Figure 6E), indicating that presynaptic mechanisms are not likely to be the cause of the observed 
alterations in synaptic plasticity. We next compared the dependence of fEPSP slopes (Figure 6F) and 
presynaptic fibre volley (FV) amplitudes (Figure 6G) on stimulus intensity. Analysis of the relationship 
between FV amplitudes and fEPSP slopes by linear fitting reveals their nearly perfect correspondence 
between wild-type and Rgs7−/− slices, indicating preservation of basal synaptic transmission properties 
(Figure 6H). Together, these results suggest that RGS7 elimination selectively impaired LTD and DP 
forms of synaptic plasticity, likely by a post-synaptic mechanism.

RGS7 ablation disrupts hippocampal-dependent learning and memory
Changes in the intrinsic excitability of CA1 pyramidal neurons, together with deficits in hippocampal 
synaptic plasticity, suggested that RGS7 complexes play a role in spatial learning and memory. To test 
this possibility, we first studied the impact of RGS or R7BP ablation in contextual fear conditioning, a 
test that requires hippocampal processing for memory formation (Maren, 2001). We found significant 
deficits in context recognition 24-hr after training in Rgs7−/− mice, but not in Rgs6−/− or R7bp−/− mice 
(Figure 7A–C). Importantly, we observed no difference in baseline freezing behavior before asso-
ciative training between the genotypes. Furthermore, there were no significant differences between 
wild-type mice and mutant mice in amygdala-dependent cue recognition.

To clarify the impairment of hippocampus dependent learning and memory in Rgs7−/− mice, we 
conducted other tests that rely on hippocampal function. In the Morris water maze test, Rgs7−/− mice 
showed delayed escape latencies and reduced success rates during acquisition trials (Figure 7D,E). In 
the probe trial, when the platform was removed 24 hr after training, it took Rgs7−/− mice significantly 
longer to reach the target area where the platform was located during training as compared to their 
wild-type littermates (Figure 7F). Mice lacking RGS7 also made fewer crossings over the target area 
during the probe trial. Importantly, despite a pronounced spatial impairment, Rgs7−/− mice performed 
normally in the visible platform version of water maze.

In the novel object recognition test, wild-type littermates spent significantly more time exploring 
novel objects over familiar objects (Figure 7G). However, Rgs7−/− mice spent approximately equal time 
exploring familiar and novel objects. Furthermore, there was a significant difference in time exploring 
novel objects between Rgs7−/− mice and their wild-type littermates. No genotype differences in object 
exploratory behavior were observed during the training day, when the mice were first introduced to 
identical objects. Taken together, these results indicate that elimination of RGS7 leads to a disruption 
of spatial learning and memory in mice.

Discussion
Molecular mechanism of GIRK channel regulation by the RGS7/Gβ5/
R7BP complex
The results of this study, together with prior investigations, establish the RGS7/Gβ5/R7BP complex as 
an essential regulator of GABABR-GIRK signaling in the hippocampus. In hippocampal neurons, RGS7 
is closely co-localized with both GABABR and GIRK2-containing channels (Fajardo-Serrano et al., 
2013). Furthermore, in transfected cells, RGS7 can directly interact with GIRK channel subunits as 
demonstrated by both co-immunoprecipitation and bioluminescence energy transfer approaches 
(Xie et al., 2010; Zhou et al., 2012). The complex may further involve GABABR as well as G protein 
subunits (Kovoor and Lester, 2002; Fajardo-Serrano et al., 2013), supporting the contention that 
components of the entire pathway are scaffolded into a larger macromolecular assembly.

The interaction between RGS7 with GIRK channels is mediated by the Gβ5 subunit, which mimics 
signal-transducing Gβγ subunits in binding to the channel (Xie et al., 2010; Zhou et al., 2012). 
Knockout of Gβ5 greatly slows GABABR-GIRK response deactivation rates and dramatically increases 
agonist sensitivity of the signaling pathway (Xie et al., 2010). In addition to mediating interactions 
with the channel, Gβ5 is essential for the expression of all four R7 RGS proteins (Chen et al., 2003). 
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With several R7 RGS proteins expressed in hippocampus, the identity of the exact isoform that 
participates in GIRK channel regulation in the region, through complex formation with Gβ5, remained 
unknown. The elimination of RGS7, reported in this study, largely phenocopies the loss of Gβ5, both 
in terms of kinetics and agonist sensitivity. This argues that in hippocampal pyramidal neurons, GIRK 
signaling is regulated by RGS7 and not by other R7 RGS proteins. Indeed, while RGS6 regulates GIRK 
signaling in cerebellar neurons (Maity et al., 2012) and sinoatrial pacemaking cells (Posokhova et al., 
2010; Yang et al., 2010), RGS6 ablation had no effect on any GIRK response parameters in hippocam-
pal pyramidal neurons.

The function of R7 RGS proteins is regulated by the membrane anchor R7BP, which augments the 
ability of R7 RGS proteins to deactivate G protein signaling in reconstituted systems (Drenan et al., 
2006; Masuho et al., 2013). Consistent with these observations, we show that knockout of R7BP 
reduces plasma membrane localization of RGS7 and slows GABABR-GIRK current deactivation in hip-
pocampal pyramidal neurons. Our results also agree well with a recent study reporting similar decel-
eration of GIRK deactivation kinetics in R7bp−/− hippocampal neurons (Zhou et al., 2012). However, 
the consequences of RGS7 and R7BP elimination are different in two important ways. First, relative to 
the loss of RGS7 or Gβ5, elimination of R7BP had a very modest effect on GABABR-GIRK deactivation 
kinetics, and was seen only at high GABABR agonist concentrations. This suggests that the RGS7/Gβ5 

Figure 7. RGS ablation affects hippocampal-dependent learning and memory. (A–C) Evaluation of mouse behavior in fear conditioning paradigm. 
(A) Rgs7−/− mice show deficits in hippocampal-dependent contextual, but not cue, memory.*p<0.05, t test; n = 12 per genotype. (B) Normal contextual 
and cue memory of Rgs6−/− mice in the fear conditioning test as compared to wild-type (WT) littermates. n = 8 per genotype. (C) R7bp−/− mice showed 
the same contextual and cue memory in fear conditioning test as compared to WT littermates, n = 8 per genotype. (D–F) Evaluation of mouse behavior 
in Morris water maze. Rgs7−/− mice (n = 13) and their WT littermates (n = 12) were trained for 6 d with 4 trials/d with an inter-trial interval of approximately 
15 min. Performance during the acquisition phase was monitored and plotted as average time (D) or success rate (E) to reach the hidden platform. Mice 
showed improvement with training. There was a significant effect of a genotype in both escape latencies (*p<0.05) and success rates (*p<0.05) using 
two-way ANOVA analysis. Post hoc comparison revealed a significant impairment of Rgs7−/− mice during the last two acquisition days (*p<0.05, Tukey’s 
test). (F) Results of a probe trial given 24 hr after 6 d of training. The latency to the first crossing of the former location of the platform and the total 
number of crossing are shown, *p<0.05, t test. (G) Evaluation of mouse behavior in novel object recognition paradigm. Rgs7−/− mice showed significant 
impairment during the test trial with a novel object in comparison with wild-type littermates. *p<0.05, t test; n = 12–13.
DOI: 10.7554/eLife.02053.009
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complex can regulate GABABR-GIRK signaling without R7BP. Secondly, loss of R7BP and RGS7 has 
different effects on GABABR-GIRK coupling sensitivity. While elimination of RGS7 (or Gβ5) results in a 
parallel leftward shift in the concentration-response relationship, the concentration-response meas-
ured in R7bp−/− neurons shows markedly greater cooperativity. Thus, at low levels of GABABR stimula-
tion, R7BP is dispensable and its elimination fails to affect response amplitude. As the response reaches 
saturation, R7BP becomes indispensable and its elimination has the same effect on response ampli-
tude as loss of RGS7. These observations are inconsistent with the proposed role for R7BP as a critical 
factor in the assembly of RGS7-GIRK complexes (Zhou et al., 2012), which postulates the equivalence 
of R7BP effects across agonist concentrations and a similar impact of R7BP and RGS7 elimination on 
GIRK channel kinetics, and certainly not an increase in cooperativity of GIRK channel activation.

Based on our findings, we propose an alternative model, where R7BP sets GABABR-GIRK coupling 
efficiency. In this model, at low levels of GIRK activation, when released Gβγ subunits do not saturate 
the GIRK channel, deactivation kinetics are primarily mediated by RGS7/Gβ5 directly associated with 
the GIRK subunits. Under these conditions, there are virtually no genotype-dependent differences in 
the lag time of GIRK deactivation upon agonist removal. With higher agonist concentrations, as 
GABABR produces more Gβγ subunits, the amount of available free Gβγ exceeds that of activatable 
GIRK channels, evidenced by a delay that precedes GIRK current deactivation upon agonist removal. 
Under these conditions, R7BP elimination affects response sensitivity as much as elimination of RGS7. 
While response deactivation kinetics reflect Gβγ inactivation after it had a chance to interact with the 
channel, response sensitivity likely relates to the efficiency of the Gβγ reaching the GIRK channel. 
Considering that R7BP affects both of these parameters only when free Gβγ is produced in excess, we 
think that the RGS7/Gβ5 complex exists in two states: (1) anchored to the GIRK complex where it 
affects deactivation kinetics, and (2) anchored via R7BP to the plasma membrane outside of GIRK 
complex where it primarily determines response sensitivity.

In agreement with this model, we observe an increase in cooperativity of GIRK channel activation 
upon R7BP loss that suggests that RGS7/Gβ5 alone, but not in complex with R7BP, promotes more 
productive association of Gβγ with the channel. On an intuitive level, this may reflect larger proportion 
of Gβγ subunits that reach GIRK while being deactivated in its vicinity by RGS7/Gβ5. In contrast, com-
plexes of RGS7/Gβ5 with R7BP may predominantly act elsewhere on the plasma membrane, thereby 
decreasing the number of Gβγ subunits capable of reaching the channel. By physically binding to the 
GIRK channel, RGS7/Gβ5 may further act to promote productive interactions of Gβγ (and/or Gα) with 
the channel, thus increasing cooperativity of its activation. This model is also consistent with the 
observed decrease in RGS7 on the plasma membrane but largely preserved localization at specific 
postsynaptic sites where it might be anchored via complex formation with GIRK channels. Thus, the 
main role of R7BP appears to be in tuning the sensitivity of the response by endowing RGS7/Gβ5 
complexes with an ability to deactivate G proteins before they reach the GIRK channel.

RGS7 is a new player in learning and memory and synaptic plasticity
RGS proteins are potent negative regulators of both the extent and duration of neurotransmitter sig-
naling via G protein-coupled receptors (Sjogren, 2011; Xie and Martemyanov, 2011). As a result, 
knockout of individual RGS genes in mice is frequently associated with augmented GPCR signaling. 
This makes the analysis of changes in sensitivity of behavioral or cellular reactions to neurotransmitter 
actions associated with elimination of individual RGS proteins a powerful strategy that allows for 
establishing physiological receptor-RGS pairings. Using this strategy, two RGS proteins have been 
previously implicated in controlling GABABR signaling in vivo: RGS6 in cerebellar neurons (Maity et al., 
2012) and RGS2 in the ventral tegmental area (Labouebe et al., 2007). Now, our findings establish 
that in hippocampal neurons, GABABR signaling is negatively regulated by RGS7. These observations 
complement earlier findings with RGS14, the only other RGS protein implicated in hippocampal syn-
aptic plasticity and spatial learning (Lee et al., 2010). However, in contrast to RGS7 that acts in the 
CA1 region, RGS14 functions in CA2 synapses and its ablation augments LTP and improves spatial 
learning in mice.

The major forms of synaptic plasticity (LTP, LTD and depotentiation) in the hippocampus have been 
implicated in learning and memory (Martin et al., 2000). Recent models propose that all three forms 
cooperate to affect distinct aspects of spatial information storage (Kemp and Manahan-Vaughan, 
2007). In relevance to this thinking, we found a selective disruption of LTD and depotentiation in 
RGS7−/− mice, but normal LTP. There is a mounting evidence suggesting an active and selective role of 
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LTD in object recognition and creation of spatial representation of memory (Kemp and Manahan-
Vaughan, 2007). For example, LTD but not LTP was found to be important for spatial memory 
consolidation and memory enhancement for novelty acquisition (Ge et al., 2010; Dong et al., 2012). 
Consistent with this, electrophysiological recordings in behaving animals show facilitation of LTD 
during novelty exploration (Xu et al., 1997, 1998; Manahan-Vaughan and Braunewell, 1999; 
Dong et al., 2012). Disruption of LTD via genetic mutations often results in memory deficits, par-
ticularly affecting behavioral flexibility (Nicholls et al., 2008), while LTD enhancement can lead to 
improvement in spatial reversal learning (Duffy et al., 2008). In particular, our findings resemble the 
phenotype of SRF−/− mice, which exhibited a selective disruption of LTD in hippocampal CA1 neurons 
paralleled by an inability to learn hippocampus-dependent tasks (Etkin et al., 2006). While specific 
knowledge on how depotentiation contributes to memory is still lacking, it has been observed  
that exposure to novel environment and spatial exploration depotentiates previously-induced LTP 
(Xu et al., 1998). Together, our observations in mice lacking RGS7 reinforce the idea that normal 
inhibitory synaptic plasticity (LTD and depotentiation) is required for hippocampal-dependent learning 
and memory.

Although, it has never been systematically addressed in a single study, GIRK channel elimination 
was reported to enhance LTP (Cramer et al., 2010). Given that the Girk2−/− neurons are relatively 
depolarized, the enhanced LTP likely results from a general increase in excitability. Conversely, GIRK2 
over-expression in transgenic models of Down syndrome leads to reduced LTP (Kleschevnikov et al., 
2004; Siarey et al., 2005), but enhanced LTD (Siarey et al., 2005; Cooper et al., 2012). Interestingly, 
GIRK2 over-expression and ablation both resulted in decreased depotentiation (Chung et al., 2009; 
Cooper et al., 2012).

Similar to Down syndrome mouse models, Rgs7−/− mice also exhibited augmented GABABR-GIRK 
signaling. However, in the case of Rgs7−/− mice, this augmentation resulted in yet another distinct 
phenotype: selective deficits in LTD and depotentiation, with normal LTP. Several lines of evidence 
argue that these changes in synaptic plasticity are driven by a postsynaptic mechanism whereby RGS7 
controls inhibitory GIRK-dependent signaling in the CA1 pyramidal neurons. First, CA1 pyramidal 
neurons lacking RGS7 are hyperpolarized and less excitable relative to wild-type neurons, a property 
that is significantly shaped by the GIRK channels. Second, basal excitatory transmission is unaltered 
in Rgs7−/− slices. Third, direct measurements of events that reflect excitatory presynaptic function 
(e.g., FV and PPR) reveal no changes caused by the elimination of RGS7. Given these observations, we 
propose that GIRK signaling sets the general excitability of postsynaptic pyramidal neurons, which in 
turn determines a sliding scale window for the induction of different forms of synaptic plasticity. By 
adjusting signaling strength in the hippocampal GABABR-GIRK pathway, the RGS7/Gβ5/R7BP com-
plex influences the range of neuronal responses necessary for memory formation. While dysregulation 
of GABABR-GIRK signaling in hippocampus may be sufficient for explaining the effects of RGS7 on 
learning an memory, at this point we cannot rule out a contribution of other brain regions and/or 
signaling pathways in the process. In any event, we believe that the results of this study establish 
RGS7 complex as an important molecule for understanding and/or correcting the pathology of neuro-
psychiatric disorders associated with disruptions in synaptic plasticity and imbalances in inhibitory 
signaling.

Materials and methods
Animals
All studies were carried out in accordance with the National Institute of Health guidelines and 
were granted formal approval by the Institutional Animal Care and Use Committee of the Scripps 
Research Institute. The generation of Rgs6−/− (Posokhova et al., 2010), Rgs7−/− (Cao et al., 2012), 
R7bp−/− (Anderson et al., 2007) mice were described earlier. All animals used for comparing geno-
types were littermates derived from heterozygous breeding pairs. Mice were housed in groups on a 
12 hr light–dark cycle with food and water available ad libitum. Males and females (2–5 months) 
were used for all experiments.

Antibodies and western blotting
Lysates were prepared by homogenizing hippocampal tissue from age-matched littermates by 
sonication in the lysis buffer (1 × PBS, 150 mm NaCl, 1% Triton X-100, protease inhibitors) followed 
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centrifugation at 14,000×g for 10 min. The resulting extract was used for protein concentration deter-
mination by the BCA protein assay (Pierce, Rockford, IL). The lysates were adjusted to equalize total 
protein content by adding lysis buffer and 2x SDS sample buffer. Samples were boiled for 5 min, 
resolved on SDS-PAGE gels, transferred onto PVDF membrane and subjected to western blot analysis 
using HRP conjugated secondary antibodies and ECL West Pico (Pierce) detection system. Signals 
were captured on film and scanned by densitometer, and band intensities were determined using 
NIH ImageJ software. Rabbit anti-R7BP (TRS) and rabbit Gβ5 (ADTG) were generous gifts from 
Dr William Simonds (NIDDK/NIH). Anti-RGS6 was generated and used previously (Posokhova et al., 
2010). Chicken IgY anti-RGS7 antibody was from Thermo Scientific (Waltham, MA), anti-GIRK2 was 
purchased from Alomone labs (Jerusalem, Israel) and anti-β-actin was from Sigma (St. Lois, MO).

Hippocampal cultures
Primary cultures of hippocampal neurons were prepared using a modified version of a published pro-
tocol (Xie et al., 2010). Briefly, hippocampi were extracted from neonatal (P1-3) pups and placed into 
an ice-cold HBSS/FBS solution: Hank’s Balanced Salt Solution (Sigma; St. Louis, MO), 4.2 mM NaHCO3, 
1 mM HEPES, and 20% FBS. The tissue was washed twice with HBSS/FBS, and then three times with 
HBSS alone. Hippocampi were digested at room temperature for 5 min with 10 mg/ml Trypsin Type XI 
(Sigma; St. Louis, MO) in a solution that contained (in mM): 137 NaCl, 5 KCl, 7 Na2HPO4, and 25 HEPES 
(pH 7.2). The tissue was washed twice with HBSS/FBS and three times with HBSS alone, and then hip-
pocampi were mechanically-dissociated in HBSS (supplemented with 12 mM MgSO4) using Pasteur 
pipettes of decreasing diameter. The neurons were pelleted by centrifugation (600×g for 10 min 
at 4°C) and plated onto 8-mm glass coverslips pre-treated with Matrigel (BD Biosciences; San Jose, 
CA) in 48-well plate. Neurons were allowed to adhere for 30 min prior to adding 0.3 ml of pre-warmed 
culture medium consisting of Neurobasal A (Life Technologies; Carlsbad, CA), 2 mM GlutaMAX-I 
(Life Technologies, Carlsbad, CA), 2% B-27 supplement, and 5% FBS. After 4–12 hr, culture media was 
completely replaced with the same media without FBS. Neurons were incubated at 37°C/5% CO2, 
and half of the medium was replaced with fresh medium on each of the first 3 days of culture. Neurons 
were kept in culture for 10–14 days prior to experiments.

Somatodendritic GIRK current recordings
Coverslips containing neurons were transferred to a chamber containing a low-K+ bath solution (in mM): 
145 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 5.5 D-glucose, 5 HEPES/NaOH (pH 7.4). Borosilicate patch 
pipettes (3–5 MΩ) were filled with (in mM): 130 KCl, 10 NaCl, 1 EGTA/KOH (pH 7.2), 0.5 MgCl2, 
10 HEPES/KOH (pH 7.2), 2 Na2ATP, 5 phosphocreatine, 0.3 GTP. Baclofen (R-(+)-b-(aminomethyl)-
4-chlorobenzenepropanoic acid hydrochloride) was purchased from Sigma (St. Louis, MO). Baclofen-
induced currents were measured at room temperature using a high-K+ bath solution (in mM): 120 NaCl, 
25 KCl, 1.8 CaCl2, 1 MgCl2, 5.5 D-glucose, 5 HEPES/NaOH (pH 7.4). The high-K+ bath solution 
(+/− baclofen) was applied directly to the soma and proximal dendrites with an SF-77B rapid perfusion 
system (Warner Instruments, Inc.; Hamden, CT).

Current responses to the application of the high-K+ solution (+/− baclofen) were measured at a 
holding potential of −80 mV. Membrane potentials and whole-cell currents were measured in large 
neurons (>75 pF) with hardware (Axopatch-700B amplifier, Digidata 1440A) and software (pCLAMP 
v. 10.3) from Molecular Devices (Sunnyvale, CA). All currents were low-pass filtered at 2 kHz, sampled 
at 5 kHz, and stored on computer hard disk for subsequent analysis. Peak and steady-state current 
amplitudes were measured for each experiment. Current activation rates were extracted from a stand-
ard exponential fit of the current trace corresponding to the onset of drug effect and the peak evoked 
current, while deactivation rates were extracted from an exponential fit of the trace corresponding to 
the return of current to baseline following removal of drug (Clampfit v. 10.3 software). Current desen-
sitization was defined as % change in steady state current from the maximal baclofen-evoked response 
amplitude during 10 s of continuous drug application. Only experiments where access resistances 
were stable and low (<20 MΩ) were included in the analysis.

Immunogold electron microscopy
Immunohistochemical reactions were carried out using the pre-embedding immunogold method as 
described earlier (Lujan et al., 1996). Briefly, after blocking with 10% serum for 1 hr at room temper-
ature free-floating sections were incubated for 48 hr with anti-RGS7 antibodies (1–2 mg/ml). Sections 
were washed and incubated for 3 hr with goat anti-rabbit IgG coupled to 1.4 nm gold (Nanoprobes 
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Inc) at 1:100 dilution. Sections were washed, postfixed in 1% glutaraldehyde and processed for silver 
enhancement of the gold particles with an HQ Silver kit (Nanoprobes Inc.). The reacted sections were 
treated with osmium tetraoxide (1% in 0.1 M PB), block-stained with uranyl acetate, dehydrated in 
graded series of ethanol and flat-embedded on glass slides in Durcupan (Fluka) resin. Regions of 
interest were cut at 70–90 nm on an ultramicrotome (Reichert Ultracut E; Leica). Staining was per-
formed on drops of 1% aqueous uranyl acetate followed by Reynolds’s lead citrate. Ultrastructural 
analyses were performed in a Jeol-1010 electron microscope.

To establish the relative the abundance of RGS7 immunoreactivity along the plasma membrane of 
pyramidal cells, we used 60-µm coronal slices processed for pre-embedding immunogold immunohis-
tochemistry. The procedure was similar to that used previously (Lujan et al., 1996). Briefly, for each of 
three animals from different postnatal ages and adult, three samples of tissue were obtained for prep-
aration of embedding blocks (totalling nine blocks for each age). To minimize false negatives, electron 
microscopic serial ultrathin sections were cut close to the surface of each block, as immunoreactivity 
decreased with depth. We estimated the quality of immunolabelling by always selecting areas with 
optimal gold labelling at approximately the same distance from the cutting surface. Randomly selected 
areas were then photographed from the selected ultrathin sections and printed with a final magnifica-
tion of 45 000X. Quantification of immunogold labelling was carried out in reference areas totalling 
approx. 1,800 µm2 for each age. Immunoparticles identified in each reference area and present in dif-
ferent subcellular compartments (dendritic spines, dendritic shafts and somata) were counted. We 
measured the radial distance of each immunoparticle to the plasma membrane, being 0 for those just 
located in the plasma membrane. The data was expressed as percentage of immunoparticles along 
the radial distance from the plasma membrane expressed in nanometers.

Hippocampal slices
Mice were sacrificed under isoflurane anesthesia, and brains were rapidly removed and placed in 
ice-cold artificial cerebrospinal fluid (aCSF) without CaCl2, composed of (mM): 124 NaCl, 3 KCl, 
24 NaHCO3, 1.25 NaH2PO4, 1 MgSO4, and 10 D-Glucose, equilibrated with 95% O2 and 5% CO2. 
The tissue was cut in 350–400 µm thick sections with a Vibrating microtome (Leica VT1200S, Germany). 
The slices were warmed to 35°C for 25–45 min in aCSF supplemented with 2 mM CaCl2, and equili-
brated with 95% O2 and 5% CO2. Then slices were maintained in gassed aCSF at room tempera-
ture until being transferred to submerged-type recording chambers of volume ∼1.5 ml. Here, the slices 
were constantly superfused (1–2 ml/min) with warmed (30–31°C), gassed aCSF. All measurements 
were performed by an experimenter blind to genotype.

Patch clamp recordings in slices
CA1 neurons were visually identified in the hippocampal transverse slices of 350 µM thickness using 
Scientifica SliceScope system. Glass microelectrodes with an open-tip resistance of 3.5–6.5 MΩ were 
used. The following internal solution was used (mM): 130 K-Gluconate, 20 KCl, 10 K-HEPES, 0.2 EGTA, 
0.3 Na-GTP and 4 Mg-ATP (pH 7.3). To determine intrinsic cellular properties such as resting mem-
brane potential, input resistance and spike numbers, 500 ms, 50 pA, 10-step hyperpolarizing and 
depolarizing current injections were delivered every 10 s. Cells with series resistance >20 MΩ or 
resting membrane potentials > −55 mV were excluded from analysis. Liquid junction potential was 
−14 mV. Spontaneous EPSCs (sEPSCs) were measured by holding the cells at −70 mV in normal aCSF. 
At least 100 events, which are above 4 pA, were obtained during sEPSC measurements in each cell.

Synaptic plasticity measurements
Field excitatory postsynaptic potentials (fEPSPs) were elicited by a concentric bipolar stimulating 
electrode (inner diameter [ID]: 25 µm; outer diameter [OD]: 125 µm, FHC Inc., Bowdoin, ME) con-
nected to a constant current isolated stimulator unit (A-M Systems; Carlsborg, WA) and recorded with 
low resistance (3–5 MΩ) glass pipettes (ID: 1.16 mm, OD: 1.5 mm, Harvard Apparatus, Holliston, MA) 
filled with aCSF. The electrodes were placed in the stratum radiatum of the CA1 area of the dorsal 
hippocampus slices. Stimulation frequency was set to 0.05 Hz. Input-output curves were generated by 
adjusting the stimulus intensity in increments of 10 µA, from 0 to 100 µA. Paired pulse ratio (PPR) was 
assessed using a succession of paired pulses separated by time intervals ranging from 25 to 1000 ms, 
delivered every 20 s. The degree of facilitation was determined by taking the ratio of the initial slope 
of the second fEPSP to the initial slope of the first fEPSP. A PPR >1 was considered to reflect facil-
itation. For synaptic plasticity experiments, a stable baseline for at least 30 min was achieved prior to 
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induction. LTP and LTD were recorded for 1 hr after HFS (2 tetanized stimuli (TS) of 100 Hz for 1s each) 
or LFS (2 Hz for 10 min, 1200 pulses) was applied. Depotentiation was achieved by applying HFS 
followed by LFS after 1-2 min interval.

Behavioral analysis
Spatial learning and memory were evaluated in the Morris water maze using a video tracking systems 
(EthoVision XT, Noldus Information Technology, Wageningen, Netherlands). Mice first received 4 cued 
trials (visible but variable platform location) on the first day to determine if non-associative impairment 
in other behavioral responses affecting performance in this task, such as exploratory activity, motor 
coordination, vision and motivation. After completing the cued trials, spatial learning acquisition was 
evaluated during the place condition (hidden platform, constant location; 4 trials/day, 6 consecutive 
days). Escape latency and success rates in finding hidden platform were calculated for all place trials. 
Retention performance was evaluated during probe trials (platform removed), which were conducted 
24 hr after the last cued trial on the sixth day. Latency to the first target platform area crossing and the 
number of crossings in the probe trial (1 min) served as the dependent variables.

For fear conditioning experiments, mice were habituated in individual conditioning chambers to 
obtain freezing baseline on the first day. On the second day, mice were trained in individual condi-
tioning chambers (Med Associates, St. Albans, VT). Video images were recorded via video tracking 
systems (EthoVision XT, Noldus Information Technology, Wageningen, Netherlands). In context A, 
visible light was turned on, a stainless steel grid floor inserted, and the chambers were cleaned with 
70% ethanol prior to conditioning. In context B, white plastic inserts were placed inside the chamber 
to change the shape, size and texture of the wall and the floor. A small weight boat with orange extract 
is placed behind the wall inserts to provide a novel smell for the chambers. The chambers were cleaned 
with 70% isopropanol. During the training sessions, mice were placed in context A and allowed to 
explore for 3 min prior to the delivery shocks (0.75 mA, 1 s). We used auditory tone (85 dB, 30 s dura-
tion) as CS and an electric foot shock (delivered through the grid floor, 0.75 mA AC current, 1 s dura-
tion) as US. Mice received 3 tone-shock stimuli (with 1–2 min interval) during the training day. In every 
session, tone always co-terminated with electric shock. Mice were removed from the conditioning 
chamber 30 s after the last shock. Contextual test (5 min) was done in context A 24 hr after training. 
Cue test was performed 1 hr after contextual test in context B. The animals were brought into the test 
room in a different covered mover with different bedding inside to avoid contextual reminders. The 
animal was immediately placed in the contextual B chamber and allowed to explore for 3 min prior to 
the delivery the auditory tone (85 dB) for another 3 min. The freezing response was measured with the 
automated tracking and analyzed offline.

For the novel object recognition test, mice were habituated to the arena for two consecutive days, 
where they were placed in a white plastic open-box of dimensions 43.2 cm2 by 30.5 cm height for 
10 min each. The acquisition phase of the object recognition assay involved placing each individual 
mouse in the test arena for 8 min in the presence of two identical objects (either silver or black objects 
in different shape, size and texture, the order of which alternated between mice). The video was 
recorded via a camera. The time spent investigating both identical objects was recorded by automatic 
tracking system (EthoVision XT, Noldus Information Technology, Wageningen, Netherlands). 24 hr 
after the acquisition phase, each mouse was reintroduced to the test arena for 8 min. During this phase 
(retention testing phase) the mouse was presented with one copy of the object that it was exposed to 
during the acquisition phase (familiar object) and one novel object (either silver or black objects, 
depending on which was presented during the acquisition phase). The time spent investigating each 
object was recorded. All objects and the testing box were thoroughly cleaned with 70% methanol 
between mice to remove any odor cues.

Measurements of Gβγ interactions with effector by BRET assay
Agonist-dependent cellular measurements of bioluminescence resonance energy transfer (BRET) 
between Venus-Gβ1γ2 and its effector fragment masGRK3ct-Nluc were performed upon reconstitu-
tion in living cells as previously described with slight modification (Hollins et al., 2009; Masuho et al., 
2013). The masGRK3ct-Nluc construct contained amino acids G495-L688 of bovine GRK3 (NP_776925), 
preceded by a myristic acid attachment peptide (mas; MGSSKSKTSNS). The stop codon of GRK3 was 
replaced with a GGGS linker, which was followed by the NanoLuc (Nluc) (Hall et al., 2012). Briefly, 
GABAB1R, GABAB2R, GαoA, Venus156-239-Gβ1, and Venus1-155-Gγ2 constructs were transfected 
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into HEK293T/17 cells at a 1:1:2:1:1 ratio with increasing masGRK3ct-Nluc from 0.125 to 6 in ratio. 
5 µg total DNA was delivered per 4 × 106 cells in a 6-cm-dish. 16–24 hr post transfection cells were 
stimulated with 100 µM GABA followed by treatment with 100 µM CGP 54626. The BRET signal is 
determined by calculating the ration of the light emitted by the Venus-Gβ1γ2 (535 nm) over the light 
emitted by the masGRKct-Rluc8 (475 nm). The average baseline value recorded prior to agonist stim-
ulation was subtracted from BRET signal values, and the resulting difference (ΔBRET) was obtained.

Data analysis
Statistical analyses were performed using Prism (GraphPad Software, Inc.; La Jolla, CA). Data are pre-
sented throughout as the mean ± SEM. Student t test, one-way or two-way ANOVA, followed by 
Bonferroni’s post hoc test were used as appropriate. The minimal level of significance was set at p<0.05.
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