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Optimal Accumulation of Evidence across Time and Cues 

The subjects are seated on a motion platform in front of a display screen. They receive 

information about self-motion direction either through vestibular cues (platform motion), 

visual cues (visual flow field), or through both cues in combination. They perform a 

heading discrimination task, and are instructed to indicate as quickly and as accurately as 

possible if they are moving rightward or leftward relative to straight ahead. Below, we 

develop – based on a combination of Bayesian inference and diffusion models – an ideal 

observer model for this task. 

Denote h  as the heading direction, with 0h =  being straight ahead, and 0h >  

being rightward motion relative to straight ahead. Each sensory cue provides, at each 

point in time, noisy momentary evidence about this heading direction. The task of the 

decision maker is to accumulate this evidence over time and cues, and, after some time, 

decide whether 0h ≥  or 0h <  based on the belief: 

 ( )0 | all momentary evidence .p h ≥  (1) 

Below, we first describe for each cue how we assume this momentary evidence to 

encode h ,  and then we show how to compute the above belief for various, increasingly 

realistic cases. We begin by assuming a single sensory cue that provides evidence whose 

reliability is constant over time. This leads to a formulation similar to diffusion models 

(Ratcliff 1978; Bogacz, Brown et al. 2006), and we utilize this relationship to model the 



 2 

speed/accuracy trade-off. We then show how to extend this formulation to cases in which 

the reliability of the momentary evidence changes with time, as is the case in both of our 

unimodal conditions. After that, we derive how a single diffusion model can optimally 

accumulate evidence across cues, even if the reliability of the evidence differs between 

the cues. We will again initially assume the reliability of the evidence to be constant in 

time, and then deal with the general case of  time-varying cue reliability in which the 

time-course differs between the two cues. The last case describes the ideal observer/actor 

model for the multi-modal condition of our task. 

In what follows, the subscripts ·
vis

, ·
vest

, and ·
comb

 refer to the visual-only, 

vestibular-only, and combined conditions, respectively. 

Momentary Evidence 

We assume that, for either modality, information about heading direction is encoded by a 

noisy sensory signal, called the momentary evidence and denoted by x� , according to 

 ( ) sin )( ) ( ,x b t k h tη= +�  (2) 

where ( )b t k  is the sensitivity that determines the strength with which h  influences x� , 

and ( )tη  is a unit variance Gaussian white noise process. The only information about 

heading relevant to our task is the horizontal projection onto a line that is orthogonal to 

straight ahead. For this reason, heading h  influences the momentary evidence only 

through this projection, as given by sin( )h . 

The subject’s sensitivity to the evidence is characterized by the terms k  and ( )b t , 

where k  determines how effectively each subject can make use of the incoming 

information, and ( )b t  encodes how the reliability of this information changes over time. 

Thus, the sensitivity ( )b t k  is a composite measure that takes into account both how 

reliably the momentary evidence x�  reveals the heading direction (determined by 

experimenter), as well as how effective the subject is in using this information (property 

of subject). Acceleration, ( )a t , is the physical quantity that modulates the reliability of 

the inertal motion (i.e, vestibular) cues, such that the subject’s sensitivity follows the 

same time course, ( ) ( )
vest

b t a t= . We assume that, at least for the slow speeds used in the 

experiment, the reliability of the visual cue is mainly determined by motion velocity, 
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( )v t , such that ( ) ( )
vis

b t v t=  (Lisberger and Movshon 1999; Price, Ono et al. 2005; 

Schlack, Krekelberg et al. 2007). 

For further development, we consider a time-discretized version of the 

momentary evidence, 
n

xδ , that is related to x�  by 
( 1)

(t)d
n

n
n

x x tδ
+ ∆

∆
= ∫ � , where ∆  denotes 

the short time periods into which time is discretized. Given that ∆  is sufficiently small, 

we can assume the reliability time-course ( )
n

b b n≈ ∆  to be constant for each n . Then, 

~ N( sin( ) , )
n n

x kb hδ ∆ ∆  is distributed according to a normal distribution with mean 

sin( )
n

kb h ∆  and variance ∆ . As 0∆ → , the use of either x  or 
n

xδ  becomes equivalent. 

Thus, all of the following is valid for either definition. The amount of information that 

n
xδ  provides for the discrimination of sin( )h , as measured by the Fisher Information, is 

given by 2 2I (sin( ))
nx nh k bδ = ∆ . This confirms 

n
kb  as measure of sensitivity to changes in 

the momentary evidence. 

Accumulating Evidence with Constant Reliability over Time 

Assume that the subject observes the stimulus for T  seconds and wants to decide 

between 0h <  and 0h ≥  based on all momentary evidence observed up to that point. For 

now we assume the reliability of the evidence to be constant over time, such that 

0 : ( ) 1t b t∀ ≥ =  and the momentary evidence becomes ( )~ N sin( ) ,nx k hδ ∆ ∆ . 

Given that 0h ≥  corresponds to sin( ) 0h ≥ over the range of headings of interest, 

we want to find the belief 1:(sin( ) 0 | )
N

p h xδ> , where TN ∆≈  and { }1: 1, ,N Nx x xδ δ δ…=  

denotes all momentary evidence up to time T N≈ ∆ . In order to do so, we first compute 

the posterior sin( )h  by Bayes’ rule, resulting in 
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where we have assumed a uniform prior, (sin( )) 1p h ∝  over sin( ) [ 1,1]h ∈ − , and have 

used 
0

( )d ( )
T

nn
x x t t x Tδ ≈ =∑ ∫ �  and 

n
T∆ ≈∑ . Furthermore, we have assumed that 

sin( )h  is small (as is the case in our experiment, with | | 16degh ≤  and thus 

sin( ) 0.276h < ), such that we can approximate the posterior by a Gaussian despite the 

restriction that sin( ) [ 1,1]h ∈ − . The above shows that the posterior only depends on the 

sufficient statistics ( )x T  and T , rather than the whole sequence 1:Nxδ  of observations. 

Furthermore, the posterior variance decreases monotonically with T , as more evidence 

provides us with a more certain estimate. 

From this posterior we find the belief of sin( ) 0h ≥  by 

 ( ) ( )
1

2

0

( ) ( )
sin( ) 0 | ( ), sin( ) | ( ), d ,

x T x T
p h x T T p h y x T T y k T

kT T

  
≥ = = ≈ Φ = Φ   

   
∫  (4) 

where we again have assumed the posterior to be well approximated by a Gaussian that 

has negligible mass outside the range [ 1,1]− , and ( ) ( | 0,1)d
a

Nα β β
−∞

Φ = ∫  is the standard 

cumulative Gaussian, with 1
2

( )αΦ ≥  if 0α ≥  and 1
2

( )αΦ <  otherwise. Consequently, 

the decision maker ought to decide in favor of 0h ≥  if ( ) 0x T ≥ , and 0h <  otherwise 

(Drugowitsch, Moreno-Bote et al. 2012). 

 The above describes the optimal decision strategy given all observed momentary 

evidence up to some time T . However, it does not provide us with a way to choose at 

which time enough evidence has been collected to commit to a decision. We achieve the 

latter by linking this decision strategy to standard diffusion models in the next section.  
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Relation to Standard Diffusion Models 

The framework described above can be cast as a standard diffusion model, in which 

accumulated momentary evidence is represented by the position of a drifting and 

diffusing “particle”, ( )x t . Decisions are triggered by bounding the particle space from 

below at θ−  and from above by θ . As soon as either of these bounds is reached, the 

decision maker ought to commit to the corresponding decision. Thus, diffusion models 

provide us with a strategy for choosing at which time to commit to a decision. 

Furthermore, the analysis in the previous section shows that these decisions take into 

account all momentary evidence up until the point of the decision and are therefore 

Bayes-optimal (Laming 1968; Gold and Shadlen 2002; Bogacz, Brown et al. 2006). 

From the perspective of diffusion models it seems as if the only decisive factor to 

commit to a decision is the particle location ( )x t . In contrast, our Bayesian analysis 

above seems to additionally require information about time, t , to compute the relevant 

probabilities. The omission of time in diffusion models stems from partitioning the belief 

space into ( ) 1
2

sin( ) 0 | ( ),p h x T T≥ ≥  and ( ) 1
2

sin( ) 0 | ( ),p h x T T≥ <  while neglecting the 

actual magnitude of this belief. This magnitude, however, is informative about the 

certainty at which this decision is made. Consider, for example, that the decision maker 

chooses 0h ≥  at time t , corresponding to ( )x t θ= . Then, the belief of making a correct 

decision is given by 

 ( )
1

, ,
2

sin( ) 0 | ( ) t
t

p h x t
θ

θ
 

= Φ ≥ 
 

≥ =  (5) 

which is a decreasing function of time. This expression follows directly from Eq. (4) 

despite the presence of a bound, as we (implicitly) condition on having reached the bound 

for the first time at time t , such that we do not need to consider the possibility of having 

crossed this bound before (Drugowitsch, Moreno-Bote et al. 2012). This demonstrates 

that, even with a constant bound in particle space, diffusion models make decisions at 

different levels of confidence (Kiani and Shadlen 2009). In particular, early decisions will 

be of high confidence, while late decisions are made at a low level of confidence. Thus, 

this constant bound in particle space corresponds to a collapsing bound in belief space. 
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Qualitatively, such a strategy has been shown to perform optimal decision-making in the 

sense of maximizing the reward rate (Drugowitsch, Moreno-Bote et al. 2012). 

When defining the momentary evidence about heading, we have followed 

standard diffusion model conventions and have assumed a unit diffusion variance. We 

will show that this is not a restriction, as for any diffusion model with a non-unit variance 

we can find a diffusion model with unit variance that features exactly the same behavior. 

Therefore, we can assume unit variance without a loss of generality. In particular, assume 

a diffusion variance 2σ , such that the momentary evidence becomes 

( ) sin( ) ( )x b t k h tσ σ ση= +� . This evidence relates to the unit-variance evidence by xx σ
σ= �

�  

with kk σ
σ= . The same relationship ( )( ) x tx t σ

σ=  holds between the particle locations (i.e. 

the accumulated momentary evidence). This shows that assuming a non-unit variance is 

equivalent to a re-scaling of the particle space. We can compensate for this re-scaling by 

re-scaling the bounds, leading to a diffusion model with exactly the same behavior as one 

with a unit diffusion variance. We will use this property later, to find the minimal 

parameterization of our model while assuming that the diffusion variance is modulated by 

visual motion coherence.  

Accumulating Evidence with Time-Varying Reliability 

In this section we will show that, as soon as the reliability of the evidence changes over 

time, particle location and time are no longer sufficient statistics. Instead, we need to take 

the changing reliability of the cues into account when accumulating the momentary 

evidence. This will lead to a re-definition of the particle location in diffusion models that 

allows us to make Bayes-optimal decisions even with time-varying reliability of the 

momentary evidence. 

As before, we are interested in computing the belief ( )1:sin( ) 0 | Np h xδ≥ . 

However, now we assume the sensitivity k  to be weighted by the time-varying function 

( )b t , such that the momentary evidence is given by ( )sin~ ,( )n nx N b hkδ ∆ ∆ . With this 

evidence, the posterior of sin( )h  results in 
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where we have defined 

 2 2

0 0
( ) ( ) ( )d , ( ) ( ) d .

T T

n n nnn
X T b t x t t b B T b t t bxδ≈ = ≈ ∆= ∑ ∑∫ ∫�  (7) 

Thus, ( )X T  is the accumulated momentary evidence, weighted at each point in time by 

the sensitivity time course. ( )B T  is the squared accumulated sensitivity time course, 

which we will call the power of the evidence. Comparing Eq. (3) to Eq. (6) shows that 

( )X T  replaces ( )x T  as the particle location, and ( )B T  becomes the new passed time, 

replacing T . Using ( ) 1b t =  for all t  causes ( )B T T=  and ( ) ( )X T x T=  and recovers the 

original formulation. While it might seem that a negative ( )b t  (for example, in the case 

of acceleration) causes the momentary evidence in Eq. (7) to be weighted negatively, this 

is in fact not the case, as ( )x t�  is already scaled by ( )b t  according to Eq. (2). Thus, if we 

replace ( )x t�  in Eq. (7) by Eq. (2), ( )b t  will be squared, causing its effective influence on 

the momentary evidence to be always non-negative. 

With the above posterior, the belief becomes 

 
( )

(sin( ) 0 | ( ), ( )) .
( )

X T
p h X T B T

B T

 
≥ = Φ   

 
 (8) 

Therefore, the sign of ( )X T  now determines the decision. This confirms that ( )X t  takes 

the role of the particle location in a Bayes-optimal diffusion model that triggers a 

decision as soon as either of the bounds is reached. 

 The above derivation shows that diffusion models that use the un-weighted ( )x t  

as their particle location become sub-optimal as soon as the reliability of the evidence 

changes with time. Consider, for example, a task in which ( ) 0b t =  for 0 t T≤ ≤ , and 

( ) 1b t =  for t T> , such that for all t T≤ , the momentary information contains only noise 

and no information about h . If we were to use ( )x t , we would initially only accumulate 
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noise while treating it as evidence, which is clearly sub-optimal. ( )X t  avoids this 

problem by giving zero weight to all evidence up until T , and only starts accumulating 

evidence thereafter. This principle finds its parallel in the standard cue combination 

literature, where it is known that cues ought to be weighted according to their reliability 

(Clark and Yuille 1990). If one of the cues has a very low reliability, it does not 

contribute to the decision. The same applies here, but rather than accumulating evidence 

across cues, we accumulate across time. 

Using ( )X T  instead of ( )x T  and ( )B T  instead of T  requires a re-interpretation 

of what a time-invariant bound on ( )X T  means. From Eq. (8) we can see that the 

decision confidence at the bound (where ( )X T θ= ) drops monotonically with ( )B T . 

Thus, a constant bound on the particle location still implies a collapsing bound on belief 

(as ( )B T  is monotonically increasing in time), but that the latter drops with ( )B T  rather 

than with T . Thus, the rate at which this bound drops now depends on the reliability of 

the momentary evidence. This completes the description of the Bayes-optimal decision 

making model for the two unimodal conditions. 

Accumulating Evidence across Time and Cues, with Constant Reliability 

We now describe how to accumulate momentary evidence if information about heading 

direction is available from multiple cues. For now, we assume the reliability of these cues 

to be constant over time. In the next section, we discuss the changes required when this is 

not the case. 

The visual and vestibular cues to heading provide momentary evidence given 

by ( ), ~ N )s ,in(vis n visx k hδ ∆ ∆  and ( ), sin~ ( ) ,vest n vestx N k hδ ∆ ∆ . Here, the sensitivities 
vis

k  

and 
vest

k  are again composite measures of how much information the momentary 

evidence provides about the heading, and how effective subjects are in utilizing this 

information. Given ,1:vis N
xδ  and ,1:vest N

xδ  up until time T N≈ ∆ , we find the posterior 

over sin( )h  by Bayes rule, resulting in 
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where we have used , ( )
vis n visn

x x Tδ ≈∑ , , ( )
vest n vestn

x x Tδ ≈∑ , and 
n

T∆ ≈∑ , and have 

defined 

 2 2 2 ( ) ( ), ( ).vis vest
comb vis vest comb vis vest

comb comb

k k
T T xk k x T

k
k x

k
= + = +  (10) 

This shows that the sensitivity, 
comb

k , based on both cues is at least as large as that of the 

more reliable cue, such that { }max ,comb vis vestk k k≥ . Furthermore, the combined particle 

location is a weighted sum of the particle locations for the two cues, with weights 

proportional to the sensitivity to either cue. The decision maker’s belief regarding 

sin( ) 0h ≥  is again given by Eq. (4), with ( )x T  replaced by ( )
comb

x T . 

Accumulating Evidence across Time and Cues, with Time-Varying 

Reliability 

In our task, the reliability of both cues varies over time. Furthermore, the time-course of 

variations in reliability differs between the two cues. As previously described, we assume 

the momentary evidence of the visual modality to be ( ), ~ N ( ) ,vis n vis nx k v sin hδ ∆ ∆ , and 

that of the vestibular modality to be ( ), ~ N ( ) ,vest n vest nx k a sin hδ ∆ ∆ , where 
n

v  and 
n

a  

denote stimulus velocity and acceleration, respectively. Making use of momentary 

evidence ,1:vis N
xδ  and ,1:vest N

xδ  until time T N≈ ∆ , the posterior over sin( )h  becomes 
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To derive the above, we have, as in Eq. (7), defined the sensitivity-weighted accumulated 

momentary evidence for each of the cues, 

 
0

,
0

,( ) ( )d ( ) ( )( ) , ( ) d ,
vis vis n vis n vest vest n vest

T

n nn

T

X T t t x T t t a xv t x v X a t xδ δ≈= = ≈∑∫ ∑∫� (12) 

and the accumulated power of the evidence for each cue, 

 2 2 2

0

2

0
d ( ) ( ) d( ( ) , .)

T

n

T

n nn
t v AV T a t aT v tt ≈ ∆ = ≈ ∆= ∑ ∫∫ ∑  (13) 

Furthermore, we have left the definition of 
comb

k  unchanged (see Eq. (10)), such that the 

total power of the evidence is given by 

 
2 2

2 2
( ) ( ) ( ).vis vest

comb comb

k k
D T V T A T

k k
= +  (14) 

As a consequence, the particle location for the combined diffusion model is, similar to 

Eq. (10), given by 

 ( ) ( ) ( ),vis vest
comb vis vest

comb comb

k k
X X X

k k
T T T= +  (15) 

This shows that, even if we have multiple sources of evidence whose reliability varies 

independently over time, we can express the process of accumulating evidence in a single 

diffusion model, defined by particle location ( )
comb

X t , with ( )D t  being the quantity that 

represents the passage of time. 

Based on the above formulation, we can derive how the momentary evidence of 

the combined diffusion model is constructed from the momentary evidence provided by 

the two cues. If we use 2

0
( ) ( ) d

t

D t d s s= ∫ , and replace ( )V t  and ( )A t  in Eq. (14) by their 

respective definitions in Eq. (13), we find the momentary power of the combined 

evidence to be given by 

 
2 2

2 2 2

2 2
( ) ( ) ( ) ,vis vest

comb comb

k k
d t v t a t

k k
= +  (16) 

which is the sensitivity-weighted average of the momentary powers of the two cues. With 

the above, Eq. (15) shows that the combined momentary evidence, ( )
comb

x t� , as used in 

0
( ) ( ) ( )d

t

comb comb
X t d s x s s= ∫ � , is composed of 
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comb vis vest

comb comb

k v t k a t
t x t xx

d t
t

k d t k
= + �� �  (17) 

that is, the sensitivity-weighted sum of the momentary evidence of each of the cues. With 

these two quantities, the momentary evidence in the combined diffusion model is given 

by ( )sin( ) ( )
comb comb

x k d t h tη= +� . This is easily verified by replacing ( )
vis

x t�  and ( )
vest

x t�  in 

Eq. (17) by their definitions, which leads to the above expression. 

To obtain the belief regarding sin( ) 0h ≥ , we again take the integral of the 

posterior sin( )h  over sin( ) 0h ≥ , which gives 

 ( )
( )

( ),sin ( ) .
(

( ) 0 |
)

comb
comb

X T
T D Tp h X

D T

 
= Φ   

 
≥  (18) 

Thus, as before, belief depends on particle location ( )
comb

X T  and accumulated power 

( )D T , and the decision itself is solely determined by the sign of ( )
comb

X T . As a 

consequence, we can again perform Bayes-optimal decision making by assuming bounds 

on ( )
comb

X t  at θ−  and θ , and decide in favor of sin( ) 0h ≥  (or sin( ) 0h < ) when the 

particle reaches the upper (or lower) bound. This completes the description of the Bayes-

optimal decision model for the combined condition. 

Optimality of evidence accumulation 

The above describe how to perform Bayes-optimal decision making in different 

scenarios. Bayes-optimal here means that the posterior upon which the decision is based 

contains the information of all momentary evidence observed from either cue. This is 

easily demonstrated in terms of preservation of information. Formally, if (sin( ))
x

I hδ  

denotes the Fisher information that 
x

δ  provides about changes in sin( )h , then the Fisher 

information in the posterior (e.g. Eq. (11)) is the sum of the Fisher information of all 

momentary evidence across both time and cues, that is 
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In the above, the first line follows from re-expressing the posterior Eq. (11) in terms of 

( )
comb

X T  (effectively turning it back into a likelihood) and computing its Fisher 

Information, the second line is based on substituting Eqs. (10) and (14) for 2

comb
k  and 

( )D T , the third line utilizes the definitions of ( )A T  and ( )V T  in Eq. (13), and the last 

line uses the expression for Fisher Information of the momentary evidence, as discussed 

in the Section Momentary Evidence. 

To relate this kind of optimality to that of standard diffusion models, let us 

consider how it compares to that of the Sequential Probability Ratio Test (SPRT, (Wald 

1947; Wald and Wolfowitz 1948)), of which this diffusion model is a continuous-time 

implementation (Bogacz, Brown et al. 2006). The SPRT assumes that the likelihood 

function associated with either option (e.g. “left” and “right”) is known and time-

invariant, and consists of accumulating the log-likelihood ratios of the momentary 

evidences to form a log-posterior. Once this log-posterior reaches a lower or upper time-

invariant threshold (in units of log-odds, and thus belief/error rate), the more likely option 

is chosen. This procedure has been shown to be optimal in at least two senses (Wald and 

Wolfowitz 1948; Bogacz, Brown et al. 2006). First, if the assumptions of the SPRT are 

satisfied, it performs Bayes-optimal accumulation of evidence. Second, of all fixed or 

sequential sample tests that feature the same or lower error rate as the SPRT, the SPRT is 

the procedure that leads to the fastest decisions, on average. 

Our decision procedure features the same optimality guarantees as the SPRT in 

the first sense that it is Bayes-optimal. However, it follows different underlying 

assumptions about the momentary evidence and how decisions are made, such that the 

second form of optimality relating to the speed of the decisions is not applicable. In 

particular, and in contrast to the SPRT, the likelihood function we utilize contains a 

nuisance parameter (the heading magnitude h ) that we integrate out to find the belief 
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(e.g., in the simplest case Eq. (4)). A consequence is that the belief at decision time, and 

thus the error rate, is, unlike in the SPRT, not time-invariant (see Eq. (5)). As this error 

rate is a function of the decision time, it cannot be fixed, such that we cannot compare the 

decision speed of our procedure to that of others with the same error rate. Alternatively, 

we could have attempted to operate with the error rate averaged over decision times. 

However, given that there exists no analytical expression for the decision time 

distribution and that the problem cannot be addressed by the same means as the SPRT 

(using Wald’s Martingale), this approach is unlikely to yield analytical statements. For a 

recent related attempt that uses numerical rather than analytical means, see (Drugowitsch, 

Moreno-Bote et al. 2012). 

The model’s psychometric function and discrimination threshold 

To provide better insight into how the different model components contribute to its 

performance, we derive the model’s psychometric function and discuss how it relates to 

the heading discrimination threshold. Considering for now the unimodal case with time-

varying reliability, the psychometric function is formed by plotting how the fraction of 

choosing one of the two options changes as a function of heading, h  (or, equivalently, its 

sine, sin( )h ). With respect to diffusion models, this fraction is the probability 

( )( ) | sin( ) , , ( )p X T h H T X Tθ θ= = = ±  for some heading H , and at some decision time 

T  at which a boundary has been reached (i.e. ( )X T θ= ± ), that the particle has reached 

the upper boundary, ( )X T θ= . 

We find this probability by first relating it to the model’s posterior, conditional on 

the heading magnitude h . Specifically, due to the symmetric nature of our task (both 

responses are a-priori equally likely correct) and the symmetry of our model (inverting 

the sign of both evidence and responses leaves the behavior unchanged), it can be shown 

(see Eq. (17) in (Drugowitsch, Moreno-Bote et al. 2012)) that the model’s choice 

probability equals its posterior belief, that is 

 ( ) ( )( ) sin| sin( ) , , ( ) , ,si( ) | ( ) .n( )p X T p h H X Th H T X T T h Hθ θ θ= == =± = ±= = (20) 
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In the above, the term on the right-hand side is the model’s posterior that, given that the 

upper bound was reached at time T  , the heading magnitude was sin( )h H=  rather than 

sin( )h H= − . This posterior is found by restricting Eq. (6) to these two cases, resulting in  

 

2 21
2

2 21
2

( )

( )

(sin( ) | ( ) ,

(

, ,s

sin( )

in( ) )

, ,sin( )( )| ) .

Hk H k B T

Hk H k B T

p h H X T

p h H X

T h H e

T T h H e

θ

θ

θ

θ

−

− −

= ± ∝

= ±

= =

= − = ∝
 (21) 

Using Eq. (20) and the fact that the probabilities in Eq. (21) sum to 1, we find after some 

cancellation of terms that the psychometric function is given by the logistic sigmoid, 

 ( )
2

| sin(
1

( ) ( ) .) ,
1 kH

h H Xp X T T
e

θ
θ θ

−
= =

+
= = ±  (22) 

Note that the above is increasing in k , H , and θ , as one would intuitively expect. 

Furthermore, it is independent of decision time T . Thus, as k  and θ  determine the slope 

of this function around 0H = , the psychometric curve’s steepness around this point 

grows with both the subject’s sensitivity and the height of the bound. As we have shown 

the multimodal case to be reducible to a single diffusion model, it features the same 

psychometric function. A similar psychometric curve for diffusion models with constant 

reliability over time can be derived by the use of Wald’s Martingale (see, for example, 

(Shadlen, Hanks et al. 2006) for a derivation). This derivation can be generalized to the 

time-variant reliability case, leading again to Eq. (22). 

To relate the model’s psychometric curve to the heading discrimination threshold, 

we assume that the latter is determined by fitting a cumulative Gaussian ( )H
σΦ  with 

discrimination threshold σ  to this psychometric function. Furthermore, we note that the 

logistic sigmoid ( )
1

1 exp( )Hβ
−

+ −  and the above cumulative Gaussian are cumulative 

distribution functions of the zero-mean Logistic distribution ( )1Logistic 0, β −  with scale 

1β −  and the zero-mean Gaussian ( )2N 0,σ  with variance 2σ , respectively, evaluated at 

H . These two functions are closely matched by equating the variances of their 

underlying random variables, which results in 
3

π
β

σ ≈ . Thus, if we use 2kβ θ=  from 

Eq. (22), we find that the discrimination threshold resulting from the extended diffusion 

model is approximately  
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 ,
12k

π
σ

θ
≈  (23) 

that is, it is inversely proportional to the sensitivity k  and the bound height θ . 

Model Parameterization and Fitting 

In the previous sections we have described the Bayes-optimal decision model for both the 

combined and the unimodal conditions. Here, we show how we have fitted these models 

to behavioral data obtained from human subjects. We first describe the model 

parametrization and then describe how we have found the parameters, separately for each 

subject, that best explain the behavior. Finally, we describe a set of alternative, sub-

optimal models that we have proposed in the main text as alternative hypotheses of how 

the observed behavior was generated.  

Model Parameterization 

The reliability of the visual cue was controlled by the percentage of dots that moved 

according to the current heading direction, from one video frame to the next, rather than 

being relocated randomly within the 3D volume. This percentage, called the motion 

coherence c , remained constant within a trial, but changed between trials, taking values 

{25%,37%,70%} ( {0.25,0.37,0.70}c ∈ ) ({ }0%,12%, 25%,37%,51%,70%  for subjects 

B2, D2, F2). The subject’s sensitivity to the momentary visual evidence depends on 

coherence, such that ( )
vis

k c  is a function of c . In the main text we lay out an argument, 

based on neurophysiological evidence, for how we believe coherence influences the 

sensitivity to the visual cue. Critically, this argument leads to the assumption that a 

change in c  not only modifies the drift rate in the diffusion model, according to 

, ( ) vis

vis visk c a c
γ

σ ∝  (
vis

a  and 
vis

γ  being model parameters), but also causes the diffusion 

variance to change according to 2 1( ) vis

vis
bc c

γσ ∝ +  (where 
vis

b  is another model 

parameter). The decision bound ,visσθ , on the other hand, cannot depend on coherence, as 

the latter is unknown to the subject. Specifying the visual-only conditions by drift rate, 

diffusion variance, and bound would lead to over-parameterization, as a model with 

diffusion variance different from unity generates the same behavior as a model that has 
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unit diffusion variance and drift rate and bounds adequately normalized (see above). We 

avoid over-parameterization by performing this normalization, resulting in 

 
, , ,( )

( ) ( )
( ) ( )

, .
1 1

vis

vis vis

vis vis visvis
vis vis

vis vis

k c c
c c

c cc c

a
k

b b

γ
σ σ σ

γ γ

θ θ
θ

σ σ
= = =

+ +
=  (24) 

This allows for an arbitrary proportionality constant in the relationship 

2 ( ) 1 vis

vis
c b c

γσ ∝ + , as this constant can be absorbed into 
vis

a  and ,visσθ . To summarize, 

we model behavior in the visual condition for any coherence by a unit variance diffusion 

model with sensitivity time-course given by ( )v t , and parameterized by 

,{ , , , }
vis vis vis vis

a b σγ θ . 

In the vestibular condition, momentary evidence is not influenced by coherence, 

such that we can model behavior with a unit-variance diffusion model having sensitivity 

vest
k , time-course ( )a t , and a diffusion model bound 

vest
θ . Thus, the model for the 

vestibular condition is parameterized by { },vest vestk θ . 

In the combined condition, the coherence of the visual stimulus again influences 

the sensitivity to the momentary evidence. Given that visual and vestibular cues are 

combined optimally, the sensitivity to the evidence is completely determined by that to 

the two separate cues. In particular, we have 2 2 2( ) ( )
comb vis vest

k c k c k= +  by Eq. (10) and its 

sensitivity time-course ( , )d t c  given by Eq. (16) with 
vis

k  replaced by ( )
vis

k c . As in the 

visual condition, we assume a constant bound ,combσθ  and a variance that is linearly 

related to coherence taken to power 
comb

γ , such that the normalized bound becomes 

 
,

( .
1

)
comb

comb

comb

comb

c
b c

σ

γ

θ
θ

+
=  (25) 

Thus, the model for the combined condition is characterized by a unit-variance diffusion 

model with sensitivity determined by the unimodal conditions, and a bound that is 

parameterized by { }, , ,
comb comb comb

bσθ γ . 

We assume that reaction times featured by the subjects are composed of the 

decision time, as predicted by the diffusion model, and a non-decision time that captures 

the initial stimulus processing delay and the motor preparation time. We require this non-
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decision time to be constant for all stimuli within each of the three stimulus modalities 

(vestibular, visual, combined), but we allow it to vary between modalities. Thus, the non-

decision time is captured by the three parameters { }, , ,, ,
nd vis nd vest nd comb

t t t . To account for 

random choices due to accidental button presses or lapses of attention, we introduce a 

lapse probability 
lapse

p  with which the decision was performed randomly (with 

probability 1
2  for each motion direction) rather than as predicted by the diffusion model. 

Additionally, we captured a potential bias in heading perception (i.e., horizontal shift of 

the psychometric function) by one additional bias parameter ,c condh�  for each combination 

of stimulus modality and coherence. Overall, given that the diffusion model predicts 

mean decision times represented by , ( , , , )
DM corr

t h c cond ϕ  and , ( , , , )
DM incorr

t h c cond ϕ  for 

correct and incorrect decisions, respectively, with model parameters ϕ , and given that 

the probability of choosing ‘rightward’ for each combination of heading direction h , 

visual motion coherence { }0.25,0.37,0.70c ∈  ( { }0,0.12,0.25,0.37,0.51,0.70c ∈  for 

subjects B2, D2, F2) and stimulus condition { }, ,cond vis vest comb∈  is represented by 

, ( , , )
DM r

p h c cond , we assumed that the subject would feature mean reaction times and 

choice probabilities given by 

 

( )
( )

( )

, , ,

, , ,

, ,
1
2

( , , , ) , , ,

( , , , ) , , ,

( , , , ) (1 ) , , .,

,

,

corr DM corr c cond nd cond

incorr DM incorr c cond nd cond

r lapse DM r c cond lapse

h c cond t h h c cond t

h c cond t h h c cond t

h c cond p p h h c cond p

t

t

p

ϕ ϕ

ϕ ϕ

ϕ ϕ

= + +

= + +

= − + +

�

�

�

 (26) 

The diffusion model itself and the non-decision times were parameterized by 12 

parameters { }, , , , ,, , , , , , , , , , ,
vis vis vis vis vest vest comb comb comb nd vis nd vest nd comb

a b k b t t tσ σγ θ θ γ θ , and an 

additional 8 parameters (14 parameters for subjects B2, D2, F2) captured the biases and 

lapse rates. With these parameters, we modeled reaction times (separately for correct and 

incorrect decisions) and proportions of rightward/leftward choices for 56 different 

combinations of heading direction h , coherence c , and stimulus condition cond .  In 

total, 168 data points (312 data points for subjects B2, D2, F2) were fit with a model 
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containing 12 primary parameters (along with 8 or 14 additional parameters to account 

for biases and lapse rates). 

Alternative Parameterization 

To ensure that our particular choice of parameterization did not bias our results on 

optimal evidence accumulation, we performed the same analysis with two additional 

parametric forms for sensitivities and normalized bounds. As shown in Fig. 7-figure 

supplement 2b and 2c, neither form changed our conclusions. Furthermore, Bayesian 

model comparison indicated that these alternative forms introduce a larger number of 

parameters than justifiable by the improvement in goodness-of-fit (Fig 4a). 

The first alternative parameterization questions the relation between diffusion 

variance and drift rate. For the visual condition in the optimal model we have assumed 

this variance to be proportional to 1 vis

vis
b c

γ+  and the drift to follow vis

vis
a c

γ
. In both cases, 

coherence is take to the same power 
vis

γ . To test if a different power might explain the 

behavior better, we left the drift rate unchanged, but modified the variance to be 

proportional to 1 vis

vis
b c

ξ+ , where 
vis

ξ  is an additional parameter. Figure 3-figure 

supplement 2 reveals that this modification leads to slightly different fits (dashed lines), 

while not qualitatively changing the relation between a model assuming optimal evidence 

accumulation and variants that do not (Fig. 7-figure supplement 2b). However, Fig. 7-

figure supplement 2a shows that introducing this additional parameter is not justified by 

the minor increase in goodness-of-fit. 

A second alternative parameterization abolishes any functional relationship 

between drifts, bounds, and coherences, and instead fits these drifts and bounds for each 

coherence and modality separately. That is, for the visual condition, drifts and bounds are 

modeled by one separate ( )
vis

k c  and ( )
vis

cθ  per coherence. The vestibular condition is 

modeled, as before, with two parameters, 
vest

k  and 
vest

θ . In the combined condition, we 

assume optimal cue combination, such that 2 2( ) ( )comb vis vestkk c k c += , but fit the bounds 

( )
comb

cθ  for each coherence separately. Thus, the model still assumes optimal 

accumulation of evidence across both time and cues, but makes no statement about how 

the tradeoff between speed and accuracy depend on the visual coherence. It replaces the 9 
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parameters (not counting the non-decision times) of the original model by 11 parameters 

(20 parameters for subjects B2, D2, F2) for drifts and bounds. Figure 3-figure supplement 

1 shows the drifts and bounds for full model fits for each subject, and how they relate the 

other two parameterizations. As shown in Fig. 7-figure supplement 2c, abolishing the 

function form for these model variables does not qualitatively change the relation 

between optimal and suboptimal models. However, they do not explain the behavior 

better than a model with the original parameterization (Fig. 7-figure supplement 2a).  

Model Fitting 

We fit the model separately to the behavior of each subject by finding the model 

parameters ϕ  (see previous section) that maximized their likelihood given the observed 

behavior. As in (Palmer, Huk et al. 2005), we assumed that the fraction of correct choices 

followed a binomial distribution, and that the reaction times of correct and incorrect 

choices were distributed according to a Gaussian centered on the empirical mean and 

spread according to the standard error. That is, for each combination of heading h , 

coherence c , and condition cond , we assumed the likelihood of ϕ  to describe the choice 

fraction by 

 ( ) ( ) ( )( ), , , , , , ,Bi ˆ , , , , , ,n | ,
r h c cond r h c cond h c cond r

p h c cond n h c coL n p ndϕ ϕ=  (27) 

which is a Binomial distribution over the observed number of rightwards choices, 

( ) , ,
ˆ , ,r h c condh c cond np , given a total number of , ,h c cond

n  trials and the model prediction 

( ), , ,r h c condp ϕ . The likelihood terms describing the reaction times were given by the 

Gaussian  

 ( ) ( ) ( )
( )

, , ,

, , ,

var , , ,
ˆ , , | , , , ,N ,

corr

corr h c cond corr corr

corr h c cond

h c cond
t h c cond t h c cond

n
L ϕ

ϕ
ϕ

 
=   

 
 (28) 

for reaction times corresponding to correct choices, and an analogous term 

( ), , ,incorr h c condL ϕ  for those corresponding to incorrect choices. In the above ˆ ( , , )
corr

t h c cond  

is the observed mean reaction time over the , , ,corr h c cond
n  trials in which correct choices 

were made, ( ), , ,corr h c condt ϕ  is the mean reaction time predicted by the model, and 



 20 

( ),ar , ,v corr h c cond ϕ  is the variance of this prediction. Overall, the complete likelihood 

was given by  

 ( ) ( ) ( ) ( ), , , , , , , ,

, ,

, .
r h c cond corr h c con

h c cond

d incorr h c cond
L L L Lϕ ϕ ϕ ϕ∏  (29) 

Fitting the model consisted of finding the parameter vector ϕ  for each subject that 

maximized this likelihood. 

Model predictions were found by evaluating Eq. (26). For each combination of 

heading, coherence, and stimulus condition, we computed the diffusion model predictions 

by numerically evaluating the reaction time distributions for either choice in steps of 5ms, 

using a method described previously (Smith 2000). Based on these distributions, we 

computed the probability of a choosing ‘rightward’ and the mean and variance of the 

reaction times for either choice. 

To find the maximum likelihood parameters, we acquired a three-step approach 

that avoided getting stuck in likelihood function plateaus or local maxima. First, we 

performed gradient ascent on the log-likelihood to find the initial (potentially local) 

maximum. We used the found parameter vector as initial sample for taking 44000 

samples from the Bayesian parameter posterior by Markov Chain Monte Carlo methods, 

assuming a bounded uniform parameter prior. Last, we picked the highest-likelihood 

sample as a starting point for another gradient ascent step to find the posterior’s mode. 

This mode was used as the maximum likelihood parameter vector. The resulting model 

parameters are shown for each subject in Fig. 3-figure supplement 2. All pseudo-gradient 

ascent maximizations were performed with the Optimization Toolbox of Matlab R2013a 

(Mathworks), using stringent stopping criteria ( 20TolFun TolX 10−= = ) to prevent 

premature convergence. For posterior sampling we utilized a custom Matlab 

implementation of slice sampling (Neal 2003). The parameter posterior variances 

reported in Fig. 3-figure supplement 2 were computed from the second half of all 

posterior samples of the Markov Chain. 

The coefficient of determination that was used to describe the overall goodness-

of-fit in Fig. 7 was computed as follows. The average coefficient of determination 

( )2 2 21
2

( ) ( ) ( )
psych chron

R R Rϕ ϕ ϕ= +   is for each subject the average of 2 ( )psychR ϕ  and 
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2 ( )
chron

R ϕ , that is, the adjusted coefficients of determination for the psychometric and the 

chronometric curves, respectively. 2 ( )psychR ϕ  is computed from 

 

( )

( )

2

, ,

2

, ,2

, ,

, ,

( , , ) ( , , , )

ˆ ( ,
1 ,

)

ˆ

,
( )

h c cond

h c cond

psych

h c cond

h c cond

r r

r r

h c cond p h c cond

R
p h c cond p

w p

w
ϕ

ϕ−

−
= −

∑

∑
�  (30) 

by ( ) ( ) ( )( )2 2 2

1
1

spsych psych
k

sych kNp
R RR ϕ ϕ ϕ

− −
= − −� � , where ˆ ( , , )

r
p h c cond  and 

( ), , ,rp h c cond ϕ  are the same terms as in the above likelihood, 
r

p  is the mean 

probability of choosing right over all trials, , ,h c cond
w  is the fraction of trials with heading 

h , coherence c  and condition cond , k  is the number of model parameters, and 
s

N  is 

the number of trials performed by subject s . For the chronometric curve we consider 

reaction times for both correct and incorrect choices by computing 

( ) ( ) ( )( )2 2 2

1
1

s

k
chron chron hron kc N

R RR ϕ ϕ ϕ
− −

= − −� �  from 
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 −
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where ˆ ( , , , )
corr

t h c cond ϕ  and ( ,ˆ , , )
incorr

h c condt ϕ  are again the same as in the likelihood, 

t  is the mean reaction time over all trials, and , , ,corr h c cond
w  and , , ,incorr h c cond

w  are the 

fractions of correct and incorrect trials (out of all trials, such that 

, , , , , , , ,h c cond corr h c cond incorr h c cond
w w w= + ), respectively, that match , ,h c cond .  

Alternative, Sub-Optimal Models 

We compared the fit quality of the optimal model to that of various, mostly sub-optimal 

models. These models are described below. 

 

Free cue combination weights. In the optimal model, the sensitivity to the momentary 

evidence for the combined condition is determined by the sensitivities to the two separate 
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cues. In particular, 2 2 2( ) ( )
comb vis vest

k c k c k= +  is assumed to hold. We introduced an 

alternative model in which ( )
comb

k c  is a free parameter for each coherence that is fitted 

independently of ( )
vis

k c  and 
vest

k  to test two things: first, we were interested in 

comparing if the independently fit ( )
comb

k c  match those predicted from fits to the 

unimodal conditions. As discussed in the main text, this turns out to be the case (Fig. 6). 

Second, we wanted to know if loosening the optimality constraint explains the subjects’ 

behavior better. For a fair comparison, we observe that this modification introduces one 

additional parameter per coherence when compared to the optimal model. Since the 

modified model is strictly more general than the optimal model, it is expected to fit the 

behavior at least as well or better than the optimal model. However, as described in the 

main text, Bayesian model comparison that takes into account the additional number of 

parameters revealed that the increased goodness-of-fit does not justify the additional 

degrees of freedom (Fig. 7). 

 

Fixed cue combination weights. When performing optimal cue combination, the 

different cues ought to be weighted according to their respective sensitivities, as 

described by Eq. (17). We tested whether this was indeed the case by introducing a model 

variant that weights the momentary evidence of both cues equally. The evidence provided 

by each cue was still accumulated optimally over time according to Eq. (12), such that 

the momentary evidences were given by ( ) ( ) ( )
vis vis

X t v t x t=� �  and ( ) ( ) ( )
vest vest

X t a t x t=� � . 

However, rather than combining across modalities as given by Eq. (17), we performed a  

simple average: ( )1
2

( ) ( ) ( )
comb vis vest

X t X t X t= +� � � . In the combined condition, this resulted 

in a diffusion model with drift rate given by ( )2

2

21 ( ) ( ) ( ) ( )
vis vest

v t k c a t k sin h+  and 

diffusion variance given by ( )21
4

2( ) ( )v t a t+ . The bound was left unchanged, as given by 

Eq. (25). The number of parameters for this model variant is the same as for the optimal 

model. 

 

Weighting both cues by either acceleration or velocity. When designing the model we 

have assumed that the sensitivity time-course of the visual and vestibular modality is 
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determined by the motion velocity and acceleration, respectively. To test this choice we 

introduced a model variant that weights both modalities by either acceleration or velocity. 

For the first variant we replaced ( )v t  in Eq. (12) and all equations that follow by ( )a t . 

For the second variant we replaced ( )a t  by ( )v t  in all relevant equations. 

 

No temporal weighting of momentary evidence. Our theory predicts that optimal 

accumulation of evidence over time requires this evidence to be weighted according to its 

associated momentary sensitivity, as given by Eq. (7). To test this, we introduced an 

additional model that did not perform this temporal weighting. Instead, we assumed the 

diffusion models for the unimodal conditions to feature a unit diffusion variance and un-

weighted drift rates, ( ) ( ) ( )
vis

v t k c sin h  and ( ) ( ) ( )
vest

a t k c sin h , for the visual and vestibular 

conditions, respectively. The cues were still combined according to the optimal 

combination rule, Eq. (10), resulting in a diffusion model for the combined condition 

with unit variance and drift rate given by 
2 2( ) ( )

( )vis vest

comb

k v t k a t

k
sin h

+
. The bound was left 

unchanged, resulting in the number of parameters to be the same as for the optimal 

model. 

 

No temporal weighting and fixed cue combination weights. The last model variant 

discards both the assumption of temporal weighting  of evidence and the assumption of 

sensitivity-based weighting when combining the cues across modalities. Thus, the 

diffusion models describing the unimodal conditions featured, as before, a unit diffusion 

variance and drift rates, ( ) ( ) ( )
vis

v t k c sin h  and ( ) ( ) ( )
vest

a t k c sin h , for the visual and 

vestibular conditions, respectively. In the combined condition, momentary evidence was 

summed according to ( )1

2
( ) ( ) ( )

comb vis vest
x t x t x t= +� � � , resulting in a diffusion model with 

unit variance and drift rate ( )1

2
( ) ( ) ( ) ( )

vis vest
v t k c a t k sin h+ . The 1

2
 weighting was chosen 

to ensure unit variance, but any other weighting would have resulted in the same fits. The 

bounds were parameterized as in the optimal model, such that the number of parameters 

was the same as in the original model. 
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