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Abstract Clinically effective antigen-based immunotherapy must silence antigen-experienced 
effector T cells (Teff) driving ongoing immune pathology. Using CD4+ autoimmune Teff cells, we 
demonstrate that peptide immunotherapy (PIT) is strictly dependent upon sustained T cell 
expression of the co-inhibitory molecule PD-1. We found high levels of 5-hydroxymethylcytosine 
(5hmC) at the PD-1 (Pdcd1) promoter of non-tolerant T cells. 5hmC was lost in response to PIT, 
with DNA hypomethylation of the promoter. We identified dynamic changes in expression of the 
genes encoding the Ten-Eleven-Translocation (TET) proteins that are associated with the oxidative 
conversion 5-methylcytosine and 5hmC, during cytosine demethylation. We describe a model 
whereby promoter demethylation requires the co-incident expression of permissive histone 
modifications at the Pdcd1 promoter together with TET availability. This combination was only seen 
in tolerant Teff cells following PIT, but not in Teff that transiently express PD-1. Epigenetic changes 
at the Pdcd1 locus therefore determine the tolerizing potential of TCR-ligation.
DOI: 10.7554/eLife.03416.001

Introduction
Antigen-based immunotherapy remains the ‘holy grail’ of immune tolerance because it should target 
only those pathogenic lymphocytes driving autoimmune, allergic, or alloreactive immunopathology, 
whilst leaving beneficial immune surveillance unaltered. Peptide immunotherapy (PIT) is the subject of 
clinical trials in autoimmune and allergic disease (Larche and Wraith, 2005; Larché, 2007). Despite 
this the molecular basis for effects of PIT, particularly on T effector (Teff) cells, which is the clinical 
imperative, remains to be fully understood.

The co-inhibitory receptor PD-1 (encoded by the Pdcd1 locus) is transiently upregulated on both 
CD4+ and CD8+ T cells upon activation in order to restrain primary immune responses (Agata et al., 
1996; Keir et al., 2006, 2008). Its role in maintaining peripheral tolerance under steady state condi-
tions is illustrated by the spontaneous development of autoimmune pathology in mice that lack 
PD-1 (Nishimura et al., 1999). PD-1 is also highly-expressed on exhausted CD8+ T cells (Barber et al., 
2006; Youngblood et al., 2013). PD-1 contains an immunoreceptor tyrosine-switch motif (ITSM) 
that is thought to recruit SHP-2, a phosphatase that can inhibit the PI3K pathway (Zhang et al., 
2002; Chemnitz et al., 2004). Signalling through PD-1 upon TCR stimulation has been shown to 
inhibit proliferation and the production of IL-2 and effector cytokines by T cells (Freeman et al., 2000; 
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Sandner et al., 2005; Keir et al., 2006). The importance of PD-1 signalling in PIT has been unclear. 
Reversal of unresponsiveness has been reported in CD8+ T cells upon blockade of PD-1 signalling 
(Tsushima et al., 2007; Chikuma et al., 2009), but PD-1 was dispensable for both the induction and 
maintenance of tolerance in PIT-exposed naïve CD4+ T cells (Konkel et al., 2010).

In the clinical setting, PIT is required to control activated Teff cells during ongoing inflammation. 
Although PIT has been reported to reverse clinical signs of disease (Leech et al., 2007), this scenario 
has been seldom explored mechanistically. An understanding of this is clearly of major importance 
to successful clinical translation. Here we used a peptide of myelin basic protein (MBP) and MBP-
responsive TCR transgenic cells to show that PIT was capable of silencing Teff cells, thereby prevent-
ing murine experimental autoimmune encephalomyelitis (EAE). PD-L1hi CD4+ dendritic cells (DC) were 
uniquely capable of providing sustained presentation of peptide-MHC (pMHC) complexes following 
PIT. PD-1-deficient T cells were resistant to PIT. In PD-1-sufficient Teff, PIT drove demethylation of 
the Pdcd1 promoter, correlating with loss of 5-hydroxymethylation (a potential DNA demethylation 
intermediate) and lasting PD-1 expression. These data help define an epigenetic signature of T cell 
tolerance following PIT and therefore have implications for the development of protein biomarkers for 
clinical efficacy in current and anticipated tolerogenic modalities.

Results
Non-deletional tolerance in response to PIT
The Ac1-9(4Tyr) peptide of MBP, containing a Lys→Tyr substitution at residue 4 of the peptide, is a 
potent tolerogen when administered in soluble form either to wildtype (WT) H-2u mice or to Tg4 mice 
expressing a transgenic TCR responsive to this peptide (Liu and Wraith, 1995; Burkhart et al., 1999). 
To trace a defined antigen-responsive cohort of T cells we adapted these protocols by prior transfer of 
naïve CD4+ Tg4.CD45.1 T cells into B10.PL (H-2u), or B10.PLxC57BL/6 (H-2u,b) mice. These F1 mice are 
resistant to EAE induced with the MBP peptide, unless first seeded with a cohort of Tg4 T cells (Ryan 
et al., 2005). Tracing the presence and function of the transferred Tg4 cells is therefore of direct 

eLife digest The immune system protects the body from dangerous microbes and removes 
damaged cells. However, in some cases, the immune system can malfunction and attack healthy 
tissues, which can lead to type-1 diabetes, multiple sclerosis, and other autoimmune diseases. Many 
of the current treatments for these disorders suppress the immune system, which can make the 
individuals more susceptible to infections.

It may be possible to treat autoimmune diseases using small pieces of protein—called 
peptides—that are based on proteins found on the cells that the immune system attacks by 
mistake. This strategy would target the specific immune cells that are malfunctioning, but allow the 
rest of the immune system to continue to work as normal. Peptide-based therapies for autoimmune 
diseases are currently being tested in clinical trials, and although the results look promising, it is not 
known precisely how they work.

McPherson et al. used mice that develop a disease similar to multiple sclerosis because some 
of their immune cells, known as effector T cells, attack a protein found in the mouse brain called 
MBP. The mice were treated with a peptide based on part of MBP, which prevented them from 
developing the autoimmune disease. The success of the peptide therapy depended on the T cells 
producing large amounts of a protein called PD-1. This protein stops the T-cells from activating 
immune responses when they detect the MBP protein.

The gene that makes PD-1 can have a methyl-tag—a chemical modification to DNA—which alters 
how much PD-1 is made in the T cells. When the gene has this methyl-tag, it can only be switched 
on for a short time to make a small amount of PD-1, which helps to control the immune responses 
activated by the T cell. However, when the methyl-tag was removed as a result of the peptide 
therapy the gene could be switched on for much longer, so that much more PD-1 was produced.

This work helps us to understand how peptide therapy works and should improve the chances of 
using this therapy to successfully treat patients with autoimmune diseases.
DOI: 10.7554/eLife.03416.002
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relevance as they are the pathogenic T cell population in these experiments. A single i.v. injection of the 
MBP peptide protected against subsequent efforts to induce EAE by immunization (Figure 1A). Donor 
T cells persisted in the spleen (Figure 1B,C), but there was reduced production of IFN-γ and IL-17, in 
splenic recall assays amongst PIT-treated mice (Figure 1C and Figure 1—figure supplement 1). Of note, 
we found no evidence for an elevation in the frequency of Foxp3+ donor Tg4 cells, nor in IL-10 produc-
tion in response to PIT (Figure 1C). We concluded from these initial studies that a single exposure to the 
MBP peptide was sufficient for successful PIT, without enhanced induction of cell death, or establishment 
of Treg-mediated suppression, but rather an intrinsic unresponsiveness in the persisting Tg4 cells.

Stable pMHC complexes presented by CD4+ DC after PIT
Splenocytes isolated from mice administered Ac1-9(4Tyr) were potent in vitro stimulators of a Tg4 T 
cell line (Tg4.TCL) and remained so beyond 72 hr after peptide injection (Figure 2A). Splenic popu-
lations were MACS-sorted into B cell (CD11c−CD19+) and DC (CD11c+) populations. Whilst DC were 
more efficient presenters on a per cell basis than unfractionated splenocytes, B cells were very poor 
presenters (Figure 2A). Although the B cell populations used contained fewer than 2% of CD11c+ 
cells, it is plausible that this level of contamination accounted for the Tg4.TCL stimulation evident with 
high numbers of B cells isolated at the 2-hr time-point. The ability of DC to present the peptide-MHC 
complex in vivo was underlined by immunofluorescent staining showing transferred Tg4 cells in areas 
of the spleen rich in CD11c+ cells (Figure 2—figure supplement 1).

Splenic CD11c+ cells from MBP peptide-treated mice were sorted into CD11cintPDCA-1+ (pDC) 
CD11chiCD4+CD8− (CD4+ DC), CD11chiCD4−CD8+ DC (CD8+ DC) and CD11chiCD4−CD8− populations 
(Figure 2B). The ability to stimulate the Tg4.TCL was only maintained in the CD4+ DC (Figure 2C). 
Isolation of splenic macrophage populations from peptide-treated mice provided no evidence that 
these cells could maintain the pMHC complex (data not shown).

PIT requires T cell expression of PD-1
The CD4+ DC population is located in the T zone of the spleen and so is ideally placed to present 
tolerogenic peptide to naive T cells (McLellan et al., 2002). CD4+ DC from steady state mice had 
particularly high expression of PD-L1 in comparison to other DC populations (Figure 2D,E). Transferred 
Tg4 T cells expressed high levels of PD-1 in response to PIT, in contrast to those from PBS-treated 
mice (Figure 3A,B). Addition of an anti-PD-1 blocking antibody to ex vivo rechallenge cultures restored 
the ability of splenocytes from PIT-treated mice to produce IFN-γ and IL-17 (Figure 3C).

Collectively, the above data indicated that sustained pMHC presentation during PIT can drive 
high expression of PD-1 in the responding T cells. This, coupled with pMHC presentation specifically 
by PD-L1hi CD4+ DC renders the T cells unable to produce pro-inflammatory cytokines. To determine 
the functional importance of PD-1 in this tolerogenic process, we generated Tg4.PD-1−/− mice. 
Transferred naïve Tg4 cells from these mice were insensitive to PIT, going on to cause a typical course 
of EAE upon subsequent immunization that was indistinguishable from that induced with Tg4.PD-1+/+ 
cells that had not been subjected to PIT (Figure 3D). We therefore conclude that PD-1 plays a non-
redundant role in this model of CD4+ T cell tolerance.

PIT abrogates Teff cell function and CNS infiltration
Although PIT can inhibit ongoing EAE (Leech et al., 2007), the mechanisms behind this have been 
less well explored than for the effects of PIT on naïve T cells. We therefore determined the effects of 
PIT using a previously established passive EAE model in which Teff cells are generated from naïve Tg4 
T cells prior to transfer into WT hosts (O'Connor et al., 2010). PIT rendered the host mice profoundly 
resistant to disease (Figure 4A). As with naïve T cells shown above, the Teff cells persisted after PIT-
treatment, but importantly these cells failed to populate the CNS efficiently (Figure 4B). Instead, they 
were present in the spleen in sufficient numbers to allow detailed analysis following retrieval by FACS-
sorting (Figure 4C). PIT did not drive Foxp3-expression in Tg4 Teff cells (Figure 4D), nor was IL-10 pro-
duction evident (not shown). Rather, within 4 days of PIT, proinflammatory cytokine production by the 
transferred Teff cells was profoundly diminished (Figure 4E,F). The loss of IFN-γ producing capacity in 
PIT-exposed Teff was not reflected in any loss in T-bet expression (Figure 4—figure supplement 1).

The poor accumulation of Tg4 Teff cells within the CNS after PIT (Figure 4B) suggested that their 
ability to home to the target organ might also have been affected. Although the molecular require-
ments for T cell entry into the CNS during EAE are complex and controversial (Prendergast and 
Anderton, 2009), others have described a requirement for P-selectin glycoprotein ligand-1 (PSGL-1) 
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in the pathogenic process (Deshpande et al., 
2006). We have also found that encephalitogenic 
function of Tg4 Teff populations correlates with 
their elevated expression of PSGL-1 and that an 
antibody to PSGL-1 can inhibit Tg4 Teff-driven 
EAE (Figure 4G), presumably by interfering with 
the interaction of PSGL-1 on the Teff cells with 
P-selectin and/or E-selectin on the CNS endo-
thelium. Whilst transferred Tg4 Teff cells exposed 
to PBS showed elevated PSGL-1 expression, 
their counterparts that had been exposed to 
PIT showed PSGL-1 expression more comparable 
with that seen on the EAE-irrelevant CD4+ cells 
of the host mice (Figure 4H), PSGL-1 glycosyla-
tion mediated by 2 β-1,6-N-acetyl glucosaminyl-
transferase and α(1,3)-fucosyltransferase-VII) is 
required for functionality (binding to selectins) 
(Yu et al., 2000; Smithson et al., 2001; Sperandio 
et al., 2001; Deshpande et al., 2006). Staining 
with a mouse P-selectin-human IgG fusion protein 
indicated that active PSGL-1 was also reduced 
on Tg4 Teff cells in response to PIT (Figure 4—
figure supplement 2). These data suggest that 
one consequence of PIT is disrupted PSGL-1-
dependent T cell trafficking.

Sustained PD-1 expression is 
required for Teff cells to be 
silenced by PIT
We also observed that PD-1 expression was high 
on Teff cells retrieved from PIT-treated mice com-
pared to PBS-treated controls and that this dif-
ference was maintained beyond 2 weeks from 
peptide administration (Figure 5A–C). This was 
not a consequence of any long-term pMHC pres-
entation in the lymphoid system, because PIT-
treated Teff cells that had been retrieved from 
their first hosts maintained PD-1 (and did not 
induce EAE) when transferred into secondary 
hosts that were not exposed to PIT (Figure 5D–F). 
The tolerant phenotype was therefore stable in 
T cells exposed to PIT.

As was the case with the earlier experiments 
using naïve T cells (Figure 3D), Tg4.PD-1−/− Teff 
cells were not tolerized and were able to cause 
disease in the presence of PIT (Figure 5G), also 
establishing PD-1 as a required component of 
tolerance in this more therapeutic setting.

PD-1 limits Teff cell clonal 
expansion in response to PIT
To understand how the absence of PD-1 signal-
ing might allow the maintenance of pathogenic 
function in spite of PIT administration, we further 
compared the function of Tg4.PD-1+/+ versus Tg4.
PD-1−/− Teff cells. There were no gross differences 

Figure 1. PIT induces unresponsiveness in naïve Tg4 
cells. (A, B) B10.PLxC57BL/6 mice received PBS or PIT 
i.v. 1 day after transfer of naïve CD4+ Tg4 cells. EAE  
was induced 7 days later by immunization with Ac1-9. 
(A) Mean clinical scores ± SEM. (B) Frequency of CD4+ 
Tg4 cells in the spleen at day 19 post-EAE induction  
(six mice per group, from one of three experiments 
giving consistent results). (C) Spleens were sampled 
four and 7 days after PIT/PBS for analysis of CD4+ Tg4 
numbers and Foxp3 expression in host and donor  
CD4+ T cells (3–4 mice per group, from one of three 
experiments giving consistent results). A separate 
cohort were immunized on day 7 after PIT/PBS and 
spleens analyzed 10 days later for CD4+ Tg4 cell 
numbers and the production of IFN-γ, IL-17 and  
IL-10 by splenocytes in response to stimulation  
with 100 μM Ac1-9 (dotted lines represent cytokine 
levels for unstimulated controls) (four mice per  
group, from one of three experiments giving  
consistent results).
DOI: 10.7554/eLife.03416.003
The following figure supplement is available for  
figure 1:

Figure supplement 1. PIT reduces the frequency  
and number of pro-inflammatory cytokine producing 
Tg4 cells. 
DOI: 10.7554/eLife.03416.004
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Figure 2. PD -L1hiCD4+ DC present tolerogenic pMHC complexes to T cells. (A) B10.PL mice received PIT i.v. and 
splenocytes were isolated at the indicated times. B cells (CD11c−CD19+) and DC (CD11c+) were MACS-sorted and 
their ability to stimulate a Tg4.TCL was measured compared to whole splenocytes. Positive controls (solid symbols) 
show proliferative responses of Tg4.TCL to DC, B cells and splenocytes in the presence of 20 μM Ac1-9. Data are 
from one of three experiments giving consistent results. (B) Gating strategy for FACS-sorting of DC sub-sets from 
spleen isolated 1 day after PIT administration. (C) Proliferative responses of Tg4.TCL to increasing numbers of DC. 
Data are from one of three experiments giving consistent results. (D) Representative histograms of steady state 
expression of PD-L1, gated on CD11chiCD4+ and CD11chiCD8+ splenic DC. (E) MFI ± SEM of staining with mAb to 
co-stimulatory and co-inhibitory molecules on steady state splenic APC populations (four mice per group,, from 
one of two experiments giving consistent results, dotted lines represent MFI of isotype control staining).
DOI: 10.7554/eLife.03416.005
The following figure supplement is available for figure 2:

Figure supplement 1. Colocalization of transferred naïve Tg4 cells with CD11c+ splenocytes. 
DOI: 10.7554/eLife.03416.006
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in the numbers or frequencies of donor cells in 
PBS-treated hosts (Figure 5—figure supple-
ment 1), indicating that PD-1 expression does 
not constrain the accumulation of donor cells in 
the absence of PIT. However, the PIT-driven eleva-
tion in donor cell numbers seen with Tg4.PD-1+/+ 
Teff cells was accentuated in Tg4.PD-1−/− Teff cells 
and a high frequency of these cells showed expres-
sion of the cell cycle marker Ki-67 (Figure 5—
figure supplement 1). A consequence of this 
overall increase in the number of Tg4.PD-1−/− 
Teff cells was increased numbers of Foxp3+ cells 
as well as cytokine+ cells in this group. However, 
as seen with Tg4.PD-1+/+ Teff cells, the frequen-
cies of Foxp3+ or cytokine+ Tg4.PD-1−/− Teff cells 
were reduced following PIT (Figure 5—figure 
supplements 2,3). In contrast to their reduced 
effector cytokine production, PIT did not block 
the ability of Tg4.PD-1−/− Teff cells to produce IL-2 
upon ex vivo re-challenge (Figure 5—figure sup-
plement 4). Tg4 Teff cells retrieved from PBS-
treated mice had low expression of CD25 and 
this was absent in their PIT-treated counterparts 
(Figure 5—figure supplement 5A). After 12 hr 
culture with MBP peptide, CD25 expression was 
increased in PBS-exposed Teff cells, irrespective 
of their PD-1-status, but there was a notable 
impairment in this upregulation of CD25 in PIT-
treated Tg4.PD-1+/+ Teff cells. This impairment 
was not evident in PIT-exposed Tg4.PD-1−/− Teff 
cells (Figure 5—figure supplement 5B). The def-
icit in CD25-upregulation seen in PIT-treated Tg4.
PD-1+/+ Teff cells was reflected by a low frequency 
of cells with phosphorylated STAT5 in response 
to IL-2. Notably however, PIT-treated Tg4.PD-1−/− 
Teff cells did not show such abrogated STAT5 
phosphorylation (Figure 5—figure supplement 6). 
We conclude that the ability of PD-1-deficient 
Teff cells to drive EAE despite administration of 
PIT is associated with their heightened capacity 
for clonal expansion.

PIT-drives PD-1 expression in 
non-transgenic Teff cells
To assess whether PIT-driven PD-1 expression was 
evident in a non-transgenic system, we studied 

ovalbumin (OVA)-responsive Teff in mice on the C57BL/6 background. Lymph nodes from CD45.1 mice 
that had been immunized with the OVA(323–339) peptide (pOVA) in CFA provided a source of Teff, 
which were then transferred into CD45.2 hosts prior to administration of pOVA or PBS (Figure 5—
figure supplement 7A,B). Reduced frequencies of cytokine+ donor cells following in vitro restimula-
tion were indicative of PIT-induced unresponsiveness (Figure 5—figure supplement 7C,D). Ex vivo 
analysis showed clear PD-1hi CD4+ populations in donor cells from the PIT-treated group (Figure 5—
figure supplement 8A,B). Focusing on cells within the PD-1+ gate, PIT-exposed donor cells showed 
higher levels of PD-1 expression than PBS-exposed donor cells (Figure 5—figure supplement 8C). 
We conclude that elevated expression of PD-1 associates with abrogation of effector function in 
response to PIT in this non-transgenic system.

Figure 3. PD-1 is required for the establishment and 
maintenance of tolerance in naïve CD4+ Tg4 cells.  
(A–C) B10.PL mice received PBS/PIT 1 day after transfer 
of naïve CD4+ Tg4 cells. (A) Representative histograms 
of PD-1 expression gated on CD4+ Tg4 donor cells in 
spleen 4 days after PBS/PIT. (B) MFI of PD-1 staining 
gated on CD4+ Tg4 donor cells in spleen 4 and 7 days 
after PBS/PIT (4–6 mice per group, from one of three 
experiments giving consistent results, dotted line 
represents MFI of isotype control staining). (C) IFN-γ 
and IL-17 production in response to Ac1-9 by spleno-
cytes isolated 7 days after PIT and cultured in the 
presence of anti-PD-1 or isotype (four mice per group, 
from one of three experiments giving consistent results, 
dotted lines represent cytokine levels for unstimulated 
cultures). (D) EAE in B10.PLxC57BL/6 mice that received 
PBS/PIT 1 day after transfer of naïve CD4+ cells from 
Tg4.PD-1+/+ or Tg4.PD-1−/− donors. EAE was induced  
7 days after PBS/PIT by immunization with Ac1-9 (five 
mice per group, from one of three experiments giving 
consistent results).
DOI: 10.7554/eLife.03416.007
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Figure 4. PIT induces tolerance in pathogenic Tg4 Teff cells. (A) EAE in B10.PL mice that received PBS/PIT 1 day 
after transfer of Tg4 Teff cells (six mice per group, from one of five experiments giving consistent results).  
(B) Numbers of CD4+ Tg4 donor cells in spleen and CNS of PBS/PIT-treated mice sampled at the peak of EAE 
(six mice per group, from one of two experiments giving consistent results). (C) Tg4 Teff cells were transferred and 
spleens were sampled 4 days after PBS/PIT. (D) The frequencies of Foxp3+ cells amongst the donor Tg4 CD4+ Teff 
cells on day 4 after PBS or PIT. (E) Ac1-9-induced IL-2 and IFN-γ production by retrieved CD4+ Tg4 donor cells 
(FACS-sorted 4 days after PBS/PIT and cultured with irradiated B10.PLxC57BL/6 splenic APC) (four mice per group, 
from one of two experiments giving consistent results, dotted lines represent cytokine levels for unstimulated 
controls). (F) GM-CSF and IFN-γ production following overnight culture of splenocytes with Ac1-9 (gated on CD4+ 
Tg4 donor cells) (n = 4 per group, from one of four experiments giving consistent results, dotted lines represent 
cytokine levels for unstimulated controls). (G) Modulation of EAE by anti-PSGL-1 (50 μg given i.v. on alternate days 
from day 1 after Tg4 Teff cells). Teff cells were also incubated with 20 μg/ml of the relevant antibody for one hour 
prior to transfer. (n = 10 per group, from one of three experiments giving consistent results). (H) PSGL-1 expression 
by CD4+ host and Tg4 donor cells 4 days after PBS/PIT (four mice per group, from one of two experiments giving 
consistent results, dotted line represents MFI of isotype control staining).
DOI: 10.7554/eLife.03416.008
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.03416
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PIT drives demethylation of the Pdcd1 promoter
PD-1 is rapidly upregulated by T cells upon initial TCR stimulation but is then lost over time (Riley, 
2009). This is exemplified by the fact that our pathogenic Tg4 Teff cells expressed PD-1 on the day 
of transfer, but this was lost within 3 days of transfer in PBS-treated hosts (Figure 5A,C). In contrast, 
PIT drove the long-term expression of PD-1 by potentially pathogenic CD4+ T cells and this was a 
required component of PIT. Sustained expression of PD-1 is important in another scenario in which 
T cells develop antigen-unresponsiveness; CD8+ T cell ‘exhaustion’ in the face of chronic viral infec-
tion (Barber et al., 2006; Wherry et al., 2007). So, are similar mechanisms, leading to long-term 
expression of PD-1, at the heart of these two states of T cell unresponsiveness?

Stable gene expression is often associated with a variety of epigenetic changes within promoter 
regions, including alterations in the levels of active histone post-translational modifications (PTMs) 
such as trimethylation of H3K4 (H3K4me3), or repressive histone PTMs such as H3K27me3. Indeed, 
CD8+ Teff cells with low PD-1 expression were reported to have elevated levels of the repressive 
H3K27me3 PTM at the Pdcd1 promoter, compared to either PD-1− naive cells or PD-1hi CD8+ cells 
from chronically infected mice (Youngblood et al., 2011). We measured active (H3K4me3) and 
repressive (H3K27me3) histone marks at the Pdcd1 promoter by ChIP-PCR and did not identify sim-
ilar changes that could distinguish pathogenic Tg4 Teff, from PIT-tolerized Teff. In naïve Tg4 cells and 
PBS-treated Tg4 Teff cells (neither of which expressed PD-1), neither modification (H3K27me3 or 
H3K4me3) was enriched at the two conserved regions, CR-B and CR-C (Youngblood et al., 2011), 
of the Pdcd1 promoter (Figure 6A,B). In contrast, both the PD-1 expressing groups (Teff on the day 
of transfer and PIT-treated Teff) exhibited elevated levels of H3K4me3, but no enrichment for 
H3K27me3 (Figure 6A,B). Importantly, functional (pathogenic) PBS-treated Teff that lacked PD-1 
expression did not show elevated levels of the repressive H3K27me3 PTM, thereby distinguishing 
their behaviour from that reported for PD-1lo CD8+ Teff cells (Youngblood et al., 2011). Moreover, 
it was not possible to distinguish PD-1hi pathogenic Teff (on the day of transfer) from PD-1hi PIT-
tolerized Teff based on their relative abundance of H3K4me3 versus H3K27me3 at the Pdcd1 
promoter.

Stable PD-1 expression in exhausted CD8+ T cells is associated with DNA demethylation within 
the CR-B and CR-C regions of the Pdcd1 promoter (Youngblood et al., 2011). We retrieved Tg4 cells 
at various stages of the Teff PIT model for DNA methylation analysis. DNA modification was quantified, 
after bisulfite conversion, using pyrosequencing to assess individual CpG sites within the whole cell 
population. Cloning and sequencing after bisulfite conversion provided complementary information 
on the pattern of DNA methylation at CpG sites across individual cloned alleles (Figure 6C,D). 
Consistent with previous analyses of naive CD8+ T cells (Youngblood et al., 2011), CpGs within the 
CR-B region were largely modified (∼80% methylation across most CpG sites) in naïve CD4+ Tg4 cells 
(Figure 6C–D), whereas DNA methylation levels were considerably lower across the CR-C region. 
Despite expression of PD-1 by Tg4 Teff cells on the day of transfer (Figure 5A), there were no differ-
ences in DNA methylation at the Pdcd1 promoter of these pathogenic cells compared to naïve Tg4 
cells (Figure 6C,D), indicating that demethylation is not a pre-requisite for transient PD-1 expression 
following initial CD4+ T cell activation. As would be expected based on this result, DNA methyla-
tion was maintained at CR-B and CR-C in the Teff cells retrieved from PBS-treated hosts, where PD-1 
expression had returned to levels observed in naïve T cells (Figure 5A). In marked contrast, PIT-
exposed Teff, which had prolonged PD-1 expression (Figure 5A–F), showed complete demethyla-
tion at CR-C and significantly reduced DNA methylation at the CR-B region in the Pdcd1 promoter 
(Figure 6C,D). Therefore only PIT was capable of altering DNA methylation patterns at the Pdcd1 
promoter. This enables PD-1hi tolerant cells to be distinguished from fully functional Teff, which only 
transiently express PD-1.

The following figure supplements are available for figure 4:

Figure supplement 1. Pathogenic Tg4 Teff cells maintain T-bet after PIT. 
DOI: 10.7554/eLife.03416.009

Figure supplement 2. PIT reduces active PSGL-1 levels on Tg4 Teff cells. 
DOI: 10.7554/eLife.03416.010

Figure 4. Continued

http://dx.doi.org/10.7554/eLife.03416
http://dx.doi.org/10.7554/eLife.03416.009
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Figure 5. PD-1 expression is maintained by PIT and is required for tolerance. (A) Representative histograms of  
PD-1 expression by CD4+ Tg4 cells sampled as naïve cells, Teff on day of transfer and Teff cells retrieved 4 days 
after PBS/PIT. (B) PD-1 expression (MFI) gated on CD4+ host cells and Tg4 donor cells from spleen 4 days after 
treatment (four mice per group, from one of four experiments giving consistent results, dotted line represents MFI 
of isotype control staining). (C) Time course of PD-1 expression on CD4+ Tg4 donor cells from PBS/PIT-treated mice 
(four mice per group). (D) B10.PLxC57BL/6 mice received PBS/PIT 1 day after transfer of Tg4 Teff cells. 4 days later 
CD4+ Tg4 donor cells were FACS-sorted and 2 × 106 were transferred into secondary hosts that were not exposed 
to PIT (PTX was given on the same day). (E) EAE in secondary hosts (n = 4 for PBS; 21 for PIT, pooled from two 
experiments). (F) PD-1 expression gated on CD4+ Tg4 donor cells from spleens isolated 16 days after secondary 
Figure 5. Continued on next page

http://dx.doi.org/10.7554/eLife.03416
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The Pdcd1 promoter of naïve CD4+ cells is enriched in 
5-hydroxymethylcytosine, which is lost following PIT
The precise processes that lead to demethylation of 5-methylcytosine (5mC) are not fully under-
stood, but direct conversion of 5mC to cytosine seems unlikely. Rather, the favoured model is that 
5mC is progressively oxidized to generate intermediates, facilitated by the Ten-Eleven-Translocation 
(TET) proteins, and these intermediates are subsequently converted either by DNA repair or replica-
tion dilution to cytosine (Kohli and Zhang, 2013). The first intermediate is 5-hydroxymethylcytosine 
(5hmC), a stable epigenetic mark with widespread tissue distribution (Kriaucionis and Heintz, 2009; 
Tahiliani et al., 2009; Song et al., 2011; Nestor et al., 2012; Thomson et al., 2012). Reciprocal 
changes for both 5mC and 5hmC at gene loci imply that demethylation may be occurring via a 5hmC 
intermediate (Thomson et al., 2013). Of note, standard bisulfite conversion techniques cannot distin-
guish 5mC from 5hmC.

Using an affinity based technique (Thomson et al., 2012), we identified considerable enrichment 
of 5hmC at the Pdcd1 promoter CR-B and CR-C regions in naïve Tg4 cells (Figure 6E). 5hmC was 
also present in Teff cells generated by 3-day culture (particularly within the CR-B region) and in Teff 
cells retrieved from PBS-treated mice. In contrast, 5hmC was undetectable at CR-B and CR-C in cells 
retrieved from PIT-treated mice (Figure 6E).

We tested whether changes in the relative expression of 5hmC at the Pdcd1 promoter were 
reflected by changes in the global expression of TET genes (as assessed by qPCR). All three known 
mammalian TETs were expressed in naïve CD4+ Tg4 cells, but these levels were substantially reduced 
in Teff cells (Figure 6F). Expression of each TET was partially restored in Tg4 Teff cells retrieved from 
either PIT or PBS-treated hosts, suggesting these that cells were equipped for the oxidation of both 
5mC and 5hmC to occur.

Collectively our data indicate that stable expression of PD-1 is coincident with demethylation of 
the Pdcd1 promoter and that this requires a combination of permissive histone changes and oxida-
tion of 5mC and 5hmC involving the activity of TETs. In the system used here, these two requirements 
only coincide following TCR engagement in response to PIT.

Discussion
Our data provide key insights into the mechanisms of Teff cell unresponsiveness induced by PIT, 
which are pertinent to its clinical translation. A role for PD-1 in the establishment, or maintenance, of 
T cell unresponsiveness has been reported in various experimental models of autoimmune and allergic 

transfer (dotted line represents MFI of isotype control staining). (G) EAE in B10.PLxC57BL/6 mice that received 
PBS/PIT 1 day after transfer of Teff generated from Tg4.PD-1+/+ or Tg4.PD-1−/− donors (n = 20–36 mice per group, 
pooled from three experiments).
DOI: 10.7554/eLife.03416.011
The following figure supplements are available for figure 5:

Figure supplement 1. Elevated accumulation of Tg4.PD-1−/− Teff cells following PIT. 
DOI: 10.7554/eLife.03416.012

Figure supplement 2. PIT does not increase the frequency of Foxp3+ Tg4 Teff cells. 
DOI: 10.7554/eLife.03416.013

Figure supplement 3. PIT limits the frequency of cytokine+ Tg4 Teff cells independently of PD-1. 
DOI: 10.7554/eLife.03416.014

Figure supplement 4. PIT-exposed Tg4.PD-1−/− Teff maintain their ability to produce IL-2. 
DOI: 10.7554/eLife.03416.015

Figure supplement 5. PD-1 limits CD25 up-regulation following recall stimulation of PIT-exposed Tg4 Teff. 
DOI: 10.7554/eLife.03416.016

Figure supplement 6. PD-1 limits phosphorylation of STAT5 in Tg4 Teff cells following PIT. 
DOI: 10.7554/eLife.03416.017

Figure supplement 7. PIT limits effector cytokine production by polyclonal Teff cells. 
DOI: 10.7554/eLife.03416.018

Figure supplement 8. PIT drives PD-1 expression in polyclonal Teff cells. 
DOI: 10.7554/eLife.03416.019

Figure 5. Continued

http://dx.doi.org/10.7554/eLife.03416
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Figure 6. PIT induces epigenetic modification of the Pdcd1 promoter. CD4+ Tg4 T cells were isolated as naïve  
cells, Teff on day of transfer and cells retrieved 4 days after either PBS or PIT for analysis of the CR-C and CR-B 
regions. (A, B) Histone modifications (H3K4me3 and H3K27me3) were analysed at CR-C and CR-B by ChIP and 
qPCR. Data in (B) show the ratio of H3K4me3 over H3K27me3 fold-enrichment over background and are represen-
tative of two independent experiments. (C, D) DNA methylation status determined by pyrosequencing (C) and 
bisulfite sequencing (D) (data are from two (C) or one (D) bisulfite conversions, four or more mice per group).  
(D) Methylated (black) and unmethylated (white) CpGs. Vertical columns represent individual CpGs (1–4 for  
CR-C and 7–14 for CR-B). Horizontal rows represent individual cloned alleles. (E) 5hmC enrichment at CR-C and 
CR-B as measured by 5hmC DNA Immunoprecipitation and qPCR. Data are from two experiments using pooled 
samples. (F) Total RNA was extracted from the isolated cell populations and expression levels of TET1, TET2 and 
TET3 were measured by qPCR. Values are expressed relative to housekeeping gene (GAPDH) and are representa-
tive of three experiments.
DOI: 10.7554/eLife.03416.020
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inflammation (Probst et al., 2005; Cheng et al., 2007; Francisco et al., 2010). Our previous work had 
excluded such a role for PD-1 in PIT-driven tolerance for naive CD4+ T cells, because PIT remained 
effective irrespective of antibody blockade or genetic deletion of PD-1 in the peptide-responsive 
T cells (Konkel et al., 2010). In the two experimental models used in that study, PIT appeared to 
drive the abortive activation and apoptosis of peptide-responsive naïve T cells within 4 days, which 
would override any potential for PD-1-mediated long-term unresponsiveness. In contrast to those 
previous studies using naïve T cells, we found here that Teff persisted following therapeutic applica-
tion of PIT. In a recent study using PIT to silence allergic airways inflammation, we found an analogous 
accumulation of allergic Teff cells, indicating that persistence following PIT is common to Teff with 
different inflammatory functions (Mackenzie et al., 2014).

The observations that pMHC complexes were specifically maintained on CD4+ DC in vivo, and 
that these DC showed the highest constitutive expression of PD-L1, led us to assess the role of PD-1 
in PIT here. A recent study transgenically expressed autoantigen on all DC subsets and found PD-1-
dependent elevation in the frequencies of autoreactive Foxp3+ T cells as a result (Yogev et al., 2012). 
That result may well have reflected an influence of CD8+ DC, which can drive de novo Foxp3– 
expression due to their production of TGF-β (Yamazaki et al., 2008). CD4+ DC do not have that 
capacity, accounting for the absence of increased Foxp3-expression here, in Tg4 cells exposed to 
PIT. This, together with the lack of evidence for IL-10 production in response to PIT suggests that, in 
this study, the predominant effect of PIT is to suppress pathogenic effector function rather than to 
drive gain of regulatory function.

PD-1 has been reported to co-locate to TCR microclusters at the immunological synapse, where, 
following Lck-mediated phosphorylation of its ITSM, PD-1 recruits the SHP-2 phosphatase to counter-
act phosphorylation of TCR-proximal signalling machinery (Yokosuka et al., 2012). Use of Tg4.PD-1−/− 
Teff cells indicated a key role for PD-1 in limiting clonal expansion following PIT. There are several ways 
in which this inhibition could be achieved. Inhibition of PI3K/Akt and MEK/ERK pathways can lower cell 
proliferation by reducing transcription of SKP2. This gene encodes a crucial component of the ubi-
quitin ligase SCFSkp2, which is required for cyclin-dependent kinase 2 activation and cell cycle progres-
sion from G1 into S phase (Parry et al., 2005; Appleman et al., 2006; Patsoukis et al., 2012; Pauken 
et al., 2013). Exogenous IL-2 only partially restores cell proliferation by activating the MEK/ERK path-
way but not the PI3K/Akt pathway (Patsoukis et al., 2012), suggesting that IL-2 cannot reverse PD-1-
dependent unresponsiveness. Recruitment SHP-2 to the cytoplasmic tail of PD-1 is thought to function 
primarily by inhibiting the PI3K pathway (Chemnitz et al., 2004). However, SHP-2 has also been impli-
cated in the dephosphorylation and inactivation of pSTAT5 (Yu et al., 2000; Chen et al., 2003) and 
PD-1 signalling has been associated with a decrease in both the expression and phosphorylation of 
STAT5 (Iliopoulos et al., 2011). These observations correlate with the decreased levels of pSTAT5 
we see in Tg4 Teff cells (with intact PD-1 signalling) following PIT. Furthermore, inactivation of STAT5 
can lead to a reduction in cell-surface CD25 expression (Kim et al., 2001). This, coupled with the inhi-
bition of TCR signalling pathways by PD-1, would likely account for the impaired CD25 expression 
that we saw in PIT-exposed Tg4 Teff cells. An impaired ability to upregulate CD25, and therefore to 
respond to IL-2, is distinct from the classical profile for clonal anergy, in which unresponsive T cells can 
upregulate CD25 but cannot produce their own IL-2 (anergy is broken by addition of exogenous IL-2) 
(Schwartz, 2003). An unresponsive state that blocks CD25 upregulation can be viewed as more 
secure, since it removes the risk of IL-2 from a bystander source overcoming that unresponsiveness.

Consistent with their lack of encephalitogenicity, Teff that had been tolerized by PIT had an impaired 
ability to establish themselves in the CNS. This might reflect their impaired ability to undergo clonal 
expansion upon subsequent exposure to MBP in the CNS, as discussed above. A recent report has 
indicated an additional role for PD-1 in inhibiting autoimmune T cell infiltration into the pancreas in 
diabetes (Pauken et al., 2013). Here we observed that tolerized Teff had lower levels of active PSGL-1 
relative to pathogenic T cells (PBS group), which is an important component of pathogenic T cell entry 
into the CNS in this model. To our knowledge, no direct causal relationship between PD-1 and PSGL-1 
has been established. T follicular helper (TFH) cells are PD-1hi and PSGL-1lo , but we do not believe that 
PIT drives Teff towards a TFH fate, since we did not observe any production of the TFH-associated 
cytokine IL-21, nor did we find evidence for any gain of the TFH-associated transcription factor BCL-6 
following PIT (data not shown). The transcription factor T-bet can inhibit PD-1 expression in CD8+ cells 
(Kao et al., 2011), but here we found that this was not the case for CD4+ Teff cells, which were T-bet+ 
PD-1hi following PIT, indicating that T-bet and PD-1 are not necessarily mutually antagonistic.

http://dx.doi.org/10.7554/eLife.03416
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Our data allow us to develop a model to explain the pronounced demethylation of the Pdcd1 pro-
moter that, in the experimental system used here, is a unique characteristic of Tg4 Teff that have been 
tolerized in response to PIT. The Pdcd1 promoter of Tg4 cells in their naïve state appears to be fully 
methylated, although this includes a significant level of 5-hydroxymethylation. This, together with the 
availability of TETs 1–3 and the absence of the repressive H3K27me3 histone mark, suggests that the 
gene is poised for transcriptional activation and PD-1 expression. This would fit with the known early 
expression of PD-1 following initial TCR ligation (as seen here in Teff on the day of transfer). This PD-1 
expression during Teff generation was mirrored by chromatin changes associated with gene transcrip-
tion (H3K4me3 enrichment), but without a contemporaneous demethylation of the Pdcd1 promoter. 
The considerable reduction in TET expression observed at the Teff stage should impede any active 
demethylation through the oxidation of either 5mC or 5hmC (a process that involves TET activity), 
thereby averting long-term PD-1 expression that would affect Teff function. As these cells transition to 
a PD-1-negative Teff state (pathogenic Tg4 cells retrieved from PBS-treated hosts), histone modifica-
tions associated with active transcription are no longer evident and, although TET expression has been 
restored, this repressive chromatin state prevents the TET (and other) proteins from accessing the 
Pdcd1 promoter to allow demethylation. However, a key feature of the tolerogenic properties of PIT 
is to provide long-term PD-1 expression by tolerant CD4+ T cells, which is associated with the presence 
of stable histone modifications characteristic of active transcription (thus enabling access of the TET 
proteins, amongst others), and therefore loss of both 5mC and 5hmC at the Pdcd1 promoter. These 
data indicate that analysis of the methylation/hydroxymethylation status of the Pdcd1 promoters may 
facilitate the discrimination of tolerant versus recently activated PD-1+ CD4+ T cells.

Juvenile arthritis patients who responded to PIT using peptide from the DNAj antigen were 
reported to have an ‘immune signature’ that included elevated global PD-1 expression, relative to 
non-responders (Koffeman et al., 2009). However, that work was based on assessment of the patients 
before undergoing PIT, rather than following PIT. It would therefore be important to understand the 
relative expression of PD-1 before and after treatment in individual patients in future studies. A limita-
tion is the need to identify T cells that are relevant to the peptide(s) used for PIT. As the range of 
pMHC tetramers available expands, this should become more feasible. Furthermore, our study high-
lights the need for analysis of the Pdcd1 promoter to discriminate PD-1hi pathogenic Teff from the 
PD-1hi Teff rendered tolerant by PIT. This would be challenging to combine with tetramer-based 
isolation of relatively small T cell populations, although perhaps not impossible. Therefore, whilst 
locus-specific DNA methylation-status would not prove a viable biomarker in itself, it might aid the 
identification of a surrogate phenotypic profile amenable to flow cytometric analysis.

The demethylation of the Pdcd1 promoter seen in PIT-tolerized Teff is reminiscent of the changes 
reported to occur in CD8+ T cells exhausted in response to chronic viral infection (Youngblood  
et al., 2011). So, do these two situations of CD4+ T cell tolerance and CD8+ T cell exhaustion have 
the same underlying mechanism(s)? In some ways yes, but there are some pronounced differences. 
In both scenarios Teff cells express PD-1 but this is lost, either as they transition to memory cells 
(Youngblood et al., 2011), or here within 2 days of transfer in the absence of PIT. Conversely, 
exhausted or peptide-tolerized Teff cells maintain PD-1 expression. Youngblood et al reported that 
CD8+ Teff cells that transiently expressed PD-1 already have demethylated Pdcd1 promoters and 
their transition towards PD-1-negative memory cells is driven by the specific remethylation of their 
Pdcd1 promoters (Youngblood et al., 2011). In contrast, the methylation status of the Pdcd1 pro-
moters within our CD4+ Teff cells that transiently expressed PD-1 appeared unaltered from that of 
naïve CD4+ T cells. It was only in the PIT-treated Teff that we saw significant demethylation of the 
Pdcd1 promoter, consistent with their sustained PD-1 expression. It will be important to determine 
whether these differences reflect intrinsic differences in how PD-1 expression is controlled in CD4+ 
versus CD8+ T cells. In addition, we are not aware of any information on 5hmC status of the Pdcd1 
promoter in CD8+ cells.

We found marked enrichment of 5hmC at the Pdcd1 promoter in naïve CD4+ T cells. This is 
intriguing because the biological significance of 5hmC has chiefly been explored in the context of 
embryonic development. Its appearance in the promoter of a key gene controlling T cell activation 
suggests that DNA hydroxymethylation may play a broader role in maintaining the ‘pluripotent’ state 
of naïve CD4+ T cells. We suggest that this warrants global analyses to search for 5hmC and other 
intermediates of 5mC oxidation within the CD4+ T cell genome and also for the TET proteins with 
direct roles in the oxidation process (Deplus et al., 2013; Koh and Rao, 2013).

http://dx.doi.org/10.7554/eLife.03416
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Materials and methods
Mice, antigens and tissue culture medium
C57BL/6 (CD45.1 or CD45.2), B10.PL (CD45.2), B10.PLxC57BL/6 (CD45.2) and Tg4 (CD45.1 or CD90.1) 
mice (Liu et al., 1995) were used. PD-1−/− mice (kindly provided by Prof Tasuku Honjo, Kyoto University) 
were crossed with Tg4 (CD90.1) mice to obtain Tg4.PD-1−/− (CD90.1) mice. All mice were bred under 
specific pathogen-free conditions at the University of Edinburgh. All experiments were approved by 
the University of Edinburgh Ethical Review Committee and were performed in accordance with UK 
legislation. Acetylated MBP peptides Ac1-9 (Ac-ASQKRPSQR) and Ac1-9 (4Tyr) (Ac-ASQYRPSQR) and 
the ovalbumin peptide 323–339 (pOVA) (ISQAVHAAHAEINEAGR) were synthesised with C-terminal 
amides by Cambridge Research Biochemicals, Billingham, UK. Tissue culture medium (RPMI 1640 
medium) was supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, and 
5 × 10−5 M 2-ME (all from Invitrogen Life Technologies, Paisley, UK) and 10% FCS (Sigma, Poole, UK). 
Cells isolated from immunized mice were cultured in X-VIVO15 serum-free medium (Lonza, Walkersville, 
MD, USA) supplemented with 2 mM L-glutamine and 5 × 10−5 M 2-ME.

T cell transfers and retrieval
Naïve CD4+ T cells were isolated from Tg4 or Tg4.PD1−/− mice by magnetic activated cell-sorting 
(MACS) according to manufacturer's instructions (Miltenyi Biotec, Teterow, Germany), and 2 × 106 cells 
were transferred in 200 µl PBS i.v. Pathogenic MBP-responsive Teff cells were generated by stimulation 
of Tg4 or Tg4.PD1−/− splenocytes with Ac1-9 in the presence of IL-12, IL-18 and IL-2 as described 
previously (O'Connor et al., 2010). pOVA-responsive Teff cells were generated by immunization of 
C57BL/6(CD45.1) mice with pOVA, followed by restimulation of draining lymph node cells with pOVA 
and the above cytokine cocktail. Cells were harvested after 72 hr culture and 2 × 106 blasts trans-
ferred i.v. in 200 µl PBS. For the retrieval of donor Tg4 cells, CD4+ T cells were isolated from spleno-
cytes by MACS and donor cells (CD4+ CD45.1+ or CD90.1+) were identified and isolated by surface 
staining and FACS using a FACSAria II (Becton Dickinson, Franklin Lakes, NJ, USA).

Immunizations and administration of tolerogenic peptide
On the day indicated, mice received Ac1-9 or pOVA emulsified in CFA containing 50 μg heat-killed 
Mycobacterium tuberculosis H37Ra (Sigma) in a total volume of 100 μl injected subcutaneously (s.c.) 
into the hind legs. For PIT, mice received 200 µg of Ac1-9 (4Tyr), or pOVA, in 200 µl PBS (or PBS alone) 
i.v. at the indicated time.

Induction of EAE
For the induction of active EAE, mice were immunized as above and received 200 ng of pertussis toxin 
(Health Protection Agency, Dorset, U.K.) in 0.5 ml PBS i.p on the day of immunization and 48 hr later. 
Clinical signs of EAE were assessed using the following scoring index: 0, no signs; 1, flaccid tail; 2, 
impaired righting reflex and/or gait; 3, partial hind limb paralysis; 4, total hind limb paralysis; 5, hind 
limb paralysis with partial front limb paralysis; 6, moribund or dead. For the induction of passive EAE, 
mice received 2 × 106 Tg4 effector cells via i.v. injection. On the same day, or the day following cell 
transfer, mice received 200 ng pertussis toxin in 0.5 ml PBS i.p. and clinical signs were assessed as 
described above. For some experiments, an anti-PSGL-1 antibody (4RA10, rat IgG1, BioXCell, West 
Lebanon, NH, USA), or purified rat IgG (Sigma) were administered, as indicated.

Analysis of splenic APC function after PIT
Mice received the Ac1-9(4Tyr) peptide as described above for the induction of PIT. Spleens were iso-
lated at the indicated times, injected with 100 µl of 8 mg/ml of collagenase IV (Worthington Biochemical 
Corp, Lakewood, NJ, USA) and incubated at 37°C for 20 min before manual disaggregation. In some 
experiments, APC populations were purified by positive selection using MACS and anti-CD11c beads 
(DC), or by negative selection with anti-CD11c beads, followed by positive selection using anti-CD19 
beads. For isolation of DC populations, CD3+ and CD19+ cells were depleted by MACS prior to stain-
ing and FACS for pDC (PDCA-1+CD11cint), CD4+DC (CD11chiPDCA-1−CD4+CD8−), CD8+DC 
(CD11chiPDCA-1−CD8+CD4−), and CD4−CD8−DC (CD11chiPDCA-1−CD8−CD4−). APC populations were 
used to stimulate a Tg4 T cell line (Tg4.TCL; generated as previously described [Anderton et al., 
1998]), with or without the addition of exogenous Ac1-9 peptide to the cultures. Cells (2 × 104 Tg4.
TCL with a range of APC numbers per well) were cultured in flat-bottom 96-well microtitre plates 
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(Becton Dickinson) for 72 hr [3H]thymidine incorporation over the final 16 hr was measured using a 
liquid scintillation β-counter (LKB Wallac, Turku, Finland).

Assesment of lymphoid recall assays
Splenocyte suspensions were cultured in 96-well flat-bottom microtitre plates (Becton Dickinson) at 
8 × 105 spleenocytes/well. For purified donor T cells, 2 × 104 T cells were cultured with 2 × 105 irradi-
ated (30 Gy) splenic APC's/well. Cultures were stimulated with a dose range of Ac1-9 and superna-
tants were tested for production of IFN-γ and IL-17 at 72 hr by ELISA. Where stated, neutralizing 
anti-PD-1 antibody (RMP1-14, rat IgG2a), or rat IgG (Sigma) were added to cultures at 10 µg/ml. The 
RMP1-14 antibody was a gift from Dr Hideo Yagata (Juntendo University, Japan).

Antibodies and FACS analysis
Cells were stained using the following Abs and isotype controls (all from eBioscience, Hatfield, UK, 
except where stated); anti-CD4-AF700 (Invitrogen), anti-CD4-eFluor450, anti-CD8-(APC/PE), anti-
CD45.1-(FITC/PE), anti-CD90.1-FITC, anti-CD11b-APC, anti-CD11c-PE-Cy7, anti-PDCA-1-eFluor450, 
anti-PD-1-PE, anti-CD162-PE, anti-CD80 biotin, anti-CD86 PE, anti-PD-L1 APC, anti-PD-L2 APC, anti-
OX-40L biotin, andti-CD40 PE, anti-IFN-γ-APC, anti-GM-CSF-PE (Becton Dickinson), anti-Ki-67-PerCP-
eFluor710, anti-Foxp3-eFlour450, Streptavidin APC, rat IgG1-(FITC/APC/PerCPCy5.5), rat IgG2a-PE, 
Rat IgG2a-PerCP-eFluor710, rat IgG2b-(PE/biotin), Armenian hamster IgG-PE. Active PSGL-1 levels 
were detected by staining cells with a P-Selectin-human IgG fusion protein (BD) and anti-human 
IgG-PE. Flow cytometric data were acquired using a BD LSRFortessa cell analyzer (Becton Dickinson) 
and data analysed using FlowJo software (Treestar version 3.2.1, Ashland, OR, USA). For intracellular 
staining in response to peptide, cells were re-suspended at 8 × 106/ml in the presence or absence of 
20 μM Ac1-9, or pOVA, as appropriate. After overnight culture, 1 μl/ml of brefeldin A (eBioscience, 
1000× stock) was added for the last four hours of culture. Cells were washed once in FACS buffer (PBS, 
2% FCS, 0.01% NaN3) and surface stained prior to processing for intracellular staining using propri-
etary buffers according to the manufacturer's instructions (e-bioscience for transcription factor stain-
ing or Becton Dickinson for cytokine staining). After incubation in fix/perm buffers, cells were stained 
for intracellular antigens. Detection of pSTAT5 was performed as previously described (Leech et al., 
2013) following 12 hr culture in the presence of 20 μM Ac1-9.

Immunofluorescence
4 × 106 Tg4 cells were transferred to mice 1 day after PBS/PIT. Spleens were isolated 48 hr later and 
embedded and frozen in OCT (Cellpath, Newtown, UK). 6 µm thick sections were fixed in ice-cold 
acetone. Non-specific binding and endogenous biotin were blocked with 3% BSA (Sigma) and an 
avidin-biotin blocking kit (Vector Laboratories, Peterborough, UK) respectively. Tissue sections were 
stained with hamster anti-CD11c-biotin (Biolegend, San Diego, CA, USA), rat anti-CD4-FITC and 
mouse anti-CD45.1-APC (eBioscience). Biotinylated antibodies were detected with streptavidin-Alexa 
Fluor 555 (Invitrogen). Sections were mounted in Permafluor mounting medium (Thermo Scientific, 
Hemel Hempstead, UK). To determine specific binding, secondary antibodies alone or isotype controls 
(IgG-Biotin [Biolegend], IgG2a-FITC, IgG2a-APC [eBioscience]) were used. Images were acquired with 
a Leica confocal laser scanning microscope SP5 and LAS AF software (Leica, Wetzlar, Germany) and 
processed with ImageJ/Fiji software (NIH, Bethesda, MD, USA).

DNA Methylation analysis
Genomic DNA was isolated from frozen cell pellets of CD4+ T cells using the DNeasy blood and tissue 
kit (Qiagen, Crawley, UK) according to manufacturer's instructions, and ≤1 µg of DNA was subjected 
to bisulfite conversion using the Epi Tect Bisulfite Kit (Qiagen). Primers for Pyrosequencing (Eurofins 
MWG Operon, Ebersberg, Germany) were designed for conserved regions C and B (CR-C and CR-B) 
(Table 1) within the Pdcd1 (PD-1 encoding) gene using PyroMark Assay Design 2.0 software (Qiagen). 
Pyrosequencing was performed using PyroMark reagents with PyroMark Q24 instrumentation, and 
data were analysed using PyroMark Q24 software 2.0 (all Qiagen). Background non-conversion levels 
were between 2–3%. For bisulfite sequencing, genomic DNA was subjected to bisulphite conversion 
using the EZ DNA Methylation Gold Kit (Zymo Research, Irvine, CA, USA). Bisulfite sequencing was 
conducted as previously described (Hackett et al., 2012; Reddington et al., 2013). Primers specified 
in Table 2 were used to amplify specific regions of interest with Platinum Taq (Invitrogen). A single band 
was excised, gel extracted, and cloned into pGEM-T-easy (Promega, Madison, WI, USA) for sequencing.

http://dx.doi.org/10.7554/eLife.03416
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5hmC DNA Immunoprecipitation
Genomic DNA was extracted as above, and 1 μg of DNA was sonicated (Bioruptor, Diagenode, 
Liege, Belgium) to produce fragments 200–500 bp (mean 300 bp) in length. Enrichment of 5hmC 
DNA was carried out using the Active Motif Hydroxymethyl Collector kit (Active Motif, La Hulpe, 
Belgium) according to manufacturer's instructions.

Chromatin immunoprecipitation for histone modification analysis
Cross-linked ChIP was conducted essentially as previously described (Hackett et al., 2012) using 
1–3 × 106 cells per IP. In brief; after fixation in 1% formaldehyde, cells were lysed and chromatin was 
sonicated (Bioruptor, Diagenode) to produce fragment sizes 200–1000 bp in length. Chromatin was 
pre-cleared by incubation with Protein A magnetic beads (Invitrogen), before incubation with antibody 
bound beads. Antibodies used were anti-H3K27me3, anti-H3K4me3 and the isotype control rabbit 
IgG (Merck Millipore, Billerica, MA, USA and Santa Cruz Biotechnology, Dallas, TX, USA, respectively). 
Beads were washed, DNA was eluted and cross-linking was reversed before DNA was purified using 
the QIAquick PCR purification kit according to manufacturer's instructions (Qiagen). Eluted DNA was 
quantified using real-time PCR.

Quantitative real-time PCR (qPCR) analysis
qPCR was conducted on DNA obtained after ChIP or 5hmC enrichment using SYBR Green Real-time 
PCR master mix (Roche Diagnostics, Burgess Hill, UK) and the primers listed in Table 2. Reactions were 
performed on the Roche LightCycler 480. For ChIP analysis, fold enrichment of specific enrichment 
over background was calculated using values normalized to input. For 5hmC analysis, relative enrich-
ment was calculated to a known amount of input DNA and all data normalised to a negative control 

Table 1. Primer sequences for pyrosequencing analysis

PDCD1  
region Assay CpG PCR primers 5′-3′

Sequencing  
primer 5′-3′

Product  
length  
(bp)

CR-C 1 1 and 2 F: AGGTATAAAGGAGGTTTT 
GTAATAGT

GAGGTTTTGTAATAGTTAGG 186

R: CCTCAACCACCCAAATTC 
AAA-BIO

2 3, 4, 5 F: TGGGTGGTTGAGGTAGTT GTTGAGGTAGTTGTTAGAT 253

R: CACCTCACCTCCTACTTA 
TCTCT-BIO

3 6 F: TGTTTATTTTAGGGTGGT 
GAGATTTAT

GTTAGGTATTATGTATGTATATAAG 221

R: TAAAAACCCACCTCACCT 
CCTACTT-BIO

CR-B 1 8, 9, 10, 11 F: AAAGGAAGAAAAGTTTTA 
AGAGAAAGTAAG

CTATCCCACATACTCC 167

R: ACCCAACTATCCCACATAC 
T-BIO

2 12, 13, 14, 15 F: GGGTTTTTGTTTTTTAGTAG 
TAAAGGATTA

ATTAAGGTATAGTTTAGGGTA 164

R: AAAACCAAACTCTTATCCC 
TTTAAAA-BIO

3 16 and 17 F: GGTAGGGGAGGGTTTAGT GTTTTGGGAGTTAAGG 193

R: TCCTCTCCATTTCTAACCC 
CTCTTATA-BIO

4 7 F: AGGGTAGTAGAGTTAGTAA 
ATTTAAGATA

AGTAGAGAAAATAGTGAGAT 103

R: CTCTTAAAACTTTTCTTCCTT 
TCAAAATAC-BIO

DOI: 10.7554/eLife.03416.021
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region at the gapdh promoter. Levels of 5hmC were tested over one region at the CR-C and two at the 
CR-B which were combined to generate an average value of 5hmC enrichment.

For detection of Tet1, Tet2 and Tet3 mRNA, total RNA was isolated using the RNeasy kit and 
cDNA was generated using the QuantiTect Reverse Transcription kit (both Qiagen) according to 
manufacturer's instructions. Quantification of mRNA was conducted by qPCR using pre-designed 
TaqMan assays from Applied Biosystems (Life technologies, Catalogue no's: Mm01169087_m1, 
Mm00524395_m1, Mm00805756_m1) as previously described (Drake et al., 2010). Results were nor-
malized to the expression of the housekeeping gene GAPDH (Applied Biosystems gene expression 
assay Mm99999915_g1).

Statistics
Statistical analysis of results was performed using the Mann–Whitney U test or the Kruskal–Wallis with 
Dunn's post-hoc test (p values: *<0.05, **<0.01, ***<0.005).

Acknowledgements
Work in SMA's lab was supported by grants G0801924 and G1100084 from the Medical Research 
Council (MRC), the Wellcome Trust (087833) and the UK Multiple Sclerosis Society (899/08). Work 
in RRM's lab was supported by the MRC, the BBSRC and by the Innovative Medicine Initiative Joint 
Undertaking (IMI JU) under grant agreement number 115001 (MARCAR project). AJD was supported 
by the MRC and the Scottish Funding Council. The authors have no conflicting interests to declare.

Additional information

Funding

Funder Grant reference number Author

Medical Research  
Council  

G0801924, G1100084 Rhoanne C McPherson,  
Melanie D Leech,  
Stephen M Anderton

Wellcome Trust   087833 Stephen M Anderton

Table 2. Primer sequences for bisulfite sequencing and RT-PCR

Region Assay CpG PCR primers 5′-3′ Product length (bp)

CR-C* 0–4 F: ATAAAGGTATAAAGGAGGTTTTG 363

R: CCTAACTAACTAATCATTTCT

CR-C (nested)* 1–4 F: GAGGGGATTTTTTTAGTTTTTGT 289

R: AATTTAATCATTCTACTCTCT

CR-B* 7–14 F: GAAAGGAAGAAAAGTTTTAAG 332

R: AAACTAAAACCAAACTCTTATCC

CR-B (nested)* 7–14 F: GTTTTTTTGAATTTATAGGGGTG 276

R: ACTCTTATCCCTTTAAAAAAT

CR-C† 1 3–5 F: AGTTGCCAGATGGTTTCCAG 154

R: CTGGGGCATTCTGATGATTT

CR-B† 1 10–14 F: CGGGTCCTAGGAAATGTTCA 236

R: GCCAGACTCTTGTCCCTTTG

2 7–10 F: TACAGGGGTGTCTGGAGAGG 156

R: ATGCCCTGAGCTATGCCTTA

GAPDH† F: CCACTCCCCTTCCCAGTT 147

R: CCTATAAATACGGACTGC

*Primer sequences for bisulfite sequencing.
†Primer sequences for RT-PCR.
DOI: 10.7554/eLife.03416.022

http://dx.doi.org/10.7554/eLife.03416
http://dx.doi.org/10.7554/eLife.03416.022


Immunology

McPherson et al. eLife 2014;3:e03416. DOI: 10.7554/eLife.03416	 18 of 20

Research article

Funder Grant reference number Author

Multiple Sclerosis  
Society  

899/08 Rhoanne C McPherson,  
Stephen M Anderton

The funders had no role in study design, data collection and interpretation, or the  
decision to submit the work for publication.

Author contributions
RCM, JEK, SMA, Conception and design, Acquisition of data, Analysis and interpretation of data, 
Drafting or revising the article; CTP, JPT, RO, MDL, OK, SEJZ, CHS, Acquisition of data, Analysis and 
interpretation of data; DCW, Drafting or revising the article, Contributed unpublished essential data 
or reagents; RRM, Conception and design, Drafting or revising the article; AJD, Conception and 
design, Analysis and interpretation of data, Drafting or revising the article

Ethics
Animal experimentation: This study was approved by the University of Edinburgh Ethical Review 
Panel and was performed in accordance with UK legislation (PPL 60/4116).

References
Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T. 1996. Expression of the PD-1 antigen 

on the surface of stimulated mouse T and B lymphocytes. International Immunology 8:765–772. doi: 10.1093/
intimm/8.5.765.

Anderton SM, Manickasingham SP, Burkhart C, Luckcuck TA, Holland SJ, Lamont AG, Wraith DC. 1998. Fine 
specificity of the myelin-reactive T cell repertoire: implications for TCR antagonism in autoimmunity. The Journal 
of Immunology 161:3357–3364.

Appleman LJ, Chernova I, Li L, Boussiotis VA. 2006. CD28 costimulation mediates transcription of SKP2 and 
CKS1, the substrate recognition components of SCFSkp2 ubiquitin ligase that leads p27kip1 to degradation. 
Cell Cycle 5:2123–2129. doi: 10.4161/cc.5.18.3139.

Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. 2006. Restoring function 
in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687. doi: 10.1038/nature04444.

Burkhart C, Liu GY, Anderton SM, Metzler B, Wraith DC. 1999. Peptide-induced T cell regulation of experimental 
autoimmune encephalomyelitis: a role for IL-10. International Immunology 11:1625–1634. doi: 10.1093/
intimm/11.10.1625.

Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. 2004. SHP-1 and SHP-2 associate with immunoreceptor 
tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor 
ligation prevents T cell activation. The Journal of Immunology 173:945–954. doi: 10.4049/jimmunol.173.2.945.

Chen Y, Wen R, Yang S, Schuman J, Zhang EE, Yi T, Feng GS, Wang D. 2003. Identification of Shp-2 as a Stat5A 
phosphatase. The Journal of Biological Chemistry 278:16520–16527. doi: 10.1074/jbc.M210572200.

Cheng X, Zhao Z, Ventura E, Gran B, Shindler KS, Rostami A. 2007. The PD-1/PD-L pathway is up-regulated 
during IL-12-induced suppression of EAE mediated by IFN-gamma. Journal of Neuroimmunology 185:75–86. 
doi: 10.1016/j.jneuroim.2007.01.012.

Chikuma S, Terawaki S, Hayashi T, Nabeshima R, Yoshida T, Shibayama S, Okazaki T, Honjo T. 2009. PD-1-
mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo. The Journal of Immunology 
182:6682–6689. doi: 10.4049/jimmunol.0900080.

Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, Dawson MA, Volkmar M, Putmans P, 
Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F. 2013. TET2 and 
TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. The EMBO Journal 
32:645–655. doi: 10.1038/emboj.2012.357.

Deshpande P, King IL, Segal BM. 2006. IL-12 driven upregulation of P-selectin ligand on myelin-specific T cells is 
a critical step in an animal model of autoimmune demyelination. Journal of Neuroimmunology 173:35–44.  
doi: 10.1016/j.jneuroim.2005.11.016.

Drake AJ, Raubenheimer PJ, Kerrigan D, McInnes KJ, Seckl JR, Walker BR. 2010. Prenatal dexamethasone 
programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not 
obesity on a high-fat diet. Endocrinology 151:1581–1587. doi: 10.1210/en.2009-1088.

Francisco LM, Sage PT, Sharpe AH. 2010. The PD-1 pathway in tolerance and autoimmunity. Immunological 
Reviews 236:219–242. doi: 10.1111/j.1600-065X.2010.00923.x.

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, 
Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T. 2000. 
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation 
of lymphocyte activation. The Journal of Experimental Medicine 192:1027–1034. doi: 10.1084/jem.192.7.1027.

Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, Reik W, Surani MA, Adams IR, 
Meehan RR. 2012. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogram-
ming in the mouse germline. Development 139:3623–3632. doi: 10.1242/dev.081661.

http://dx.doi.org/10.7554/eLife.03416
http://dx.doi.org/10.1093/intimm/8.5.765
http://dx.doi.org/10.1093/intimm/8.5.765
http://dx.doi.org/10.4161/cc.5.18.3139
http://dx.doi.org/10.1038/nature04444
http://dx.doi.org/10.1093/intimm/11.10.1625
http://dx.doi.org/10.1093/intimm/11.10.1625
http://dx.doi.org/10.4049/jimmunol.173.2.945
http://dx.doi.org/10.1074/jbc.M210572200
http://dx.doi.org/10.1016/j.jneuroim.2007.01.012
http://dx.doi.org/10.4049/jimmunol.0900080
http://dx.doi.org/10.1038/emboj.2012.357
http://dx.doi.org/10.1016/j.jneuroim.2005.11.016
http://dx.doi.org/10.1210/en.2009-1088
http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x
http://dx.doi.org/10.1084/jem.192.7.1027
http://dx.doi.org/10.1242/dev.081661


Immunology

McPherson et al. eLife 2014;3:e03416. DOI: 10.7554/eLife.03416	 19 of 20

Research article

Iliopoulos D, Kavousanaki M, Ioannou M, Boumpas D, Verginis P. 2011. The negative costimulatory molecule 
PD-1 modulates the balance between immunity and tolerance via miR-21. European Journal of Immunology 
41:1754–1763. doi: 10.1002/eji.201040646.

Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, 
Weinmann AS, Wherry EJ. 2011. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 
and sustains virus-specific CD8+ T cell responses during chronic infection. Nature Immunology 12:663–671.  
doi: 10.1038/ni.2046.

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. 2008. PD-1 and its ligands in tolerance and immunity. Annual 
Review of Immunology 26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.

Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, 
Sharpe AH. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. The Journal of Experimental 
Medicine 203:883–895. doi: 10.1084/jem.20051776.

Kim HP, Kelly J, Leonard WJ. 2001. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: 
importance of two widely separated IL-2 response elements. Immunity 15:159–172. doi: 10.1016/
S1074-7613(01)00167-4.

Koffeman EC, Genovese M, Amox D, Keogh E, Santana E, Matteson EL, Kavanaugh A, Molitor JA, Schiff MH, 
Posever JO, Bathon JM, Kivitz AJ, Samodal R, Belardi F, Dennehey C, van den Broek T, van Wijk F, Zhang X, 
Zieseniss P, Le T, Prakken BA, Cutter GC, Albani S. 2009. Epitope-specific immunotherapy of rheumatoid 
arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of 
molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Seminars in 
Arthritis and Rheumatism 60:3207–3216. doi: 10.1002/art.24916.

Koh KP, Rao A. 2013. DNA methylation and methylcytosine oxidation in cell fate decisions. Current Opinion in 
Cell Biology 25:152–161. doi: 10.1016/j.ceb.2013.02.014.

Kohli RM, Zhang Y. 2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479. 
doi: 10.1038/nature12750.

Konkel JE, Frommer F, Leech MD, Yagita H, Waisman A, Anderton SM. 2010. PD-1 signalling in CD4(+) T cells 
restrains their clonal expansion to an immunogenic stimulus, but is not critically required for peptide-induced 
tolerance. Immunology 130:92–102. doi: 10.1111/j.1365-2567.2009.03216.x.

Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and 
the brain. Science 324:929–930. doi: 10.1126/science.1169786.

Larché M. 2007. Update on the current status of peptide immunotherapy. The Journal of Allergy and Clinical 
Immunology 119:906–909. doi: 10.1016/j.jaci.2007.02.015.

Larche M, Wraith DC. 2005. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nature 
Medicine 11:S69–S76. doi: 10.1038/nm1226.

Leech MD, Barr TA, Turner DG, Brown S, O'Connor RA, Gray D, Mellanby RJ, Anderton SM. 2013. Cutting edge: 
IL-6-dependent autoimmune disease: dendritic cells as a sufficient, but transient, source. The Journal of 
Immunology 190:881–885. doi: 10.4049/jimmunol.1202925.

Leech MD, Chung CY, Culshaw A, Anderton SM. 2007. Peptide-based immunotherapy of experimental autoim-
mune encephalomyelitis without anaphylaxis. European Journal of Immunology 37:3576–3581. doi: 10.1002/
eji.200737148.

Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC. 1995. Low avidity recognition of self-antigen by 
T cells permits escape from central tolerance. Immunity 3:407–415. doi: 10.1016/1074-7613(95)90170-1.

Liu GY, Wraith DC. 1995. Affinity for class II MHC determines the extent to which soluble peptides tolerize 
autoreactive T cells in naive and primed adult mice–implications for autoimmunity. International Immunology 
7:1255–1263. doi: 10.1093/intimm/7.8.1255.

Mackenzie KJ, Nowakowska DJ, Leech MD, McFarlane AJ, Wilson C, Fitch PM, O'Connor RA, Howie SE, Schwarze J, 
Anderton SM. 2014. Effector and central memory T helper 2 cells respond differently to peptide immunotherapy. 
Proceedings of the National Academy of Sciences of USA 111:E784–E793. doi: 10.1073/pnas.1316178111.

McLellan AD, Kapp M, Eggert A, Linden C, Bommhardt U, Brocker EB, Kammerer U, Kampgen E. 2002. 
Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 
expression. Blood 99:2084–2093. doi: 10.1182/blood.V99.6.2084.

Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Dixon JM, Harrison DJ, 
Meehan RR. 2012. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. 
Genome Research 22:467–477. doi: 10.1101/gr.126417.111.

Nishimura H, Nose M, Hiai H, Minato N, Honjo T. 1999. Development of lupus-like autoimmune diseases by 
disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151.  
doi: 10.1016/S1074-7613(00)80089-8.

O'Connor RA, Leech MD, Suffner J, Hammerling GJ, Anderton SM. 2010. Myelin-reactive, TGF-beta-induced 
regulatory T cells can be programmed to develop Th1-like effector function but remain less proinflammatory 
than myelin-reactive Th1 effectors and can suppress pathogenic T cell clonal expansion in vivo. The Journal of 
Immunology 185:7235–7243. doi: 10.4049/jimmunol.1001551.

Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. 
2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular 
Biology 25:9543–9553. doi: 10.1128/MCB.25.21.9543-9553.2005.

Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA. 2012. Selective effects of PD-1 on Akt and Ras 
pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Science Signaling 
5:ra46. doi: 10.1126/scisignal.2002796.

http://dx.doi.org/10.7554/eLife.03416
http://dx.doi.org/10.1002/eji.201040646
http://dx.doi.org/10.1038/ni.2046
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331
http://dx.doi.org/10.1084/jem.20051776
http://dx.doi.org/10.1016/S1074-7613(01)00167-4
http://dx.doi.org/10.1016/S1074-7613(01)00167-4
http://dx.doi.org/10.1002/art.24916
http://dx.doi.org/10.1016/j.ceb.2013.02.014
http://dx.doi.org/10.1038/nature12750
http://dx.doi.org/10.1111/j.1365-2567.2009.03216.x
http://dx.doi.org/10.1126/science.1169786
http://dx.doi.org/10.1016/j.jaci.2007.02.015
http://dx.doi.org/10.1038/nm1226
http://dx.doi.org/10.4049/jimmunol.1202925
http://dx.doi.org/10.1002/eji.200737148
http://dx.doi.org/10.1002/eji.200737148
http://dx.doi.org/10.1016/1074-7613(95)90170-1
http://dx.doi.org/10.1093/intimm/7.8.1255
http://dx.doi.org/10.1073/pnas.1316178111
http://dx.doi.org/10.1182/blood.V99.6.2084
http://dx.doi.org/10.1101/gr.126417.111
http://dx.doi.org/10.1016/S1074-7613(00)80089-8
http://dx.doi.org/10.4049/jimmunol.1001551
http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005
http://dx.doi.org/10.1126/scisignal.2002796


Immunology

McPherson et al. eLife 2014;3:e03416. DOI: 10.7554/eLife.03416	 20 of 20

Research article

Pauken KE, Jenkins MK, Azuma M, Fife BT. 2013. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells 
suppresses infiltration of the pancreas during Type 1 Diabetes. Diabetes 62:2859–2869. doi: 10.2337/db12–1475.

Prendergast CT, Anderton SM. 2009. Immune cell entry to central nervous system–current understanding and 
prospective therapeutic targets. Endocrine, Metabolic & Immune Disorders Drug Targets 9:315–327.  
doi: 10.2174/187153009789839219.

Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. 2005. Resting dendritic cells induce peripheral  
CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunology 6:280–286. doi: 10.1038/ni1165.

Reddington JP, Perricone SM, Nestor CE, Reichmann J, Youngson NA, Suzuki M, Reinhardt D, Dunican DS, 
Prendergast JG, Mjoseng H, Ramsahoye BH, Whitelaw E, Greally JM, Adams IR, Bickmore WA, Meehan RR. 
2013. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target 
genes. Genome Biology 14:R25. doi: 10.1186/gb-2013-14-3-r25.

Riley JL. 2009. PD-1 signaling in primary T cells. Immunological Reviews 229:114–125. doi: 10.1111/j.1600-065X. 
2009.00767.x.

Ryan KR, McCue D, Anderton SM. 2005. Fas-mediated death and sensory adaptation limit the pathogenic 
potential of autoreactive T cells after strong antigenic stimulation. Journal of Leukocyte Biology 78:43–50.  
doi: 10.1189/jlb.0205059.

Sandner SE, Clarkson MR, Salama AD, Sanchez-Fueyo A, Domenig C, Habicht A, Najafian N, Yagita H, Azuma M, 
Turka LA, Sayegh MH. 2005. Role of the programmed death-1 pathway in regulation of alloimmune responses 
in vivo. The Journal of Immunology 174:3408–3415. doi: 10.4049/jimmunol.174.6.3408.

Schwartz RH. 2003. T cell anergy. Annual Review of Immunology 21:305–334. doi: 10.1146/annurev.
immunol.21.120601.141110.

Smithson G, Rogers CE, Smith PL, Scheidegger EP, Petryniak B, Myers JT, Kim DS, Homeister JW, Lowe JB. 2001. 
Fuc-TVII is required for T helper 1 and T cytotoxic 1 lymphocyte selectin ligand expression and recruitment in 
inflammation, and together with Fuc-TIV regulates naive T cell trafficking to lymph nodes. The Journal of 
Experimental Medicine 194:601–614. doi: 10.1084/jem.194.5.601.

Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, 
Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C. 2011. Selective chemical labeling reveals the genome-wide 
distribution of 5-hydroxymethylcytosine. Nature Biotechnology 29:68–72. doi: 10.1038/nbt.1732.

Sperandio M, Thatte A, Foy D, Ellies LG, Marth JD, Ley K. 2001. Severe impairment of leukocyte rolling in venules 
of core 2 glucosaminyltransferase-deficient mice. Blood 97:3812–3819. doi: 10.1182/blood.V97.12.3812.

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. 
2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. 
Science 324:930–935. doi: 10.1126/science.1170116.

Thomson JP, Hunter JM, Lempiainen H, Muller A, Terranova R, Moggs JG, Meehan RR. 2013. Dynamic changes 
in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver. Nucleic Acids Research 
41:5639–5654. doi: 10.1093/nar/gkt232.

Thomson JP, Lempiäinen H, Hackett JA, Nestor CE, Muller A, Bolognani F, Oakeley EJ, Schubeler D, Terranova R, 
Reinhardt D, Moggs JG, Meehan RR. 2012. Non-genotoxic carcinogen exposure induces defined changes in 
the 5-hydroxymethylome. Genome Biology 13:R93. doi: 10.1186/gb-2012-13-10-r93.

Tsushima F, Yao S, Shin T, Flies A, Flies S, Xu H, Tamada K, Pardoll DM, Chen L. 2007. Interaction between B7-H1 and 
PD-1 determines initiation and reversal of T-cell anergy. Blood 110:180–185. doi: 10.1182/blood-2006-11-060087.

Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R. 
2007. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27:670–684.  
doi: 10.1016/j.immuni.2007.09.006.

Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM. 2008. 
CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. The Journal of 
Immunology 181:6923–6933. doi: 10.4049/jimmunol.181.10.6923.

Yogev N, Frommer F, Lukas D, Kautz-Neu K, Karram K, Ielo D, von Stebut E, Probst HC, van den Broek M, 
Riethmacher D, Birnberg T, Blank T, Reizis B, Korn T, Wiendl H, Jung S, Prinz M, Kurschus FC, Waisman A. 2012. 
Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) 
regulatory T cells. Immunity 37:264–275. doi: 10.1016/j.immuni.2012.05.025.

Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. 2012. Programmed cell 
death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting 
phosphatase SHP2. The Journal of Experimental Medicine 209:1201–1217. doi: 10.1084/jem.20112741.

Youngblood B, Hale JS, Ahmed R. 2013. T-cell memory differentiation: insights from transcriptional signatures 
and epigenetics. Immunology 139:277–284. doi: 10.1111/imm.12074.

Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL, Boss JM, 
Ahmed R. 2011. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-
specific CD8(+) T cells. Immunity 35:400–412. doi: 10.1016/j.immuni.2011.06.015.

Yu CL, Jin YJ, Burakoff SJ. 2000. Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 
regulation. The Journal of Biological Chemistry 275:599–604. doi: 10.1074/jbc.275.1.599.

Zhang SQ, Tsiaras WG, Araki T, Wen G, Minichiello L, Klein R, Neel BG. 2002. Receptor-specific regulation of 
phosphatidylinositol 3'-kinase activation by the protein tyrosine phosphatase Shp2. Molecular and Cellular 
Biology 22:4062–4072. doi: 10.1128/MCB.22.12.4062-4072.2002.

http://dx.doi.org/10.7554/eLife.03416
http://dx.doi.org/10.2337/db12�1475
http://dx.doi.org/10.2174/187153009789839219
http://dx.doi.org/10.1038/ni1165
http://dx.doi.org/10.1186/gb-2013-14-3-r25
http://dx.doi.org/10.1111/j.1600-065X.2009.00767.x
http://dx.doi.org/10.1111/j.1600-065X.2009.00767.x
http://dx.doi.org/10.1189/jlb.0205059
http://dx.doi.org/10.4049/jimmunol.174.6.3408
http://dx.doi.org/10.1146/annurev.immunol.21.120601.141110
http://dx.doi.org/10.1146/annurev.immunol.21.120601.141110
http://dx.doi.org/10.1084/jem.194.5.601
http://dx.doi.org/10.1038/nbt.1732
http://dx.doi.org/10.1182/blood.V97.12.3812
http://dx.doi.org/10.1126/science.1170116
http://dx.doi.org/10.1093/nar/gkt232
http://dx.doi.org/10.1186/gb-2012-13-10-r93
http://dx.doi.org/10.1182/blood-2006-11-060087
http://dx.doi.org/10.1016/j.immuni.2007.09.006
http://dx.doi.org/10.4049/jimmunol.181.10.6923
http://dx.doi.org/10.1016/j.immuni.2012.05.025
http://dx.doi.org/10.1084/jem.20112741
http://dx.doi.org/10.1111/imm.12074
http://dx.doi.org/10.1016/j.immuni.2011.06.015
http://dx.doi.org/10.1074/jbc.275.1.599
http://dx.doi.org/10.1128/MCB.22.12.4062-4072.2002

