
Mathematical Appendices

A1: Single Cell Phase Coding Model

Here, we provide a simple mathematical description of the phase and frequency of a place cell
as a function of the animal’s location, running speed and the place field size. The properties of
the cell’s firing rate are discussed in the following section.

Consider a place field with center xc on a linear track. We define the encoded phase φ(x) which
assigns a firing phase to each location x inside the place field. The parameters describing the
encoded phase are the firing phase at place field entry φ0, the total phase precessed ∆φ, and the
distance over which this phase is precessed 2R. The encoded phase is given by:

φ(x) = φ0 −∆φ
x− xc +R

2R
(A1.1)

so that the phase at place field entry xc − R is φ0 and at place field exit xc + R is φ0 −∆φ as
required. The parameter R therefore determines the spatial range of phase precession, whereas
the width of the firing rate field σ is considered separately in the following section.

If the rat moves at a constant running speed v, starting from a position xs at time t = 0, and
the LFP theta phase has a constant frequency fθ with an initial phase offset θs, then:

x(t) = xs + vt (A1.2)

θ(t) = θs + 2πfθt (A1.3)

φ(t) = φ0 − 2πfφ(t− t0) (A1.4)

where t0 = (x0 − xs)/v is the time that the rat reaches location x0 = xc − R, the start of the
place field. Combined with Equation (A1.1), this gives the rate of phase precession

fφ =
∆φ

2π

v

2R
(A1.5)

and provides a complete description of the firing phase of a cell for arbitrary place field locations,
running speeds, LFP phase offsets and initial locations on a linear track.

A2: Analysis of Dual Rate and Phase Coding

Equations (1) and (2) in the main text describe the activity of a single cell as a function of the
encoded phase φ(x), LFP theta phase θ(t) and the animal’s location x. In general, these three
variables all evolve in time so that we can consider these equations in time only. For a constant
running speed (Equations (A1.2, A1.3, A1.4)), the firing rate for a cell during place field crossing
is:

r(t) = rx(x(t))rφ(φ(x(t))− θ(t)) (A2.1)

= A exp

(
−(xs + vt− xc)2

2σ2

)
exp (k cos(2π(fθ + fφ)t− φ0 + θs − 2πfφt0)) (A2.2)
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Figure 2E shows the firing rate distribution for different values of k. Note that the phase
precessed across the firing rate field depends on the relative values of R and σ. Hence, to model
ranges of phase precession other than 2π, we are free to fix ∆φ = 2π and vary R.

The number of spikes fired by a place cell is uncorrelated with the running speed of the animal,
and is around 10 − 20 spikes per pass (Huxter et al., 2003). Hence, using Equation A2.2, the
amplitude A was set such that

∫∞
−∞ r(t)dt = Nspikes, which normalizes the average number of

spikes fired per pass through the place field to Nspikes (Figure 2-figure supplement 1). A good
approximation to this integral can be obtained by setting rφ to be a constant in order to average
out its oscillatory component:

〈rφ〉 =
1

T

∫ T

0

rφ(t)dt = I0 (k) (A2.3)

where I0 (k) is the modified Bessel function of order zero and T is the period of rφ(t). Hence,
the firing rate of the cell is modulated by running speed as:

A(v) ≈ Nspikes

I0 (k)

v√
2πσ2

(A2.4)

This approximation is accurate when the number of oscillatory cycles within the place field
is high. For very high running speeds (or small place fields), this approximation will be less
accurate.

Sequence Properties for Independent Coding in the High Phase Locking Limit

Here, we derive analytical expressions for two key quantities which are often measured in exper-
iments: the compression factor and the sequence path length. These expression are strictly only
valid in the limit that phase locking is strong, but are useful for understanding how behavioral
variables such as running speed can influence sequence properties. In this section, we assume
that the activity of each cell is governed by Equation (A2.2), i.e. that the activity of each
cell depends only on the animal’s location in the place field and the LFP theta phase, and not
explicitly on the activity of other cells in the population.

The compression factor measures the ratio between the sequence compressed timescale and the
behavioral timescale along a trajectory. Given any two cells active within the same theta cycle,
the compression factor is defined as:

c =
∆t0

∆tspike

(A2.5)

where ∆t0 is the time it takes the animal to travel between the place field centers of the two
cells and ∆tspike is the time lag between the spikes of the two cells within the theta cycle (Figure
A1). Note that some studies invert this definition of c (e.g., Geisler et al., 2010). These two
timescales are generally measured in experiments as peaks in the cross-correlogram of the cell
pair.

In the limit of high phase locking (k →∞), the spikes occur exactly at the peaks of the phasic
tuning curve, i.e.:

θ(tspike)− φ(tspike) ≡ 0 mod 2π (A2.6)
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Figure A1: Definitions of compression factor and sequence path length.
Shown are the sequence path length D, which is defined as the largest distance between place
field centers for any two cells active in a single theta cycle, the time ∆t0 to travel between place
field centers of a pair of cells and the time interval ∆tspike between spikes fired in a theta cycle
by this cell pair. The compression factor is the ratio of these two timescales. (The cell pair
illustrated is the first and last cell on the track above, intermediate place fields are omitted on
the track.)

Figure A2 provides a graphical illustration of the spike sequence in this limit. Using Equations
(A1.3) and (A1.4) in this limit:

tspike =
(φ0 − θs) / (2π) + fφt0 + n

fθ + fφ
(A2.7)

where n is an integer introduced to account for the resetting of phases φ(t) and θ(t) each cycle
under the modulo arithmetic. If we further assume that each cell precesses over a range of phases
of one cycle or less 0 ≤ φ < 2π, then the integer n is simply an index labeling the LFP theta
cycle, since φ is never reset. Hence, when calculating ∆tspike for a cell pair, we can assume n is
the same for each spike, since we are considering only spike sequences contained within a single
theta cycle. Assuming the cells also share the same phase precession parameters φ0 and fφ, we
find ∆tspike = ∆t0fφ/(fθ + fφ), so that the compression factor is:

c = 1 +
fθ
fφ

= 1 + fθ
2π

∆φ

2R

v
(A2.8)

The sequence path length D measures the distance swept out by a sequence during a theta cycle
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(Figure A1). We define this as the difference between the maximum and minimum place field
locations of cells active in a single theta cycle D = max(∆xc) = max(xc)−min(xc). Again, we
take the limit k → ∞ where spike times are given by Equation (A2.6). The distance between
place field centers is ∆xc = v∆t0 = cv∆tspike, and the sequence path length D is the largest
distance ∆xc for cells with spikes within the time window of one theta cycle, ∆tspike ≤ 1/fθ:

D =
v

fθ
c =

2π

∆φ
2R +

v

fθ
(A2.9)

Figure A2: Sequences in the high phase locking limit (k →∞).
Black lines show LFP theta phase θ(t), colored lines show single cell encoded phase φ(t). Spikes
occur when the encoded phase equals the LFP phase. (A) Single cell coding. (B) A sequence
generated through independent phase coding in three cells. (C) Running speed v determines the
slope of phase precession fφ in single place cells, which in turn affects sequence properties. Here,
three separate runs through the same place field at different speeds are shown for comparison.

Single Cell Coding with Trial to Trial Variability

For completeness, we note here that some studies suggest a more complex single cell coding
scheme than that outlined above. In particular, phase precession in single trials may reflect a
greater degree of coordination against the theta rhythm than that suggested from the pooled
data (Schmidt et al., 2009). The key differences observed in single trials compared to surrogate
trials sampled from the pooled data were a higher phase-position correlation and slope and a
lower phase range and spatial range. The single cell model we developed above can be extended
to incorporate such properties by replacing the fixed phase precession parameters with random
variables which vary from trial to trial. For example, a single trial phase offset φ0 sampled from a
normal distribution with a variability of σφ0 = π/2, together with a fixed phase range of ∆φ = π
on each trial gives a pooled phase range of 2π as well as a lower pooled phase position-correlation,
in line with experimental observations.
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If, on each trial, each cell samples its parameters from these distributions independently of other
cells, the population code will be independent. If instead this trial to trial variability is shared
across the population a coordinated population code will result. For simplicity, we will not
consider these trial to trial properties of phase precession in the following analyses.

A3: Derivation of Traveling Wave Dynamics for Independent Coding

We now extend the single cell firing rate model to the population behavior under the assumption
that each cell is governed independently by the above single cell coding model. Note that, in
Equation (A2.2), we have eliminated the rat’s location x in favor of time t, since we have assumed
a constant running speed. We would like to understand the firing rate in the population both
as a function of time t, and place field center xc. In Equation (A2.2), the remaining t0 can be
expressed in terms of xc as t0 = (xc − R − xs)/v. We define the total phase of each cell as
ψ = φ− θ, which gives :

ψ(xc, t) = 2π(fθ + fφ)t− 2π
fφ
v

(xc − xs) +
∆φ

2
− φ0 + θs (A3.1)

We can set the initial position of the rat as xs = 0 for simplification. Inspecting the structure
of this population phase, we see it has the form ψ(xc, t) = ωt− κxc + ψs. This is the form of a
traveling wave of angular frequency ω = 2πf , wavenumber κ = 2π/λ and phase offset ψs. The
frequency and wavelength of the traveling wave are:

f(v) = fθ + fφ(v) (A3.2)

λ =
v

fφ
=

2π

∆φ
2R (A3.3)

so that the frequency increases with running speed, but the wavelength stays constant. Hence,
the propagation speed of the wave is:

vp = fλ = (fθ + fφ)
v

fφ
= cv (A3.4)

and therefore we find an alternative expression for the compression factor derived earlier c = vp/v,
i.e. the compression factor is the ratio of the propagation speed of the traveling wave to the
speed of the envelope. The propagation speed shows a constant relationship to the running
speed of the rat:

vp = v +
2π

∆φ
2Rfθ (A3.5)

At this point, we also see that (assuming ∆φ = 2π) the sequence path length in Equation (A2.9)
is just the distance traveled by this wave in a theta cycle, since D = vp/fθ. Putting everything
together, the population firing rate is given by:

r(xc, t) = A exp

(
−(xc − vt)2

2σ2

)
exp

(
k cos

(
2πf

cv
(cvt− xc) + ψs

))
(A3.6)

which is an equivalent form of Equation (A2.2) and was used to produce Figure 3.
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Finally, it is useful to inspect the phase offset ψs of the traveling wave. In particular, if we assume
a full cycle of phase precession ∆φ = 2π starting at φ0 = 2π, with initial position xs = 0, we
see from Equation (A3.1) that the population phase offset is ψs = θs − π. The maximum
population activity occurs at the trough of LFP theta, where zero LFP phase is defined as the
peak. Hence, there is a half cycle phase shift between the population waveform and the LFP
waveform (although experimentally this effect depends on the recording depth, since the LFP
phase varies with depth (Buzsáki, 2002)).

Analysis of Population Theta Rhythm

Here, we show how a slower LFP theta rhythm arises within the population, providing a com-
plementary and fully compatible perspective to that previously given by Geisler et al. (2010).
In particular, we see from the above analysis that the frequency of a single cell is higher than
the LFP theta since f = fθ + fφ. However, if we change variables to view the traveling wave in
coordinates comoving with the envelope, the fast population activity is decoupled from the slow
movement of the animal, allowing the population theta frequency to be analyzed.

To see this, we make the change of coordinates X = xc − vt, after which ψ(X = 0, t) measures
the phase of the traveling wave relative to the slow moving envelope, since X = 0 is the center
of the envelope. In these coordinates, the population phase is:

ψ(X, t) = θ(t)− 2π
X

λ
(A3.7)

This equation shows that θ(t) = ψ(X = 0, t), and therefore that the LFP theta phase is equal to
the phase difference between the traveling wave and envelope. To further illustrate this point,
we note that the LFP theta frequency is equal to the time taken for the fast wave to overtake
the slow envelope, i.e. from Equation (A3.5):

fθ =
vp − v
λ

(A3.8)

so that the LFP theta frequency is simply the frequency of the interference pattern of the two
components.

A4: Model of Coordinated Assembly Dynamics

While the above sections assumed that cells are are independent of each other once their mutual
dependence on the animal’s location and the LFP theta rhythm are accounted for, we now model
the case in which cells have additional interdependencies arising from interactions within the
local CA1 population. Therefore, we introduce a weight function through which the spiking
activity of any given cell will influence the probability of another cell to spike:

wij =
wE
`
e−(xi

c−x
j
c)/`Θ

(
xic − xjc

)
− wI (A4.1)

where wE is the magnitude of the excitatory weights, ` is the peer interaction length, Θ is the
Heaviside step function, wI is the magnitude of the inhibitory weights and xic, x

j
c are the place
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field centers of cells i and j. This weight function is comprised of two components - an excitatory
feedforward interaction with an interaction length `, and a global inhibitory interaction.

To incorporate the dynamics of peer interactions into our existing single cell model, we follow
a similar approach to that used by Harris et al. (2003) when estimating peer interactions from
data. Specifically, peer spike trains are smoothed in time:

si(t) =
1√

2πτ 2

∑
tij<t

e−(tij−t)2/2τ2

(A4.2)

where the smoothing kernel τ determines the peer interaction timescale - i.e., the timescale
at which spiking activity from one cell will influence the activity of another cell (cf., the peer
prediction timescale defined by Harris et al. (2003)). Here, si is the smoothed spike train of cell
i and tij is the jth spike of cell i, where the sum is over j only. Note that the above sum is
causal, i.e. only previous spikes will influence present and future activity. The influence of a set
of peer spike trains on a particular cell i is then determined by the peer factor Pi(t):

Pi(t) = g

(∑
j

sj(t)wij

)
(A4.3)

which is the weighted sum of the smoothed peer spike trains, followed by a nonlinear transfor-
mation g:

g(x) =

{
x+ 1 if x ≥ 0

exp(x) if x < 0
(A4.4)

We note that, apart from some minor adjustments, Equations (A4.2-A4.4) are essentially an
inversion of the peer prediction method of Harris et al. (2003) such that, with our particular
choice of weights, we can generate data for an interacting population rather than estimate these
interactions from that data.

The firing rate of each cell is simply modelled as the product of the activity generated by
phase and rate coding alone with the additional peer factor Pi(t). To simplify notation, we let
Pi(t) = P (xc, t) where xc is the place field centre of cell i. The total firing rate of the cell is
then:

r(xc, t) = A exp

(
−(xc − vt)2

2σ2

)
exp (k cos (κxc − ωt+ ψs))P (xc, t) (A4.5)

A5: Analysis of Sigmoidal Phase Dynamics

Here we propose a model for the membrane potential (MPO) phase which matches the above
traveling wave model for cells in the population that are spiking, but which differs outside the
place field where the cell is silent. Since the above models were based on considerations of data
from spiking neurons, the extension of a linear phase gradient to the MPO outside of the place
field is not guaranteed, and several studies support a sigmoidal phase gradient (Chance, 2012;
Diba and Buzsáki, 2008).
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To model a sigmoidal phase gradient, we assume that the MPO frequency of a place cell depends
only on the distance of the animal from the center of the place field xc (Figure 8C):

f(xc, t) = fθ + ∆f exp

(
−(xc − vt)2

2σ2

)
(A5.1)

where ∆f is the increase in MPO frequency at the center of the place field. We can then
calculate the phase of the MPO as a function of time, as the rat moves through the field at
constant velocity v:

ψ(xc, t) = 2π

∫ t

0

f(xc, τ)dτ + ψ(xc, 0)

= 2πfθt−
π3/2
√

2∆fσ

v

(
erf

(
xc − vt√

2σ

)
− erf

(
xc√
2σ

))
+ ψ(xc, 0) (A5.2)

If each cell precesses from 2π to 0, we can set lim
t→−∞

[2πfθt+ θs − ψ(xc, t)] = 2π and

lim
t→+∞

[2πfθt+ θs − ψ(xc, t)] = 0 to find ψ(xc, 0), so that:

ψ(xc, t) = 2πfθt− π erf

(
xc − vt√

2σ

)
+ θs − π (A5.3)

which also gives ∆f = v/(
√

2πσ). This model reduces the number of parameters by explaining
the rate of phase precession fφ (Equation (A1.5)) purely in terms of the place field width σ,
eliminating the second scale parameter R from the model and allowing experimental predictions
based on fewer alterable parameters.

A6: Extension of Models to Two Dimensional Navigation

We now consider the population activity for arbitrary trajectories x(t) in two dimensions.

Linear Phase Gradient Model

For the linear phase gradient model, the most obvious extension is to modulate the direction of
the traveling wave with heading direction, via a wave vector κ(t) = κv(t)/v(t). It is necessary
to align the wavenumber with heading direction to account for data showing phase precession in
two dimensions regardless of the direction of travel through a place field (Huxter et al., 2008).
The previous results can then be extended using the phase:

ψ(xc, t) =

∫ t

0

ω(t′)dt′ − κ(t) · xc + ψ(xc, 0)

= 2πfθt+
∆φ

2π

π

R

(∫ t

0

v(t′)dt′ − v(t) · xc

v(t)

)
+ ψs (A6.1)

where we introduced an integral to account for variations in frequency due to changes in running
speed along the trajectory and expanded out expressions for frequency and wavenumber. In this
case, the phase offset ψ(xc, 0) is the same for all neurons, since the phase gradient is enforced
by the dot product term. In line with recent reports (Jeewajee et al., 2014), the relative firing
phases of each cell depend on the current direction of motion rather than past trajectory in this
model.
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Sigmoidal Phase Gradient Model

For the sigmoidal phase gradient, the extension to navigation in two dimensions is straightfor-
ward. The frequency of the cell is simply a function of the distance to the center of the place
field, and hence the phase is given by:

ψ(xc, t) = 2πfθt+

√
2π

σ

∫ t

0

|v(t′)| exp

(
−(x(t′)− xc)

2

2σ2

)
dt′ + ψ(xc, 0) (A6.2)

where we used Equation (A5.1) and the expression for ∆f .

A7: Remapping with Fixed Phase Sequences

In this section the structure present in a population of place cells with a linear phase code in two
dimensions is described, not considering any rate coding. We then investigate the constraints
when remapping between different place field configurations in an open environment, assuming
the original set of phase lags between cells in the population is fixed. We then present a set
of transformations which obey these constraints, allowing a prediction of the set of possible
remappings in a network with a fixed set of theta phase lags.

Definition of a Phase Chart

In the linear traveling wave model, the MPO phase ψ(xc, t) in each cell can be separated into
a temporal component ωt and a spatial component θP = κ · xc which sets a fixed phase lag
between any two cells in the population (see Equation (A6.1)). Since the temporal component
is the same for each cell, we can disregard the temporal dynamics and focus only on the spatial
component θP when analyzing the properties of networks with fixed phase lags.

During each theta cycle, a phase sequence is swept out. Only those cells within the rate coded
area around the rat fire an action potential during a phase sequence, but every single place cell
can be assigned an MPO phase, whether or not it fires. In the linear traveling wave model the
relative phase between two cells ∆θP depends only on the direction the rat is moving (determined
by κ) and the relative place field locations (determined by xc for each cell).

If the rat is running in the direction κ, the set of cells with a phase θP have place fields xc given
by:

C(θP ,κ) =
{
xc ∈ R2| xc · κ ≡ θP mod 2π

}
(A7.1)

Equation (A7.1) shows that, in the linear traveling wave model, the set of cells with the same
phase corresponds to periodic parallel lines extending across the whole environment (Figure A3).
Each C(θP ,κ) is a cell assembly active at phase θP in the sequence ordered along the direction
κ. A phase sequence consists of the set of cell assemblies C(θP ,κ) with phases θP ∈ [0, 2π) for
a particular κ. In turn, a phase chart is the full set of phase sequences consisting of one κ for
each running direction.

In this description, we have treated the set of cells as a two dimensional continuous sheet, so
that we can assign a place field to each point in a two dimensional environment. This is an
idealized case, but a finite sampling of cells from this idealized case would not affect any of the
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arguments here. Moreover, since we are neglecting rate coding in this analysis, the definition
of a phase sequence describes the sequence of MPO phases of all cells in the population, rather
than the sequence of spikes which are localized to the vicinity of the animal.

Constraints Under Remapping with a Fixed Phase Chart

We now assume that this phase chart remains fixed under remapping, so that the set of phase
lags remains, even though the cells can be assigned new place fields. This situation might arise
if the phase differences between cells in the population is fixed anatomically, for example by
upstream pacemakers. If xc is the location of a place field before a remapping f , we denote the
remapped place field as x′c = f(xc). Here, we set constraints on the possible remappings which
ensure that the new place fields still display spatially ordered sequences under the same phase
chart.

Constraint 1

After remapping, the new phase sequences should still sweep out paths in the environment, i.e.
they should map out parallel lines which are ordered along a direction of movement, and each
should represent a unique such direction as before.

For the remapped assemblies within a phase sequence to map out straight lines as in the original
place field configuration, we require that:

f(C(θP ,κ)) = C(θ′P ,κ
′) =

{
x′c ∈ R2| x′c · κ′ ≡ θ′P mod 2π

}
, (A7.2)

for some new direction κ′.

Constraint 2

Since the phase lags are preserved, we require that:

∆θ′P = ∆θP (A7.3)

for each pair of assemblies within each phase sequence.

In words, these constraints are 1) parallel lines of place fields are mapped to parallel lines and
2) phase differences among these parallel lines are preserved.

Affine Transformations Allow Remapping within a Fixed Phase Chart

Affine transformations have the property that sets of parallel lines remain parallel (constraint
1). They also preserve the ratios of distances along straight lines, meaning that constraint 2 is
automatically satisfied, although with a possible spatial scaling.

We can demonstrate mathematically that the affine transformation:

xc →Mxc + a, M ∈ GL2, a ∈ R2 (A7.4)
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satisfies the above constraints (GL2 is the group of all invertible 2×2 matrices, called the general
linear group), as shown below:

Given xc · κ ≡ θp mod 2π and x′c = Mxc + a (A7.5)

Let κ′ =
(
M−1

)T
κ, and θ′P = θP + a ·

((
M−1

)T
κ
)

(A7.6)

Then x′c · κ′ = xc · κ + a ·
((
M−1

)T
κ
)

(A7.7)

=⇒ x′c · κ′ ≡ θ′P mod 2π, (A7.8)

so that subsets with a given wave vector κ and phase θP are transformed to a new wave vector
κ′ and phase offset θ′P . The transformation M can include scaling - in order to preserve phase
precession, such a scaling would require a commensurate scaling of place field size in the direction
of κ′. Clearly, the transformation preserves phase differences along each direction.
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Figure A3: Equal phase contours in the linear traveling wave model.
The set of cells with a given phase θP maps onto parallel lines in the environment with spacing
equal to the size of a place field and orientation aligned with the current running direction (shown
by arrows). The phase lag between any two cells is fixed according to a linear population phase
gradient κ along the direction of movement. The gray circle illustrates the spiking population,
but the phase lags between cells are independent of this rate code.
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