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1 Single-transcript kinetics dominates at short delays

For each time trace obtained from TS tracking, autocorrelation and crosscorrelation functions
are defined as

Gab(τ) =
�δa(t) δb(t+ τ)�

�a��b� (1)

with δa(t) = a(t)− �a� and δb(t) = b(t)− �b� (2)

where �·� denotes time average (i.e. �f(t)� = lim
T→∞

1
2T

� T

−T f(t)dt) and where a(t) and b(t) can

be any combination of the red and green time traces r(t) and g(t) to yield all 4 correlation
functions. Let a0(t) and b0(t) be the fluorescence signals from a single transcript. We first
consider all the transcripts to follow the same kinetics. Let G0

ab(τ) be the correlation function
between a0(t) and b0(t), i.e. for a single transcription event. In this context, where the
signals to be correlated are non-null only over a finite time-domain (i.e. square-integrable),
the correlation function is defined as

G
0
ab(τ) =

�
R a0(t)b0(t+ τ)dt�
R a0(t)dt

�
R b0(t)dt

(3)

i.e. temporal averages �·� in eq. (1) are replaced here by temporal sums
�
R· dt (see Appendix

1). If initiation is considered a homogenous Poisson process (i.e. at each instant, the gene
has a constant probability to fire, given by the initiation rate κ) then [1, 2] (Appendix 1)

Gab(τ) =
G

0
ab(τ)

κ
(4)

This simply reflects the fact that the fluorescence emitted by one transcript in a(t) and b(t) is
statistically uncorrelated with that of all the other transcripts. Intuitively, since transcripts
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can initiate any time (with uniform statistics) and independently to each other, their pairwise
correlation of occurrence do not show any time dependence, resulting in a flat null baseline
(Figure 3—figure supplement 1 and Video 4).

In the case where initiation events do not arrive with a constant rate (e.g. reflecting
a bursting process or cell cycle effects), this adds an extra term to eq. (4) that is the
autocorrelation of the time-dependent initiation rate κ(t), convolved with G

0
ab(τ). Unless

the processes causing these fluctuations are very rapid and occur at a similar timescale as
the transcription/splicing process (i.e. faster than ∼300 sec), the extra term in eq. (4) only
consists in a slow decay that can be approximated as a constant baseline offset in our region
of interest (i.e. typically 0 ≤ τ <∼300 sec). This is a reasonable assumption in our case since
(i) the slow decaying component in the correlation functions is often well separated from the
fast transcription/splicing kinetics (Figure 2—figure supplement 1b-f), (ii) bursting and cell
cycle fluctuations (which can be observed in long acquisitions with a slow frame rate) occur at
a significantly slower timescale than the duration of our time traces, and (iii) only the parts
of the time traces where a non-null signal is visible and trackable are retained for analysis,
effectively making the measurement to describe mostly the intra-burst kinetics rather than
the bursting kinetics itself. Hence, we used eq. (4) in which the correlation functions of the
whole fluorescence time traces simply boils down to the correlation functions for individual
transcripts, scaled by the initiation rate κ.

2 Geometry of the transcription/splicing correlation functions

In this section, we describe how the shape of the correlation functions is mathematically
linked to the timing of the transcription and splicing process. We do not assume mechanisms
such as the interdependence between transcription and splicing or the kinetics of elongation,
pausing and termination/3’ end processing. Such assumptions about the underlying mechanisms
will be made in section ??. Here, we simply describe how the geometry of the fluorescence
time profiles translate into the geometry of the correlation functions.

Simplified construct

The following aims at giving an intuition about the information content of the correlation
functions and how their shape relates to the underlying timing of transcription and splicing.
We make here two approximations that we will drop in the subsequent sections. Namely,
we assume that (i) the kinetics of all transcripts is identical, and (ii) the MS2 and PP7
cassettes are small enough to consider that the fluorescence profiles can be described using
step functions (Figure 2—figure supplement 2a).

The time course of the fluorescence emitted by a single transcript displays 4 specific
events: the rise and fall of either the red or the green signal. We show here that the
correlation functions reflect the time delay between any two of these 4 time points.

We consider the construct depicted on Figure 2—figure supplement 2a. We note tr, tg
and trg respectively the time delays between rise and fall in the red signal, rise and fall in the

2



green signal, and rises in red and green. Because the red signal cannot fall after the green,
we have tr ≤ trg + tg.

The fluorescence time profiles in both colors for a single transcript can be written

r0(t) = −H(t) +H(t− tr) (5)

g0(t) = −H(t− trg) +H(t− trg − tg) (6)

where t = 0 is considered to be the rise in the red signal, H(·) is the Heaviside function (with
the convention H(0) = 1

2) and the bar denotes time reversion, i.e. the H(t) = H(−t). For
convenience in the following, everything is written in terms of H(·) instead of H(·). Time
reversed versions of these functions are

r0(t) = −H(t+ tr) +H(t) (7)

g0(t) = −H(t+ trg + tg) +H(t+ trg) (8)

The general formulation of a correlation function using the convolution product ∗ is

G
0
ab(t) =

(a0 ∗ b0)(t)�
R a0(t)dt

�
R b0(t)dt

(9)

Substituting eqs. (5) to (8) into eqs. (9) and (4) and dropping all the terms that are null for
t ≥ 0, we find that

Grr(t) =
H2(t− tr)

κ t2r

(10)

Ggg(t) =
H2(t− tg)

κ t2g

(11)

Grg(t) =
H2(t− trg + tr)−H2(t− trg + tr − tg)−H2(t− trg) +H2(t− trg − tg)

κ trtg
(12)

Ggr(t) =
H2(t+ trg − tr)

κ trtg
(13)

We used the notation H2(t) = H(t) ∗ H(t), i.e. a time-reversed ramp function and the
property that H(t− t1) ∗H(t− t2) = H2(t− t1 − t2).

We should note that, even though these equations are defined for t ≥ 0, eq. (12) is actually
valid on R since no term was found null in its calculation and hence omitted. Indeed, the
first term of eq. (12) corresponds to the time-reversed version of eq. (13) and all three other
terms are null on t ≤ 0 by construction. Hence, eq. (12) is the two-sided expression of Grg(t).

These correlation functions (Figure 2—figure supplement 2a) are piece-wise linear with
angles revealing specific time delays in the underlying process (i.e. each H2(·) term is an
angle). Namely, these are all the delays from the 6 possible pairs obtained by combining
the rising and falling edges of the red and green signals. The 2 pairs between edges of
the same color are in the autocorrelations and the 4 pairs mixing both colors are in the
crosscorrelation.

A few geometrical conclusions are worth pointing out:
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• In this context where transcripts are identical (Figure 2—figure supplement 2c), we
observe:

• a null Grg(0) if splicing is co-transcriptional and occurs before the MS2 cassette
is transcribed (tr < trg).

• a non-nullGrg(0) with a positive slope at 0+ if splicing occurs between transcription
of the MS2 cassette and release of the transcript (trg < tr < trg + tg). In that
case, it equals the slope at 0− (obtained from Ggr(t)).

• a non-null Grg(0) with a null slope at 0+ if splicing is post-release (tr = trg + tg).

None of these scenarios are observed in our experimental data (Fig. 2b, inset) since
Grg(0) is always non-null and the slope of Grg(0+) is strictly positive but not aligned
with that of Grg(0−).

• The delay where the red-to-green crosscorrelation Grg(t) starts decreasing measures
the time to elongate between both cassettes, independently of any upstream (e.g.
initiation, proximal pausing) and downstream effects (e.g. termination). From Fig. 2b
(inset) and given the distance between the centers of both cassettes, we estimate
graphically that the elongation rate is around ∼2.5kb/min.

• The duration of the green signal (from rise to fall) appears in the decay of both
autocorrelation Ggg(t) and the last segment of crosscorrelation Grg(t). Conversely,
the duration of the red signal appears in both autocorrelation Grr(t) and the rising
part of the two-sided crosscorrelation made of Ggr(t) and Grg(t). In addition, the fall
of the green signal (release of the RNA) imposes the red signal to fall with it (the RNA
is unspliced) if it has not already. As a consequence, if some process delays the fall in
green (e.g. a slow termination kinetics) without making it substantially longer than
the splicing time, then the tails of all four correlation curves are expected to get longer
and show similar decay. This is what is observed in our experimental data (Fig. 2b).

Ramped construct

Here, we drop the simplification that the cassettes are short enough so that the rises of
fluorescence can be approximated by step functions. Instead, we consider ramps that span
the entire width of the cassettes, describing the progressive increases of fluorescence as the
polymerase progresses through these regions (Figure 2—figure supplement 2b). We show
that the sharp angles in the correlation functions described previously section turn into
smooth angles since they originate from the convolution between fluorescence transitions
that are no longer instantaneous.

We note tr1 and tg1 the time to elongate through the red and the green cassettes, tr2 and
tg2 the time between the end of the ramps and the fall of the signal, and trg the time between
the beginning of both ramps. By construction, we have tr1 < trg, and because the red signal
cannot fall after the green, we have tr1 + tr2 ≤ trg + tg1 + tg2.
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The fluorescence time profiles for a single transcript and their time-reversed versions are

r0(t) =
H2(t)−H2(t− tr1)

tr1
+H(t− tr1 − tr2) (14)

g0(t) =
H2(t− trg)−H2(t− trg − tg1)

tg1
+H(t− trg − tg1 − tg2) (15)

r0(t) = −H(t+ tr1 + tr2) +
−H2(t+ tr1) +H2(t)

tr1
(16)

g0(t) = −H(t+ trg + tg1 + tg2) +
−H2(t+ trg + tg1) +H2(t+ trg)

tg1
(17)

Substituting again eqs. (14) to (17) into eqs. (9) and (4) and dropping all the terms that
are null for t ≥ 0, we now find that

Grr(t) =
κ

�r�2

�
−H4(t− tr1)

t
2
r1

+
−H3(t− tr2) +H3(t− tr1 − tr2)

tr1

�
(18)

Ggg(t) =
κ

�g�2

�
−H4(t− tg1)

t
2
g1

+
−H3(t− tg2) +H3(t− tg1 − tg2)

tg1

�
(19)

Grg(t) =
κ

�r��g�

�
−H3(t+ tr1 + tr2 − trg) +H3(t+ tr1 + tr2 − trg − tg1)

tg1

− H2(t+ tr1 + tr2 − trg − tg1 − tg2)

− H4(t+ tr1 − trg)−H4(t+ tr1 − trg − tg1)−H4(t− trg) +H4(t− trg − tg1)

tg1 tr1

+
−H3(t+ tr1 − trg − tg1 − tg2) +H3(t− trg − tg1 − tg2)

tr1

�
(20)

Ggr(t) =
κ

�r��g�

�
−H3(t+ trg + tg1 − tr1 − tr2) +H3(t+ trg − tr1 − tr2)

tg1

�
(21)

where Hn(t) = Hn−1(t) ∗ H(t) = (−t)n−1
/(n− 1)! if t ≤ 0 and 0 elsewhere, and with

�r� = κ (tr1/2 + tr2) and �g� = κ (tg1/2 + tg2).
Although eqs. (18) to (21) are defined for t ≥ 0, eq. (20) is actually valid on R since no

term was found null in its calculation and hence omitted. Indeed, the first line of eq. (20) is
to the time-reversed version of eq. (21), making eq. (20) the two-sided expression of Grg(t).

It is instructive to compare these new correlation functions with those obtained in the
previous section with simplified fluorescence profiles (Figure 2—figure supplement 2a and b).
We realize that the sharp angles previously identifying the well-defined delays between rapid
fluorescence transitions (terms in H2(·) in eqs. (10) to (13) originating from the convolution
of pairs of step functions) are now replaced1, for most of them, by smooth angles reflecting

1A term of the form
−H3(t− a) +H3(t− a− b)

b
yields a curve that is rounded on a ≤ t ≤ b but straight
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the less-defined delays between a ramp and a step (terms in H3(·) in eqs. (18) to (21))
or between two ramps (terms in H4(·)). Only the angle reflecting the well-defined delay
between the rapid falls of both fluorescence signals remains sharp, i.e. the one revealing the
occurrence of splicing relatively to transcript release.

Like with the simplified construct, the slopes of Grg(t) around t = 0 also indicate the
post- or co-release nature of the splicing:

First, only the two first lines of eq. (20) can contribute to the slopes of Grg(t) around 0.
Indeed, by construction, the red ramp always finishes before the green ramp starts (tr1 < trg)
and before the green signal falls. Thus, the two rightmost angles in Grg(t) (two last lines
of eq. (20)) have no influence on the slopes at 0, i.e. they both equal a term in H2(·) with
opposite sign, yielding a null contribution to the slope.

Hence, for t in the neighborhood of 0, we have

�r��g�
κ

d

dt
Grg(t) =

H2(t+ tr1 + tr2 − trg)−H2(t+ tr1 + tr2 − trg − tg1)

tg1

+H(t+ tr1 + tr2 − trg − tg1 − tg2) (22)

= g0(t+ tr1 + tr2) (23)

i.e., the slopes of Grg(t) at 0− and 0+ are proportional to the value of the green signal
respectively right before and right after the fall of the red signal. Hence, if splicing is
post-release (i.e. both red and green signals fall together), there is a break of slope at 0 since
�r��g�

κ
d
dtGrg(t) equals 1 at 0− and is null at 0+. Otherwise, splicing occurs before release and

both slopes are equal and positive.
Another way of reaching this conclusion is by noting that the sharp angle due to the term

in H2(·) in eq. (20) is at t = 0 if splicing is post-release and at t > 0 otherwise, making the
two slopes to differ only in the former case.

Stochastic transcript kinetics

The explicit form of eq. (4) we used so far is

Gab(τ) =
1

κ

�
R a0(t)b0(t+ τ)dt�
R a0(t)dt

�
R b0(t)dt

(24)

This equation assumes that all transcripts have identical kinetics, described by signals a0(t)
and b0(t). When each transcript is different, this equation generalizes to (see Appendix 1)

Gab(τ) =

��
R ai(t)bi(t+ τ)dt

�
i

κ
��

R ai(t)dt
�
i

��
R bi(t)dt

�
i

(25)

and equal to H2(t− a− b/2) anywhere else.

Similarly, a term of the form
H4(t− a)−H4(t− a− b)−H4(t− a− c) +H4(t− a− c− b)

b c
yields a curve

that is rounded on a ≤ t ≤ b+ c but straight and equal to H2(t− a− b/2− c/2) anywhere else. Hence, each
line in eqs. (18) to (21) corresponds to a rounded version of each terms in eqs. (10) to (13).

6



where ai(t) and bi(t) are the contributions of transcript i to the total fluorescence signals
a(t) and b(t), and �·�i denotes the average over all transcripts. In other words, up to some
normalization constants, the correlation function resulting from a heterogeneous population
of transcripts is simply the average of the correlation functions of each transcript.

To get rid of the normalization constants, one can formulate this equation in terms of
covariance (i.e. unnormalized central moments Mab(τ) = �δa(t) δb(t+ τ)�) as follows

Mab(τ) = �a��b�Gab(τ) = κ

��

R
ai(t)bi(t+ τ)dt

�

i

(26)

Fraction of pre-release splicing: Change of slope at the origin

Due to the stochastic kinetics of transcription and splicing, only a fraction of transcripts
may be spliced before release while the rest is spliced after release. In that case, the slopes
of Grg(t) around 0 will reflect this heterogeneity (Figure 2—figure supplement 2d):

The denominator of eq. (25) is constant with respect to τ and equals2
�r��g�
κ

. Hence,

eq. (23) simply generalized into

�r��g�
κ

d

dt
Grg(t) =

�
gi(t− t

red↓
i )

�
i

(27)

indicating that the slopes at 0− and 0+ are proportional to the average values of the green
signal respectively right before and right after the fall of the red signal (noted t

red↓
i ). Since,

these two values differ by 1 for all transcripts spliced post-release, and by 0 for all transcripts
spliced pre-release, then the difference

ppost =
�r��g�
κ

�
dGrg(t)

dt

����
0−

− dGrg(t)

dt

����
0+

�
(28)

measures exactly the fraction of transcripts that are spliced post-release. However, the
prefactor in this expression cannot be obtained exactly from the correlation curves. The
slope at 0− provides an approximation

dGrg(t)

dt

����
0−

� κ

�r��g� (29)

This approximation is exact only if splicing always happens after the ramp in the green
signal (i.e. after elongating through the MS2 cassette), and is an underestimation otherwise.

Combining eqs. (28) and (29), the fraction of pre-release splicing can be estimated by

ppre �
dGrg(t)/dt|0+
dGrg(t)/dt|0−

(30)

constituting an approximation that can only underestimate the actual value.

2Because �r� = κ
��

R ri(t)dt
�
i
and �g� = κ

��
R gi(t)dt

�
i
.
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Hence, the orientation of Grg(0+) between horizontal and aligned with Grg(0−) provides
a measure of the pre-release fraction (Figure 2—figure supplement 2d).

Using our experimental correlation curves (Fig. 2b and Figure 2—figure supplement 3a),
we computed the two slopes by fitting the time derivatives of the crosscorrelation functions
to a constant value on either side of τ = 0, using the points highlighted in fig Figure 2—figure
supplement 3b. SEM of the derivatives were obtained from bootstrapping and propagated
to yield SEM on the slope values. We concluded that splicing occurs pre-release for at least
13%(±5%) of the transcripts. In addition, we performed two two-sided z-tests to compute a
p-value of less than 0.003 indicating that splicing is neither all pre-release nor all post-release.
These tested respectively if the slope of Grg(τ) is (i) different from 0 and (ii) different from
the slope of Ggr(τ). Both p-values p1 and p2 were then combined into a single p-value
1− (1− p1)(1− p2) < 0.003 indicating that both outcome are occurring.

Figure 2—figure supplement 3c illustrate with simulated data how accurately this method
is able to estimate the actual pre-release fraction. Stochastic simulations were performed
with two of the models presented in the next section, using parameters obtained from fitting
the experimental data (apart from the splicing time which is varied). Each point on the
main panel of Figure 2—figure supplement 3c corresponds to the same amount of data as
for the experimental correlation functions (i.e. 23 traces of 245 frames on average). These
figures indicate that the ratio of crosscorrelation slopes is an accurate estimate of the actual
pre-release fraction, even though it has relatively large errors and often slightly underestimate
the actual value. The inset panel uses more simulated data, yielding more precise estimates.
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Appendices

Appendix 1

The transcriptional time traces a(t) and b(t) can be viewed as the sums

a(t) =
�

i

ai(t) b(t) =
�

i

bi(t) (31)

where ai(t) and bi(t) are the contribution of transcript i to the signals. From the definition of the correlation
functions (1), it follows that

Gab(τ) =
�δa(t) δb(t+ τ)�

�a��b� with δa(t) = a(t)− �a� and δb(t) = b(t)− �b� (32)

=
�a(t) b(t+ τ)�

�a��b� − 1 (33)

=

��
i
ai(t) bi(t+ τ)

�
+
��

i

�
ai(t)

�
j �=i

bj(t+ τ)
��

��
i
ai(t)

���
j
bj(t)

� − 1 (34)

Each of the above terms corresponding to a temporal average of a sum over all the transcripts (e.g.��
i
ai(t)

�
) can be turned3 into an average over all the transcripts of a temporal sum (e.g. κ

��
R ai(t)dt

�
i
),

yielding

Gab(τ) =
κ
��

R ai(t)bi(t+ τ)dt
�
i
+ κ

��
R
�
ai(t)

�
j �=i

bj(t+ τ)
�
dt
�
i

κ2
��

R ai(t)dt
�
i

��
R bj(t)dt

�
j

− 1 (35)

If transcription initiation has homogeneous Poisson statistics, the occurrence of transcripts i and j is
uncorrelated. In that context, ai(t) and

�
j �=i

bj(t+ τ) are independent stochastic signals, so that the latter

can be replaced in the equation above by its temporal mean
��

j �=i
bj(t)

�
which simplifies into κ

��
R bj(t)dt

�
j

in the limit of many transcripts.
This yields

Gab(τ) =
κ
��

R ai(t)bi(t+ τ)dt
�
i
+ κ

2
��

R ai(t)dt
�
i

��
R bj(t)dt

�
j

κ2
��

R ai(t)dt
�
i

��
R bj(t)dt

�
j

− 1 (36)

=

��
R ai(t)bi(t+ τ)dt

�
i

κ
��

R ai(t)dt
�
i

��
R bj(t)dt

�
j

(37)

If all transcripts are identical, eq. (37) simplifies into

Gab(τ) =

�
R a0(t)b0(t+ τ)dt

κ
�
R a0(t)dt

�
R b0(t)dt

(38)

def
=

G
0
ab
(τ)

κ
(39)

3More explicitly,��
i
ai(t)

�
= lim

T→∞
1
2T

�
T

−T

�
i
ai(t)dt

= lim
T→∞

κ 2T
2T

��
T

−T
ai(t)dt

�
i
where �·�i =

�
i ·

κ 2T is the average over all the transcripts.

= κ
��

R ai(t)dt
�
i
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Note that eq. (37) expresses the correlation between square-integrable signals ai(t) and bi(t) (i.e. although
defined on R, their non-null part is of finite duration), whence the use of temporal sums. On the contrary,
eq. (32) uses non-square-integrable signals a(t) and b(t) (i.e. infinite signals), whence the use of temporal
averages and mean-subtracted signals.

Appendix 2

Appendix 2A – Scheme I

We show that, using the distributions of scheme I (Figure 2—figure supplement 4), the correlation functions
are

Grr(t) =
κ

�r�2 H2 ∗
�
−H2 ∗

A

t2
+H ∗

�
− δ

hA

+
A

t

�
∗B ∗D ∗ E

�
(40)

Ggg(t) =
κ

�g�2 H2 ∗
�
−H2 ∗

D

t2
+H ∗

�
− δ

hD

+
D

t

�
∗ E

�
(41)

Grg(t) =
κ

�r��g� H3 ∗
�
− δ

hA

+
A

t

�
∗B ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E

�
(42)

Ggr(t) =
κ

�r��g� H3 ∗
�
− δ

hD

+
D

t

�
∗ E (43)

with �r� = κ(µA/2 + µB + µD + µE) and �g� = κ(µD/2 + µE)

µX and hX represent the arithmetic and harmonic means of a distribution X.
To simplify the calculations, we first derive the expressions of the covariance functions Mab(τ) =

�δa(t) δb(t + τ)� before normalizing them to obtain the correlation functions Gab(τ) = Mab(τ)
�a��b� . We note

M
det
ab

(τ) the covariance functions derived in the deterministic context of eqs. (18) to (21). In the stochastic
context of scheme I, eq. (26) rewrites

Mab(t) =

����

R4

�
M

det
ab

(t)

�
A(tA)B(tB)D(tD)E(tE) dtA dtB dtD dtE (44)

where tr1 = tA
tr2 = tB + tD + tE
tg1 = tD
tg2 = tE
trg = tA + tB

For instance, the green autocovariance reads

Mgg(t) = κ

����

R4

�
−H4(t− tD)

t
2
D

+
−H3(t− tE) +H3(t− tD − tE)

tD

�

A(tA)B(tB)D(tD)E(tE) dtA dtB dtD dtE (45)

Because the expression between the brackets is independent of tA, the term
�
R A(tA)dtA (which equals 1)

can be factorized out. The same is true for tB , yielding

Mgg(t) = κ

��

R2

�
−H4(t− tD)

t
2
D

+
−H3(t− tE) +H3(t− tD − tE)

tD

�
D(tD)E(tE) dtDdtE (46)

The same also holds for tE with respect to the term in H4. Moreover, for any function f(t),
�
R f(t −

tE)E(tE)dtE = f(t) ∗ E(t) is the definition of the convolution product. Thus,

Mgg(t) = κ

�

R

�
−H4(t− tD)

t
2
D

+
−H3(t) +H3(t− tD)

tD
∗ E(t)

�
D(tD) dtD (47)
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Then, similarly,
�
R H4(t − tD)D(tD)

t
2
D

dtD = H4(t) ∗ D(t)
t2

and
�
R H3(t − tD)D(tD)

tD
dtD = H3(t) ∗ D(t)

t
are also

convolution products. And H3(t)
�
R

D(tD)
tD

dtD = H3(t)
hD

where hD denotes the harmonic mean of D(t). Hence,
we obtain

Mgg(t) = κ

�
−H4(t) ∗

D(t)

t2
+H3(t) ∗

�
−δ(t)

hD

+
D(t)

t

�
∗ E(t)

�
(48)

where δ(t) is the Dirac function (e.g. H3(t) ∗ δ(t) = H3(t)), used here simply to factorize the expression.
Finally, we simplify the notation by omitting all the dependencies on t, yielding

Mgg(t) = κ

�
−H4 ∗

D

t2
+H3 ∗

�
− δ

hD

+
D

t

�
∗ E

�
(49)

The red autocovariance Mrr(t) is obtained by applying the same derivation, simply replacing distribution
D by A, and distribution E by B ∗D ∗ E, yielding to eq. (40).

The red to green crosscovariance function Mrg(t) is derived as follows:

Mrg(t) = κ

����

R4

�
−H3(t+ tD + tE) +H3(t+ tE)

tD
− H2(t)

− H4(t− tB)−H4(t− tB − tD)−H4(t− tA − tB) +H4(t− tA − tB − tD)

tD tA

+
−H3(t− tB − tD − tE) +H3(t− tA − tB − tD − tE)

tA

�

A(tA)B(tB)D(tD)E(tE) dtA dtB dtD dtE (50)

Of the terms between brackets, only second and third lines are non-null over t ≥ 0. Applying similar steps
as from eqs. (46) to (49), and then factorizing, we obtain eq. (42).

Finally, the green to red crosscovariance function Mgr(t) is derived as follows:

Mgr(t) = κ

��

R2

�
−H3(t− tE) +H3(t− tD − tE)

tD

�
D(tD)E(tE) dtD dtE (51)

Applying again similar steps as from eqs. (46) to (49), we obtain eq. (43).

Appendix 2B – Scheme II

We show that, using the distributions of scheme II (Figure 2—figure supplement 4), the correlation functions
are

Grr(t) =
κ

�r�2 H2 ∗
�
−H2 ∗

A

t2
+

�
− δ

hA

+
A

t

�
∗B ∗ (H ∗ F )(H ∗ C ∗D ∗ E)

�
(52)

Ggg(t) =
κ

�g�2 H2 ∗
�
−H2 ∗

D

t2
+H ∗

�
− δ

hD

+
D

t

�
∗ E

�
(53)

Grg(t) =
κ

�r��g� H2 ∗
�
H ∗

�
− δ

hA

+
A

t

�
∗B − F

�
∗ C ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E

�
(54)

Ggr(t) =
κ

�r��g� H2 ∗
�
(H ∗ E)

�
H ∗ F ∗ C ∗ D

t

�
+

�
H ∗ D

t
∗ E

�
(H ∗ F ∗ C)

�
(55)

with �r� = κ(µA/2 + µB + µ�F,C∗D∗E�) and �g� = κ(µD/2 + µE)

�X,Y � denotes the distribution of the minimum of between two numbers drawn from distributions X and
Y (i.e. H ∗ �X,Y � = (H ∗X)(H ∗ Y )).
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Similarly as for scheme I, eq. (26) rewrites in the context of scheme II as follows:

Mab(t) =

��
· · ·
�

R6

�
M

det
ab

(t)

�
A(tA)B(tB) · · ·F (tF ) dtA dtB · · · dtF (56)

where tr1 = tA
tr2 = tB +min(tC + tD + tE , tF )
tg1 = tD
tg2 = tE
trg = tA + tB + tC

The derivation of the green autocorrelation is identical to the one we performed for scheme I, yielding
the exact same expression for eq. (53).

The same derivation also applies for the red autocorrelation so that, as for scheme I, it can be obtained
by substituting distributions in eq. (49). However, here, distribution D is replaced by A, and distribution
E by the distribution of the minimum between two random numbers drawn from distributions B ∗ F and
B∗C∗D∗E (reflecting that the red signal falls when either splicing occurs or when the transcript is released).
The complementary cumulative distribution function (CCDF) of the minimum between two distributions is
simply the product of their CCDF4. Then, to obtain Mrr(t) from eq. (49), H ∗ E is replaced by B ∗ (H ∗
F )(H ∗C ∗D ∗E), with the convention that the regular product precedes over the convolution product. We
obtain

Mrr(t) = κ

�
−H4 ∗

A

t2
+H2 ∗

�
− δ

hA

+
A

t

�
∗B ∗ (H ∗ F )(H ∗ C ∗D ∗ E)

�
(57)

The red to green crosscovariance function is derived as follows:

Mrg(t) = κ

��
· · ·
�

R6

�
−H3(t+min(tD + tE , tF − tC)) +H3(t+min(tE , tF − tC − tD))

tD

− H2(t+min(0, tF − tC − tD − tE))

− H4(t−tB−tC)−H4(t−tB−tC−tD)−H4(t−tA−tB−tC) +H4(t−tA−tB−tC−tD)

tD tA

+
−H3(t− tB − tC − tD − tE) +H3(t− tA − tB − tC − tD − tE)

tA

�

A(tA)B(tB) · · ·F (tF ) dtA dtB · · · dtF (58)

Noting that, over t ≥ 0, a term of the form Hn(t+min(a, b)) simplifies to Hn(t+ b) if a ≥ 0, and applying
similar steps as from eq. (46) to (49), then factorizing, we find

Mrg(t) = κH2 ∗
�
H ∗

�
− δ

hA

+
A

t

�
∗B − F

�
∗ C ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E

�
(59)

Finally, the green to red crosscovariance function is derived as follows:

Mgr(t) = κ

����

R4

�
−H3(t−min(tE , tF − tC − tD)) +H3(t−min(tD + tE , tF − tC))

tD

�

C(tC)D(tD)E(tE)F (tF ) dtC dtD dtE dtF (60)

= κH2(t) ∗
����

R4

�
−H(t− tE)H(t− tF + tC + tD) +H(t− tD − tE)H(t− tF + tC)

tD

�

C(tC)D(tD)E(tE)F (tF ) dtC dtD dtE dtF (61)

= κH2 ∗
�
(H ∗ E)

�
H ∗ F ∗ C ∗ D

t

�
+

�
H ∗ D

t
∗ E

�
(H ∗ F ∗ C)

�
(62)

4The CCDF of any distribution f simply reads
� −∞
t

f(t�)dt� =
�
R H(t− t

�)f(t�)dt� = H ∗ f .

12



Appendix 2C – Scheme III

We show that, using the distributions of scheme III (Figure 2—figure supplement 4), the correlation functions
are

Grr(t) =
κ

�r�2 H2 ∗
�
−H2 ∗

A

t2
+H ∗

�
− δ

hA

+
A

t

�
∗B ∗ F

�
(63)

Ggg(t) =
κ

�g�2 H2 ∗
�
−H2 ∗

D

t2
+H ∗

�
− δ

hD

+
D

t

�
∗ E

�
(64)

Grg(t) =
κ

�r��g� H2 ∗
�
H ∗

�
− δ

hA

+
A

t

�
∗B ∗ F − δ

�
∗ C ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E

�
(65)

Ggr(t) =0 (66)

with �r� = κ(µA/2 + µB + µF ) and �g� = κ(µD/2 + µE).

The expressions of autocorrelations Grr(t) and Ggg(t) are obtained by trivial substitutions in the
expression of Ggg(t) from scheme I (eq. (41)), using distributions shown on Figure 2—figure supplement 4.

The red to green crosscorrelation is obtained as follows:

Mrg(t) = κ

��
· · ·
�

R5

�
−H3(t− tC) +H3(t− tC − tD)

tD

− H2(t− tC − tD − tE)

− H4(t− tB − tF − tC)−H4(t− tB − tF − tC − tD)

tD tA

+
H4(t− tA − tB − tF − tC)−H4(t− tA − tB − tF − tC − tD)

tD tA

+
−H3(t− tB − tF − tC − tD − tE) +H3(t− tA − tB − tF − tC − tD − tE)

tA

�

A(tA)B(tB) · · ·F (tF ) dtAdtB · · · dtF (67)

= κH2 ∗
�
H ∗

�
− δ

hA

+
A

t

�
∗B ∗ F − δ

�
∗ C ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E

�
(68)

The green to red crosscorrelation is obtained as follows:

Mgr(t) = κ

��

R2

�
−H3(t+ tC + tD) +H3(t+ tC)

tD

�
C(tC)D(tD) dtCdtD (69)

= 0 (70)
since both H3 terms are always null for t ≥ 0.
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Appendix 2D – Scheme IV

We show that, using the distributions of scheme IV (Figure 2—figure supplement 4), the correlation functions
are

Grr(t) =
κ

�r�2 H2 ∗
�
−H2 ∗

A

t2
+H ∗

�
− δ

hA

+
A

t

�
∗B ∗D ∗ E

�
(71)

Ggg(t) =
κ

�g�2 H2 ∗
�
−H2 ∗

D

t2
+H ∗

�
− δ

hD

+
D

t

�
∗ E ∗ F

�
(72)

Grg(t) =
κ

�r��g� H2 ∗
�
−F +H ∗

�
− δ

hA

+
A

t

�
∗B ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E ∗ F

��
(73)

Ggr(t) =
κ

�r��g� H3 ∗
�
− δ

hD

+
D

t

�
∗ E (74)

with �r� = κ(µA/2 + µB + µD + µE) and �g� = κ(µD/2 + µE + µF )

The expressions of autocorrelations Grr(t) and Ggg(t) are obtained by trivial substitutions in the
expression of Ggg(t) from scheme I (eq. (41)), using distributions shown on Figure 2—figure supplement 4.

The red to green crosscorrelation is obtained as follows:

Mrg(t) = κ

��
· · ·
�

R5

�
−H3(t+ tD + tE) +H3(t+ tE)

tD

− H2(t− tF )

− H4(t− tB)−H4(t− tB − tD)−H4(t− tA − tB) +H4(t− tA − tB − tD)

tD tA

+
−H3(t− tB − tD − tE − tF ) +H3(t− tA − tB − tD − tE − tF )

tA

�

A(tA)B(tB) · · ·F (tF ) dtAdtB · · · dtF (75)

Remarking that the first line is always null for t ≥ 0 and applying similar derivations as for scheme I, we
find that

Mrg(t) = κH2 ∗
�
−F +H ∗

�
− δ

hA

+
A

t

�
∗B ∗

�
−H ∗

�
− δ

hD

+
D

t

�
+D ∗ E ∗ F

��
(76)

The green to red crosscorrelation is obtained as follows:

Mgr(t) = κ

��

R2

�
−H3(t− tE) +H3(t− tD − tE)

tD

�
D(tD)E(tE) dtDdtE (77)

= κH3 ∗
�
− δ

hD

+
D

t

�
∗ E (78)
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Appendix 2E – Scheme V

We show that, using the distributions of scheme V (Figure 2—figure supplement 4), the correlation functions
are

Grr(t) =
κ

�r�2 H2 ∗
�
−H2 ∗

A

t2
+H ∗

�
− δ

hA

+
A

t

�
∗B ∗ F

�
(79)

Ggg(t) =
κ

�g�2 H2 ∗
�
−H2 ∗

D

t2
− (H ∗ E)

�
H ∗ F ∗ C ∗ D

t

�
−

�
H ∗ D

t
∗ E

�
(H ∗ F ∗ C)

�
(80)

Grg(t) =
κ

�r��g� H2 ∗
�
F ∗ C ∗

�
H ∗

�
− δ

hD

+
D

t

�
−D ∗ E

�

+

�
− δ

hA

+
A

t

�
∗B ∗

�
−C ∗H2 ∗

�
− δ

hD

+
D

t

�
+ 1− (H ∗ C ∗D ∗ E)(H ∗ F )

��
(81)

Ggr(t) =
κ

�r��g� H3 ∗
�

δ

hD

+
D

t

�
∗ C ∗ F (82)

with �r� = κ(µA/2 + µB + µF ) and �g� = κ(µD/2 + µ�E,F∗C∗D�).

�X,Y � denotes the distribution of the maximum between two numbers drawn from distributions X and Y

(i.e. H ∗�X,Y � = (H ∗X)(H ∗Y )). Note that this, as well as eqs. (80) and (81), involve terms in H (instead
of H).

The expression of autocorrelation Grr(t)is obtained by trivial substitutions in the expression of Ggg(t)
from scheme I (eq. (41)), using distributions shown on Figure 2—figure supplement 4.

The green autocorrelation is obtained as follows:

Mgg(t) = κ

����

R4

�
−H4(t− tD)

t
2
D

+
−H3(t−max(tE , tF −tC−tD)) +H3(t−max(tE+tD, tF −tC))

tD

�

C(tC)D(tD)E(tE)F (tF ) dtC dtD dtE dtF (83)

Remarking that H(t) = 1−H(t) and that H(t−max(X,Y )) = H(t−X)H(t− Y ), we find

Mgg(t) = κH2 ∗
�
−H2 ∗

D

t2
+

����

R4

�
H(t−tE)H(t−tF +tC+tD)−H(t−tE−tD)H(t−tF +tC)

tD

�

C(tC)D(tD)E(tE)F (tF ) dtC dtD dtE dtF

�
(84)

= κH2 ∗
�
−H2 ∗

D

t2
− (H ∗ E)

�
H ∗ F ∗ C ∗ D

t

�
−
�
H ∗ D

t
∗ E

�
(H ∗ F ∗ C)

�
(85)

The red to green crosscorrelation is obtained as follows:

Mrg(t) = κ

��
· · ·
�

R5

�
−H3(t+ tF − tC) +H3(t+ tF − tC − tD)

tD
− H2(t−max(tC + tD + tE − tF , 0))

− H4(t−tB−tC)−H4(t−tB−tC−tD)−H4(t−tA−tB−tC)+H4(t−tA−tB−tC−tD)

tD tA

+
−H3(t− tB −max(tC + tD + tE , tF )) +H3(t− tA − tB −max(tC + tD + tE , tF ))

tA

�

A(tA)B(tB) · · ·F (tF ) dtA dtB · · · dtF (86)
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Noting that, over t ≥ 0, a term of the form Hn(t−max(a, b)) simplifies to Hn(t− a) if b ≤ 0, and applying
the same derivation principle as for Mgg(t), we find that

Mrg(t) = κH2 ∗
�
F ∗ C ∗H ∗

�
− δ

hD

+
D

t

�
− F ∗ C ∗D ∗ E

−H ∗
�
− δ

hA

+
A

t

�
∗B ∗ C ∗H ∗

�
− δ

hD

+
D

t

�

+

�
− δ

hA

+
A

t

�
∗B ∗

����

R4

�
1−H(t−tC−tD−tE)H(t− tF ))

�

C(tD)D(tD)E(tE)F (tF ) dtC dtD dtE dtF

�
(87)

= κH2 ∗
�
F ∗ C ∗

�
H ∗

�
− δ

hD

+
D

t

�
−D ∗ E

�

+

�
− δ

hA

+
A

t

�
∗B ∗

�
−C ∗H2 ∗

�
− δ

hD

+
D

t

�
+ 1− (H ∗ C ∗D ∗ E)(H ∗ F )

��
(88)

The green to red crosscorrelation is obtained as follows:

Mgr(t) = κ

���

R3

�
−H3(t+ tC + tD − tF ) +H3(t+ tC − tF )

tD

�
C(tC)D(tD)F (tF ) dtC dtD dtF (89)

= κH3 ∗
�

δ

hD

+
D

t

�
∗ C ∗ F (90)

Appendix 3 Bayesian Information Criterion (BIC)

To do model comparison, we used the Bayesian Information Criterion (BIC) [3]

BIC = χ
2 + k logN (91)

where, χ2 is directly obtained from the non-linear least-square fit, k is the number of parameter of the model

and N the number of data points used in the fit. The BIC penalizes models with more parameters so that

if two models fit equally well the data, the simplest one will be retained. The smallest the BIC, the better

the model.
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