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Supplementary file 1 

A. Mathematic model of Whi5 kinetics 

The major role of this mathematic model is to analytically derive the correlation between 

Cln3 and TG1 coupled by Whi5 phosphorylation under more general conditions without the 

assumption of saturation for any enzyme. In this section we simplified the phosphorylation of 

Whi5 by Cln3 as a single step process. From numerical simulation of Whi5 kinetics and phase 

diagram of Whi5 (fig. 1), we found that the major part of G1 is the process for the nuclear Whi5 

to drop from Whi5tot to Whi5c. Here Whi5c is defined as the corresponding value of Whi5 in 

phase diagram when Cln3 equals to Cln3c, below which the positive feedback loop takes effect 

and greatly accelerate the Start transition.  

 

figure 1. (A) The phase diagram of Whi5. The red lines show stable state nuclear Whi5 values as 

a function of Cln3. If the nuclear Whi5 drops below Whi5c, the switch is irreversibly flipped. (B) 

The nuclear Whi5 dynamics at Cln3=200. A and B are simulated by the ODE model (see section 

B). 

Since the Start transition itself is very quick, we neglected its time in the calculation of TG1 

for simplicity. We also assume Cln3 concentration is constant through G1. Here we derived the 

correlation between TG1 and Cln3 based on these simplifications. The scheme of the model is 

shown in fig. 2A, and the equations are listed as follows: 
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 We focus on the time interval for Whi5upto drop from Whi5tot to 

Whi5c. 
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the time evolution, of Whi5p can be solved as: 
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Time zero is defined at T0 in this model. 

While by definition      15 T 5 5p G tot cWhi Whi Whi  ,  
  

we could first get the solution of 3cCln , for t   
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since exp(-x)≈1-x (for x<<1, and can be approximately valid
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by applying exp(-x)≈1-x, we get
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This leads to 
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cT  is the minimum G1 length from cytokinesis when Cln3 concentration gets saturated. 

Since when    3 3tot cCln Cln , 1GT  , we include 3cCln term and put it as 

      13 3tot c G cCln Cln T T A                                                                                                (4) 

The value of Cln3c can be calculated from equation (1). A and Tc are determined from 
equation (2) and (3), respectively. Thus all parameters in equation (4) are known.  

By comparing Cln3-TG1 curve derived from equation (4) with the deterministic simulation 
result from the full equations above (with the same set of parameters), we see that the analytical 
curve coincides with the numerical result (fig. 2B). Similar result can be deduced analytically 
when Whi5 has multiple phosphorylation sites. 

In summary, the inverse correlation between Cln3 concentration and G1 length holds in 

general under the following condition: 1

1
min( , )G

m
T

k p
 , where k and p are the catalytic rate for 

Cln3-CDK and the phosphatase, respectively and m≈[Whi5]/[Cln3]≈10.  For weak kinase and 

phosphatase, it is quite conceivable that G1 length would satisfy this condition. 

 

figure 2. (A) Single-step phosphorylation of Whi5; phos denotes basal phosphatase; a, d, c, f, k 

and p denote reaction rates. (B) Comparison of analytical results with the deterministic 

simulation of the full equations and the experimental data. Values of Cln3c, T0 and A in the 

Analytical Formula are derived from equation (1) to (3). 

Predictions of the kinetics model 

From equation (1) and equation (2), it is clear that both Cln3c and A increase monotonously 

with the increase of Whi5tot, while the intensity of dephosphorylation plays important role in 

elevating Cln3c. 

Cln3c changes with whi5tot and positive feedback strength 

START transition is triggered when phosphorylated Whi5 level reaches 5 5tot cWhi Whi . 



5 

 

From equation (1), 
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       When Whi5tot increases, 5cWhi  is almost uninfluenced, thus V drops. The denominator term 

in equation (1) drops while the numerator term increases, resulting in the elevation of Cln3c. 

When positive feedback is weaken by the deletion of CLN1 or CLN2, the value of 5cWhi  

drops (fig. 3), thus V drops, leading to the elevation of Cln3c.  

 
figure 3. Whi5c and Cln3c in cln1 (pink) and cln2 (green) strains in comparison with strain of 

endogenous positive feedback loop (black). Nuclear Whi5 stable states at different Cln3 protein 

numbers (solid lines) were simulated by the ODE model (see Section B). Whi5c and Cln3c are 

indicated by horizontal and vertical dashed lines, respectively. Whi5tot is the nuclear Whi5 level 

when Cln3 level is zero. 5p

cWhi
 
is the difference from Whi5tot to Whi5c. 

Effect of phosphatase having multiple substrates  

We also considered the situation that Whi5 may share phosphatase with many other 

substrates: 
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Focus range: time interval for Whi5p rise from 0 to Whi5tot -Whi5c. 

It is appropriate to apply first order kinetics approximation for phosphatase: 
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So 5 (1 exp( ' ))
'

p
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k
     ,  

which means the integration mechanism holds for the time window T<1/k’, where k’ can be quite 

small for weak phosphatase and/or with many substrates. Considering the major phosphatase of 

Whi5, Cdc14 is sequestered in nucleolus by RENT complex in G1 phase (Shou et al. 1999), the 

dephosphorylation of Whi5 in G1 should be weak and basal. The half dephosphorylation time of 

Whi5 in G1 is indeed longer than 30 min (Charvin, Oikonomou, and Siggia 2010), supporting 

our assumption of a weak and slow dephosphorylation. Thus the integration mechanism still 

holds even if the phosphatase has multiple substrates. 

Whi5 dynamics when considering Cln3 flucturation with time 

When Cln3 concentration changes with time, the dynamics of Whi5 phosphorylation is as 

following: 
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Focus range: time interval for Whi5p rise from 0 to Whi5tot -Whi5c. 

Condition 1: Zero-th order kinetics approximation for kinase:   13 5m upCln t K Whi   ,  

                     Zero-th order kinetics approximation for phosphatase:    2 5tot m pphos K Whi t . 
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For wild type yeast, it is very likely that Condition 2 is the case. 

 

Measuring the memory length by Whi5 nuclear entry 
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We fitted the dynamics of Whi5 nuclear entry by 
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B. ODE model of the Start network 

Elementary reactions: 
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Hypotheses in this model: 

1) For Whi5 multisite phosphorylation, hypotheses A) to D) was assumed: 

A) Whi5 localization was determined by the phosphorylation state of its 4 key 

phosphorylation sites (Wagner et al. 2009); 

B) Distributive kinetics in enzyme processivity; 

C) Sequential ordered phosphorylation; 

D) No cooperativity between sites within a molecule. 

2) Whi5 degradation was omitted during G1. 

Some of the parameters were derived from published data and our own experimental results, 

as indicated below. Others were found by using Latin Hypercube sampling then changed by hand 

to improve the fit. The parameters were determined by fitting the 1XWHI5 data in Figure 3A first. 

Then only T0 and Whi5tot, Whi5tot, 1, , and the dephosphorylation rate ab2 and p were changed 

to fit the experimental data for whi5, 2XWHI5, cln1, cln2and CDC14 overexpression in 

Figure 3A, C and D, respectively. All the parameters are listed in Figure 3—table supplement 1. 

Experimental data used for deriving parameters: 

1) Copy numbers of proteins in the Start network (Huh et al. 2003). 

2) Half-lives of Cln1-3 (Cross and Blake 1993; Wittenberg, Sugimoto, and Reed 1990). 

3) T0 in whi5 data. 

Table. Parameters of the ODE model. 

For 1×WHI5 strain 

3 1 12.89 10a mol mL Min           
4 1 1

1 2.19 10b mol mL Min       

4 1 1

2 2.19 10b mol mL Min          
4 1 12.19 10c mol mL Min        
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1

1 0.5e Min     
1

2 0.5e Min    
10.3f Min   

12k Min   

1

1 10l Min    
1

2 5l Min    
10.34p Min   

1

1 1ab Min   

1

2 0.03ab Min  
1

1 0.13D Min 1

2 0.13D Min  
2 1

3 3.3 10D Min    

1,2 1j     3 0.383j     1 1n     2 1n    3 5n    

5 1 1

1 4.5 10v mol mL Min       
4 1 1

2 1.79 10v mol mL Min       
 
 

4 13.43 10tot

nucphos mol mL           4 13.43 10totSBF mol mL     

  4 15 6.85 10totWhi mol mL        
32.91estimate

nucVolume m  

For whi5 strain 

  15 0totWhi mol mL        0 11minT  added on G1 

   
Other parameters are the same as 1×WHI5 

For 2×WHI5 strain
 

  3 15 1.60 10totWhi mol mL   
 
 Other parameters are the same as  1×WHI5

 

For CDC14 overexpressed strain 

1

2 0.2ab Min   
10.45p Min
   

Other parameters are the same as 1×WHI5
 

For cln1strain 

1 1

1 0v mol mL Min    
   

Other parameters are the same as 1×WHI5 

For cln2 strain 

1 1

2 0v mol mL Min    
   

Other parameters are the same as 1×WHI5 
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