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Abstract 27 

Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest 28 

recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted 29 

niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus 30 

infection in bats and primates (1976-2014). Using species distribution models these occurrence data 31 

were paired with environmental covariates to predict a zoonotic transmission niche covering 22 32 

countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration and 33 

suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million 34 

people, however the rarity of human outbreaks emphasises the very low probability of transmission to 35 

humans. Increasing population sizes and international connectivity by air since the first detection of 36 

EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary 37 

outbreaks will be very different to those of the past. [150/150]  38 
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Introduction 39 

Ebola viruses have for the last forty years been responsible for a number of outbreaks of Ebola virus 40 

disease (EVD) in humans (Pattyn et al., 1977), with high case fatality rates typically around 60-70%, 41 

but potentially reaching as high as 90% (Feldmann and Geisbert, 2011). The most recent outbreak 42 

began in Guinea in December 2013 (Baize et al., 2014; Bausch and Schwarz, 2014) and has 43 

subsequently spread to Liberia, Sierra Leone and Nigeria (ECDC, 2014). The unprecedented size and 44 

scale of this ongoing outbreak has the potential to destabilise already fragile economies and healthcare 45 

systems (Fauci, 2014), and fears of international spread of a Category A Priority Pathogen (NIH, 46 

2014) have made this a massive focus for international public health (Chan, 2014). This has led to the 47 

current outbreak being declared a Public Health Emergency of International Concern on the 8th 48 

August 2014 (Briand et al., 2014; Gostin et al., 2014; WHO, 2014). 49 

The Filoviridae, of which Ebolavirus is a constituent genus, belong to the order Mononegavirales. 50 

Two other genera complete the family: Marburgvirus, itself responsible for a number of outbreaks of 51 

haemorrhagic fever across Africa (Conrad et al., 1978; Gear et al., 1975; Smith et al., 1982; Towner 52 

et al., 2006) and Cuevavirus, recently isolated from bats in northern Spain (Negredo et al., 2011). 53 

Five species of Ebolavirus have been isolated to date (King et al., 2011; Kuhn et al., 2010); the 54 

earliest recognised outbreaks of EVD were reported in Zaire (now the Democratic Republic of the 55 

Congo (DRC)) and Sudan in 1976 (International Commission, 1978; WHO International Study Team, 56 

1978). The causative viruses were isolated (Pattyn et al., 1977) and later identified to be distinct 57 

species, Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). A third species of Ebolavirus, 58 

Reston ebolavirus, was isolated from Cynomologus monkeys imported from the Philippines to a 59 

facility in the United States, where they experienced severe haemorrhaging (Jahrling et al., 1990). 60 

Whilst serological evidence of infection with this species has been reported in individuals in the 61 

Philippines (Miranda et al., 1991), no pathogenicity has been reported beyond primates and porcids 62 

(Barrette et al., 2009; Feldmann and Geisbert, 2011). In 1994 a fourth species, Tai Forest ebolavirus 63 

was isolated from a veterinarian who had autopsied a chimpanzee in Côte d’Ivoire (Le Guenno et al., 64 

1995), though the virus has not been detected subsequently. The final species, Bundibugyo ebolavirus, 65 

was responsible for an outbreak of EVD in Uganda in 2007 (Towner et al., 2008), as well as a more 66 

recent outbreak in the DRC (WHO, 2012). 67 

Initial analysis suggested that the viruses isolated from the current outbreak, originating in Guinea, 68 

formed a separate clade within the five Ebolavirus species (Baize et al., 2014). Subsequent re-analysis 69 

of the same sequences however, indicated that these isolates instead nest within the Zaire ebolavirus 70 

lineage (Dudas and Rambaut, 2014), and diverged from Central Africa strains approximately ten 71 

years ago (Gire et al., 2014). 72 
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Which reservoir species are responsible for maintaining Ebola transmission between outbreaks is not 73 

well understood (Peterson et al., 2004), but over the last decade significant progress has been made in 74 

narrowing down the list of likely hosts (Peterson et al., 2007) (Figure 1). Primates have long been 75 

known to harbour filoviral infections, with the first Marburg strains identified in African green 76 

monkeys in 1967 (Beer et al., 1999; Siegert et al., 1967). Significant mortality has also been reported 77 

in wild primate populations across Africa, most notably in gorilla (Gorilla gorilla) and chimpanzee 78 

(Pan troglodytes) populations (Bermejo et al., 2006; Formenty et al., 1999; Rouquet et al., 2005). The 79 

high case fatality rates recorded in the great apes combined with their declining populations and 80 

limited geographical range, indicate they are likely dead-end hosts for the virus and not reservoir 81 

species (Groseth et al., 2007). A large survey of small mammals in and around Gabon identified three 82 

species of bats which were infected with Ebola viruses – Hypsignathus monstrosus, Epomops 83 

franqueti and Myonycetris torquata (Leroy et al., 2005). Subsequent serological surveys (Hayman et 84 

al., 2010; Pourrut et al., 2009) and evidence linking the potential source of human outbreaks to bats 85 

(Leroy et al., 2009) lend support to the hypothesis of a bat reservoir. This, coupled with repeated 86 

detection of Marburgvirus in the fruit bat Rousettus aegypticus (Towner et al., 2009) and the only 87 

isolations of Cuevavirus also from bats (specifically Llovia virus (Negredo et al., 2011)), all support 88 

the suspicion that Chiroptera play an important role in the natural life-cycle of the filoviruses. 89 

Humans represent a dead-end host for the virus, with only stuttering chains of transmission reported 90 

between humans in the majority of previous outbreaks (Chowell et al., 2004; Legrand et al., 2007) 91 

and no indication that humans can reintroduce the virus back into reservoir species (Karesh et al., 92 

2012). The incubation period in humans ranges from two days to three weeks, after which a variety of 93 

clinical symptoms arise, affecting multiple organs of the body. At the peak of illness, haemorrhaging 94 

shock and widespread tissue damage can occur and can eventually lead to death within 6-16 days 95 

(Feldmann and Geisbert, 2011). Human-to-human transmission is mainly through direct unprotected 96 

contact with infected individuals and cadavers, with infectious particles detected in a number of 97 

different body fluids (Feldmann and Geisbert, 2011). The typical outbreak profile is defined by an 98 

index individual that has recently come into contact with the blood of another mammal through either 99 

hunting or the butchering of animal carcasses (Pourrut et al., 2005). Whilst it has been difficult to 100 

identify the zoonotic source for the index cases of some outbreaks, a recurring theme of hunting and 101 

handling bushmeat is suspected (Table 1) (Boumandouki et al., 2005; Leroy et al., 2009; Nkoghe et 102 

al., 2005; Nkoghe et al., 2011). For some outbreaks, including the most recent, the initial source of 103 

zoonotic transmission has not been identified. In subsequent human-to-human transmission, the 104 

highest risk activities are those that bring humans into close contact with infected individuals. These 105 

include medical settings where insufficient infection control precautions have been taken, as well as 106 

home care and funeral preparations carried out by families or close friends (Baron et al., 1983; 107 

Boumandouki et al., 2005; Georges et al., 1999). As the conditions required for transmission are 108 
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culturally and contextually dependent, opportunities for sustained transmission are highly 109 

heterogeneously distributed. Typically, chains of infection do not exceed three or four sequential 110 

transmission events, although occasionally (and particularly in the early stages of infection) a single 111 

individual may be responsible for directly infecting a large number of others (Brady et al., 2014). In 112 

the outbreak in Gabon in 1996, a single person was responsible for infecting ten other individuals 113 

(Milleliri et al., 2004) whilst in the 1995 outbreak in the DRC, thirty five cases resulted from one 114 

individual (Khan et al., 1999). Secondary transmission can be restricted by effective case detection 115 

and isolation measures (Shoemaker et al., 2012; WHO, 2014). Where this cannot be achieved, either 116 

due to a lack of infrastructure, poor understanding of the disease, or distrust of medical practices, 117 

secondary cases can continue to occur (Hewlett et al., 2005; Khan et al., 1999; Larkin, 2003). As the 118 

number of infections grows, the ability of healthcare systems to control the further spread diminishes 119 

and the risk of a large outbreak increases. 120 

The recent outbreak in Guinea and surrounding countries indicate that the previous paradigm for 121 

Ebola outbreaks is shifting (Briand et al., 2014; Chan, 2014). The last forty years of EVD outbreaks 122 

were accompanied by considerable changes in demographic patterns throughout Africa. There has 123 

been a large increase in population size coupled with increasing urbanisation (Cohen, 2004; Linard et 124 

al., 2013; Seto et al., 2012). African populations have also become better connected internally and 125 

internationally (Huang and Tatem, 2013; Linard et al., 2012). Only recently have we begun to 126 

understand the dynamic nature of these travel patterns (Garcia et al., 2014; Gonzalez et al., 2008; 127 

Simini et al., 2012; Wesolowski et al., 2013; Wesolowski et al., 2012) which have been clearly 128 

demonstrated to influence disease transmission over different temporal and spatial scales (Brockmann 129 

and Helbing, 2013; Hufnagel et al., 2004; Pindolia et al., 2014; Stoddard et al., 2009; Talbi et al., 130 

2010; Yang et al., 2008). Changes in land use and penetration into previously remote areas of 131 

rainforest bring humans into contact with potential new reservoirs (Daszak, 2000), while changes in 132 

human mobility and connectivity will likely have profound impacts on the dispersion of Ebola cases 133 

during outbreaks. These conditions are thought to have a major role in setting the stage for the current 134 

outbreak. 135 

This paper aims to define the areas suitable for zoonotic transmission of Ebolavirus (i.e. those routes 136 

defined in Figure 1 excluding human-to-human transmission) through species distribution modelling 137 

techniques. The fundamental niche of a species can be conceptualised as the confluence of 138 

environmental conditions that support its presence in a particular location (Franklin, 2009). Species 139 

distribution models quantitatively describe this niche based on known occurrence records of the 140 

organism and their associated environmental conditions, enabling predictions of the likely geographic 141 

distribution of the species in other regions (Elith and Leathwick, 2009). The era of satellites and 142 

geographical information systems has made high resolution global data on environmental conditions 143 

increasingly available (Hay et al., 2006; Weiss et al., 2014). Species distribution modelling using 144 
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flexible machine learning approaches have been successfully applied to map the global distributions 145 

of disease vectors (Sinka et al., 2012) and pathogens such as dengue (Bhatt et al., 2013), influenza 146 

(Gilbert et al., 2014) and leishmaniasis (Pigott et al., 2014). 147 

Previous studies applied the GARP (Genetic Algorithm for Rule-set Production) species distribution 148 

modelling approach (Stockwell and Peters, 1999) to the locations of twelve Ebola outbreaks in 149 

humans between 1976 and 2002 to map the likely distribution of Ebola viruses (Peterson et al., 2004) 150 

and as a mechanism to identify potential reservoir hosts (Peterson et al., 2004; Peterson et al., 2007). 151 

Here we update and improve the maps of the zoonotic transmission niche of EVD by: (i) 152 

incorporating more recent outbreak data from outside the formerly predicted niche of EVD; (ii) 153 

integrating for the first time data on outbreaks in primates and the occurrence of the virus in the 154 

suspected Old World fruit bat (OWFB) reservoirs; (iii) using new satellite-derived information on 155 

bespoke environmental covariates from Africa, including new distribution maps of the OWFB; and 156 

(iv) using new increasingly flexible niche mapping techniques in the modelling framework. To 157 

elucidate the relevance of these maps for transmission, we have also calculated the population at risk 158 

of primary spillover outbreaks from the zoonotic niche of EVD in Africa, and we investigated the 159 

changing nature of the populations within this niche. 160 

  161 
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Results 162 

Reported EVD outbreaks 163 

In total, 23 outbreaks of Ebola virus were identified in humans across Africa, consisting of a 164 

hypothesised 30 independent primary infection events (Table 1 and Figure 2). These outbreaks span 165 

the last forty years from the first outbreaks in 1976 to the five outbreaks that have occurred since 2010 166 

(Table 1). The locations of the index cases span from West Africa, with the most westerly outbreak 167 

ongoing in Guinea, to Gabon, the Republic of Congo (ROC), the DRC, South Sudan and Uganda. 168 

Before December 2013, a total of 2,322 cases had occurred from Ebolavirus infections, a number 169 

already overtaken by the likely underreported current case count of the ongoing outbreak >2,250 170 

(WHO, 2014)(Figure 2A). Of the four viruses circulating in Africa, Zaire ebolavirus has been 171 

responsible for the most outbreaks (13), followed by Sudan ebolavirus (7) and Bundigbuyo ebolavirus 172 

with just two outbreaks in 2007/8 and 2012. Tai Forest has caused one confirmed infection in humans, 173 

from which the patient recovered (Formenty et al., 1999; Le Guenno et al., 1995). Although outbreaks 174 

have been reported since 1976, there was an absence of reported outbreaks in humans for 15 years 175 

between 1979 and 1994 (although antibodies in humans were identified over the period (Kuhn, 2008)) 176 

and the frequency of outbreaks has increased substantially post 2000 (Figure 2A). 177 

Reported Ebola virus infections in animals 178 

A total of 51 surveyed locations reporting infections in animals were identified in the literature since 179 

the discovery of the disease (Table 2 and Figure 3). These comprised 17 infections in gorillas (Gorilla 180 

gorilla), nine infections in chimpanzees (Pan troglodytes), 18 in OWFB and two in duikers 181 

(Cephalophus spp.). A large proportion of the great ape cases originated from the ROC / Gabon 182 

border, coinciding with the main known distributions of both chimpanzees and gorillas (Petter and 183 

Desbordes, 2013) and representing a period of well-documented great ape Ebola outbreaks in and 184 

around the Lossi Animal Sanctuary (Bermejo et al., 2006; Rouquet et al., 2005; Walsh et al., 2009). 185 

All animal isolations of Ebola viruses have come from countries that have also reported index cases of 186 

human outbreaks, with the exception of several seropositive bats from a survey in southern Ghana. 187 

Predicted distribution of suspected reservoir species of bats. 188 

Three species of bats, Hypsignathus monstrosus, Myonycteris torquata and Epomops franqueti, were 189 

identified as the most likely candidates to be reservoir species for Ebola viruses due to high 190 

seroprevalence and the isolation of RNA closely related to Zaire ebolavirus (Leroy et al., 2005; Olival 191 

and Hayman, 2014). In total, 239 locations were identified from the Global Biodiversity Information 192 

Facility (GBIF) (GBIF, 2014): 67 for H. monstrosus (Figure 4A), 52 for M. torquata (Figure 4B) and 193 

120 for E. franqueti (Figure 4C). Distribution models for all three species demonstrated predictive 194 
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skill (indicated by an area under the curve (AUC) greater than 0.5) as follows: H. monstrosus AUC 195 

0.63±0.04; M. torquata AUC=0.59±0.04; E. franqueti AUC=0.58±0.03, n=50 submodels for all three 196 

species. In addition, each species was broadly predicted within its considered expert opinion range 197 

(Figure 4A-C) (Schipper et al., 2008). The marginal effect plots (not shown) were strongly influenced 198 

by land surface temperature (LST) and vegetation (as measured by the enhanced vegetation index 199 

(EVI)). The predicted combined distribution of these species (Figure 4D), covers West and Central 200 

Africa, specifically the moist forests of the northeastern, western and central Congo basin, and 201 

Guinea, as well as the Congolian coastal forest ecoregions (WWF, 2014). 202 

Predicted environmental suitability for zoonotic transmission of Ebola 203 

The predicted environmental niche for zoonotic transmission of EVD is shown in Figure 5. All 204 

countries with observed index cases of EVD (n=7, hereafter Set 1) have areas of the highest 205 

environmental suitability (see list in Table 1). In addition, areas of high environmental suitability for 206 

zoonotic transmission are predicted in a further 15 countries where, to date, index cases of the four 207 

African species of Ebolavirus have not been recorded. These are Nigeria, Cameroon, Central African 208 

Republic (CAR), Ghana, Liberia, Sierra Leone, Angola, Tanzania, Togo, Ethiopia, Mozambique, 209 

Burundi, Equatorial Guinea, Madagascar and Malawi (hereafter Set 2). 210 

The AUC for the Ebola model was relatively high (AUC=0.85±0.04, n=500 submodels) indicating 211 

that the model could strongly distinguish regions of environmental suitability for EVD. Enhanced 212 

vegetation index had the greatest impact on the distribution (relative contribution (RC) of 65.3%) 213 

followed by elevation (RC=11.7%), night-time land surface temperature (LST) (RC=7.7%), potential 214 

evapotranspiration (PET) (RC=5.7%) and combined bat distribution (RC=3.8%). Marginal effect 215 

plots are presented in Figure 5 – figure supplement 2. 216 

In total, 22.2 million people are predicted to live in areas suitable for zoonotic transmission of Ebola. 217 

The vast majority, 21.7 million (approximately 97%), live in rural areas, as opposed to urban or peri-218 

urban areas (CIESIN/IFPRI/WB/CIAT, 2007; WorldPop, 2014). Of these, 15.2 million are in Set 1 and 219 

7 million are in Set 2. In terms of ranked populations at risk, DRC, Guinea and Uganda are highest in 220 

Set 1 and Nigeria, Cameroon and CAR are top in Set 2. For a full listing of these populations living in 221 

areas of risk, see the stacked bar plot in Figure 5B.  222 

National level demographic and mobility changes 223 

Over the 40 year period since discovery of EVD, the total population living in those countries 224 

predicted to be within the zoonotic niche has nearly tripled (from 230 million to 639 million) and the 225 

proportion of the population in these countries living in an urban (rather than rural) setting has 226 

changed from 25.5% to 59.2% (Figure 6). 227 
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Data on the connectivity of human populations over this period were not available. We can infer 228 

however, intuitively, empirically and theoretically (Simini et al., 2012; Zipf, 1946) that rates of 229 

population movement within a country will scale directly in proportion to population growth. 230 

International connectivity by airline traffic  231 

Records of passenger seat capacity are available since 2000 and show substantive increases over the 232 

period in Set 1 (from 2.96 to 4.77 million, a fractional change of 1.61) and Set 2 (from 5.6 to 15.6 233 

million, a change of 2.8) (Figure 7A). More specific data on passenger volumes show almost 234 

universally similar increases since 2005 with Set 1 nations changing from 2 million to 2.5 million, a 235 

fractional change of 1.22 and Set 2 changing from 5 million to 7.9 million, a change of 1.57 (Figure 236 

7B). 237 

Global analysis of airline passenger volumes demonstrates that international connectivity has 238 

increased amongst all global regions and national income strata (Figure 8). Total passenger volumes 239 

have increased by a third from 9.5 to over 14 million during the eight year window (2005-2012) 240 

where records are available. The largest increases have occurred in WHO regions (WHO, 2014) 241 

outside of the sub-Saharan African region (AFRO) (Figures 8A and B). In 2012, almost half of the 242 

final destinations of those travelling from these at-risk countries were to other AFRO nations (47%). 243 

Other frequent destinations were in Europe (EURO; 27%) and the Eastern Mediterranean (EMRO; 244 

13%). Similarly, analysis of passenger volumes by World Bank national income groupings (WHO, 245 

2014) (Figures 8C and D) show that in 2012 40% of all passenger final destinations were to low or 246 

low-middle income countries. 247 

  248 
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Discussion 249 

Summary of the main findings 250 

We have re-evaluated the zoonotic niche for EVD in Africa. In doing so we have (i) used all existing 251 

outbreaks to assemble an inventory of index cases (n=30); (ii) added to this all confirmed records of 252 

Ebola virus in animals (n=51); (iii) assembled more accurate and contemporary environmental 253 

covariates including new maps of the distribution of confirmed OWFB reservoirs of the disease; and 254 

(iv) used the latest niche modelling techniques to predict the geographic distribution of potential 255 

zoonotic transmission of the disease. Using these predictions we have estimated the populations at 256 

risk of EVD both in countries which have confirmed index cases (Set 1, n=7) and those for which we 257 

predict strong environmental suitability for outbreaks (Set 2, n=15). In all countries at risk we show 258 

that since the discovery of EVD in 1976, urban and rural populations have increased and have become 259 

more interconnected both within and across national borders. During the last 40 years the increasing 260 

size and connectivity of these populations may have facilitated the subsequent spread of EVD 261 

outbreaks. These factors underline a change in the way in which EVD interacts with human 262 

populations. 263 

Interpreting the zoonotic niche 264 

The remote and isolated nature of Ebola zoonotic transmission events, paired with the relatively poor 265 

diagnostics and understanding of the disease transmission routes in early outbreaks, mean that under-266 

reporting of previous outbreaks is probable. An increasing understanding and description of a broader 267 

range of symptoms used in case definitions of EVD (Feldmann and Geisbert, 2011; Leroy et al., 268 

2000) also increase the possibility that past outbreaks may have been misattributed to different 269 

diseases (Tignor et al., 1993). This poor detectability of EVD also clearly limits capacity to accurately 270 

identify the locations and transmission routes of index cases (Baize et al., 2014; Heymann et al., 271 

1980). We must assume, as has been done previously (Jones et al., 2008; Peterson et al., 2004), that 272 

the first reported cases are representative of the true location of the index cases. Where possible we 273 

have represented this geographic uncertainty by attributing the index case to a wide-area polygon 274 

which then incorporated this uncertainty into the mapping process (see Methods). 275 

The relationship between the EVD niche and the environmental covariates (Figure 5 – figure 276 

supplement 2), particularly the high relative contribution of the vegetation index, underscore that there 277 

are clear environmental limits to transmission of the virus from animals to humans, and that 278 

ecoregions dominated by rainforest are the primary home of such zoonotic cycles. Our analysis has 279 

shown that the zoonotic niche of the pathogen is more widespread than previously predicted or 280 

appreciated (Peterson et al., 2004), most notably in West Africa. 281 
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This analysis used information from all human outbreaks and animal infections to delineate the likely 282 

zoonotic niche of the disease. Further analysis, excluding the existing outbreak focussed in Guinea 283 

from the dataset used to train the model (Figure 5 – figure supplement 3), still resulted in prediction of 284 

high suitability in this region, with the presumed index village located within 5km of an at-risk pixel. 285 

This implies that the eco-epidemiological situation in Guinea is very similar to that in past outbreaks, 286 

mirroring phylogenetic similarity in the causative viruses (Dudas and Rambaut, 2014; Gire et al., 287 

2014). The ecological similarity between the past and current outbreaks also lends support to the 288 

notion that the scale of this outbreak is more heavily influenced by patterns of human-to-human 289 

transmission than any expansion of the zoonotic niche. 290 

Interpreting Population at Risk 291 

It is important to appreciate that this zoonotic niche map delineates areas in which populations are at-292 

risk of zoonotic transmission of EVD (Figure 5B). It does not predict the likelihood of EVD spillover, 293 

the likelihood of an outbreak establishing, or its subsequent rate of spread within a population. 294 

Increasing human encroachment and certain cultural practices sometimes linked with poverty, such as 295 

bushmeat hunting, result in increasing exposure of humans to animals which may harbour diseases 296 

including Ebola (Daszak, 2000; Wolfe et al., 2005; Wolfe et al., 2007). Increasing human population 297 

may accelerate the degree of risk through these processes but spatially refined information on these 298 

factors is not available comprehensively. It is hoped that as the understanding of the risk factors for 299 

zoonotic transmission of Ebolavirus to humans increases, it will be possible to incorporate this 300 

information into future risk mapping assessments. 301 

Previous considerations of the geographic distribution of EVD have used human outbreaks alone. We 302 

have updated this work to include the last decade of outbreaks, as well as disaggregated outbreaks 303 

where evidence suggests multiple independent zoonotic transmission events overlap in space and 304 

time. Furthermore, our modelling process accommodates uncertainty in geopositioning of these index 305 

cases by utilising both point and polygon data. In addition, we include occurrence of infection in 306 

wildlife, important to the wider scale of zoonotic transmission (Figure1), which in total has increased 307 

the dataset used in the model to 81 occurrences. The rareness of EVD outbreaks and the prevalence of 308 

detectable Ebola virus in reservoir species suggests that there will always be a limited set of 309 

observation data when compared to mapping of more prevalent zoonoses (Pigott et al., 2014). The 310 

results demonstrate predictive skill using a stringent validation procedure, however, indicating strong 311 

model performance even with this relatively limited observation dataset. 312 

A broad zoonotic niche is predicted across 22 countries in Central and West Africa. Whilst several of 313 

these countries have reported index cases of EVD, others have not, although serological evidence in 314 

some regions points to possible underreporting of small-scale outbreaks (Kuhn, 2008). With improved 315 
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ecological understanding, particularly with improvements to our knowledge of specific reservoir 316 

species and their distributions, it may be possible to delineate areas not at risk due to the absence of 317 

these species. 318 

Despite relatively a large population living in areas of risk and the widespread practice of bushmeat 319 

hunting in these predicted areas (Brashares et al., 2011; Kamins et al., 2011; Mfunda and Røskaft, 320 

2010; Wolfe et al., 2005), Ebolavirus is rare both in suspected animal reservoirs (Leroy et al., 2005; 321 

Olival and Hayman, 2014) and in terms of human outbreaks (Table 1). There is some indication 322 

however, that the frequency of Ebola outbreaks has increased since 2000, as shown in Figure 2A. We 323 

have shown that the human population living within this niche is larger, more mobile and better 324 

internationally connected than when the pathogen was first observed. As a result, when spillover 325 

events do occur, the likelihood of continued spread amongst the human population is greater, 326 

particularly in areas with poor healthcare infrastructure (Briand et al., 2014; Fauci, 2014). 327 

Whilst rare in comparison to other high burden diseases prevalent in this region, such as malaria 328 

(Gething et al., 2011; Murray et al., 2012), Ebola outbreaks can have a considerable economic and 329 

political impact, and the subsequent destabilisation of basic health care provisioning in affected 330 

regions increases the toll of unrecorded morbidity and mortality of more common infectious diseases 331 

(Murray et al., 2014; Wang et al., 2014), throughout and after the epidemic period. The number of 332 

concurrent infections during the present outbreak represents a significant strain on healthcare systems 333 

that are already poorly provisioned (Briand et al., 2014; Chan, 2014; Fauci, 2014) and many other 334 

Set 1 and Set 2 countries rank amongst the lowest per capita healthcare spenders. These 335 

considerations should be paramount when international organizations debate the financing 336 

requirements for the improvement of healthcare needed in the region and the urgency with which new 337 

therapeutics and vaccines can be brought into production (Brady et al., 2014; Goodman, 2014). 338 

Together, these considerations necessitate prioritisation of efforts to reinforce and improve existing 339 

surveillance and control, and encourage the development of therapeutics and vaccines. The national 340 

population at risk estimates presented here would be a strong rationale for improving, prioritising and 341 

stratifying surveillance for EVD outbreaks and diagnostic capacity in these countries. We believe it 342 

would be prudent to test OWFB species in Set 2 countries for Ebola virus (Hayman et al., 2012), 343 

particularly during the bat breeding season to maximise chances of isolation in order to clarify the 344 

outbreak risk in these countries. In all Set 1 and Set 2 countries, raising awareness about the risk 345 

presented by reservoir bats and incidental primate hosts and the modes of transmission of this disease 346 

could be of value. Finally, increasing our capacity to rapidly map ever changing biological threats is 347 

also a core need (Hay et al., 2013). 348 

Interpreting International Connectivity 349 
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The increasing connectedness of the Africa region means that EVD is now a problem of international 350 

concern. While most EVD secondary transmission occurs locally and is likely transported via ground 351 

transit (Francesconi et al., 2003), the potential for international spread of infection is possible, as 352 

demonstrated by the importation of the disease from Liberia to Nigeria, culminating in further 353 

secondary transmission in Lagos (WHO, 2014). The aetiology of EVD infection and disease 354 

progression means that an international outbreak propagated by air travel remains unlikely, 355 

particularly in high-income countries better able to handle EVD cases (Fauci, 2014). Nevertheless, a 356 

non-negligible threat remains, particularly in the low and middle income destinations and the rapid 357 

increase in global connectivity of these at-risk regions indicates that international airports could see 358 

more imported cases (Chan, 2014). 359 

Future work 360 

We have focussed on reanalysing the zoonotic niche for EVD transmission and the characterisation of 361 

the populations at risk to improve the landscape in which future risk and impact of EVD outbreaks 362 

can be discussed. During the current emergency much of the work will concentrate on routes of 363 

secondary transmission in the human population – conceptually the red arrow of the H box in Figure 364 

1. An important task is to stratify the risk of EVD spread both within and between countries and 365 

identify the most likely pathways of spread for characterisation and surveillance. Our next priority 366 

therefore is to investigate aspects of secondary human-to-human transmission by documenting the 367 

rate of geographic spread of EVD during the past and ongoing epidemics to help understand changes 368 

in these patterns in the historical record. Simulating these movements in a real landscape of 369 

population movement patterns, inferred from population movements assessed by mobile phones and 370 

other data (Garcia et al., 2014), as well as parametric movement models (Simini et al., 2013) is a 371 

logical next step, and can be used in future targeting of interventions and potential new treatments for 372 

both the current and future outbreaks (Brady et al., 2014; Goodman, 2014). 373 

As previously discussed, whilst there is the risk of human travel during the latent phase of infection, 374 

and therefore potential for international spread, the high pathogenicity during infectiousness 375 

(immobilising infected persons) and the likely rapid and effective isolation measures implemented in 376 

regions with strong health care systems, limit the pandemic potential of EVD. Nevertheless, 377 

improvement of international containment plans and informed discussions of potential risks to airline 378 

carriers and populations of other regions will be supported by knowledge of local, regional and 379 

international population flows. Assessing these flows by air traffic volumes is an ongoing priority. 380 

There are several other zoonotic viral haemorrhagic fevers (for example Marburgvirus, Lassa fever, 381 

hantaviral infections and arenaviruses) that are of similar public health and biosecurity concern 382 

(Bannister, 2010), due to their high virulence and mortality and their potential to cause outbreaks and 383 
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spread internationally. Despite this their geographical distributions are poorly understood (Hay et al., 384 

2013). Many of the methods applied here can be adapted to these diseases and improve our 385 

geographical understanding of the risk presented by these pathogens. 386 

We are in the midst of a public health emergency that will likely last for many more months (Chan, 387 

2014) and which has brought EVD to global attention. We emphasise that the maps of zoonotic 388 

transmission presented here do not enable assessment of secondary transmission rates in human 389 

populations, but they do act as an evidenced-based indicator of locations with potential for future 390 

zoonotic transmission and thus outbreaks. Interestingly, early reports of another independent zoonotic 391 

outbreak in the DRC (MSF, 2014) are in predicted at-risk areas. An improved understanding of the 392 

spatial extent of the zoonotic niche can only help future efforts in biosurveillance. 393 

  394 
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Methods 395 

Methodological overview 396 

A boosted regression tree (BRT) modelling framework was used to generate predictive risk maps of 397 

the zoonotic Ebola virus niche in Africa. This methodology combines regression trees, where trees are 398 

built according to optimal decision rules based on how binary decisions best accommodate a given 399 

dataset (De'ath, 2007; Elith et al., 2008), and boosting, which selects the tree that minimises the loss 400 

function. In doing so, a parameter space is defined which captures the greatest amount of variation 401 

present in the dataset. In order to train the model, four component datasets were compiled: (i) a 402 

comprehensive dataset of the reported locations of Ebola virus transmission from a zoonotic reservoir 403 

to a human; (ii) a dataset of the locations of Ebola virus infections in suspected reservoir and (non-404 

human) susceptible host species (iii) a suite of ecologically relevant environmental covariates for 405 

Africa, including predicted distribution maps of suspected reservoir bat species and (iv) background 406 

(or pseudo-absence) records representing locations where zoonotic Ebola virus has not been reported. 407 

This study was limited to the African continent since no natural outbreaks of EVD have occurred 408 

outside the continent (CDC, 2014). Only Reston ebolavirus has a distribution reported outside of 409 

Africa, focussed in the Philippines, but has never been reported as pathogenic in humans; as a result 410 

this species was not included in the analysis. 411 

Identifying index cases and reconstructing zoonotic transmission events in space and time 412 

Tables detailing proven outbreaks of Ebola virus, initially sourced from the scientific literature (Kuhn, 413 

2008) and from health reporting organisations (CDC, 2014), were used to coordinate searches of the 414 

formal scientific literature using Web of Science and PubMed for each specific outbreak. Relevant 415 

papers were abstracted and where possible outbreak-specific epidemiological surveys were sourced. 416 

The citations in these references were obtained in order to reconstruct the outbreak in detail and to 417 

identify the most probable index case. Index cases were defined as any human infection resulting 418 

from interaction with non-human sources of the disease. Some of these cases arose from presumed 419 

interactions with zoonotic reservoirs or hosts, such as primates and other mammals during hunting 420 

trips (Boumandouki et al., 2005; Nkoghe et al., 2005; Nkoghe et al., 2011; WHO, 2003) or butchering 421 

of bats (Leroy et al., 2009). Any cases arising from existing human infections are considered as 422 

secondary infections rather than index cases. Similar to methodology employed elsewhere (Messina et 423 

al., 2014), the site, or supposed site, of this zoonotic transmission event was geopositioned using 424 

Google Earth. For locations where precise geographic information (e.g. geographic coordinates of a 425 

hunting camp) was provided by the authors, these were used. Where precise geographic information 426 

could not be accurately geopositioned, a geographic area (termed a polygon) was defined covering the 427 

reported region. In several cases only the first reported patient could be identified, with the source of 428 
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infection unknown. With these outbreaks the location of the first patient was geopositioned under the 429 

assumption that an initial zoonotic spillover event occurred in the vicinity of this location. In two 430 

outbreaks multiple independent zoonotic transmission events were identified (Nkoghe et al., 2005; 431 

Pourrut et al., 2005; WHO, 2003), and each unique event was geopositioned and included in the 432 

model as separate entities. Table 1 catalogues the outbreaks used in this study. 433 

Assembling a database of reported infections in animals 434 

A literature search was conducted in Web of Science using the search term “Ebola” that returned 435 

8,635 citations. The abstracts were examined and for those that contained possible data on animal 436 

Ebola infection, the full text was obtained. The sampling site or location of the animal in the study 437 

was identified and geopositioned using Google Maps. These locations were recorded either as precise 438 

locations or as polygons, as with human index cases. Records for which local transmission of Ebola 439 

virus was deemed unlikely (e.g. seropositive primates tested in containment facilities several years 440 

after their capture) were excluded from the study. The non-human Ebola virus occurrence data 441 

collected are detailed in Table 2, including the diagnostic methods used. 442 

GenBank isolates 443 

The open access sequence database GenBank (NCBI, 2014) was searched using MESH Umbrella 444 

search terms for Ebola virus, returning 181 results. These were then manually cross-referenced with 445 

the existing human and animal Ebola information, collected above, and 30 duplicates were removed. 446 

For the remaining isolates, original references and GenBank information fields were examined, but as 447 

there was insufficient information to establish precise location of isolation and/or whether the isolate 448 

represented an index case for any of these data sources, they were excluded from subsequent analyses. 449 

Covariates assembled and used in the analyses 450 

A suite of ecologically relevant gridded environmental covariates for Africa was compiled, each 451 

having a nominal resolution of 5km x 5km. The environmental covariates used in this analysis were: 452 

elevation (from the shuttle radar topography mission (ORNL DAAC, 2000)); the mean value, and a 453 

measure of spatial variation (range, described below) between 2000 and 2012 of Enhanced Vegetation 454 

Index (EVI), daytime Land Surface Temperature (LST) and night-time LST; and mean potential 455 

evapotranspiration from 1950-2000 (Trabucco and Zomer, 2009) (Figure 5 – figure supplement 1). 456 

The EVI and LST datasets were derived from satellite imagery collected by NASA’s Moderate 457 

Resolution Imaging Spectroradiometer (MODIS) remote sensing platform (Tatem et al., 2004). EVI is 458 

a metric designed to characterise vegetation density and vigour based on the ratio of absorbed 459 

photosynthetically active radiation to near infrared radiation (Huete et al., 2002). LST is a modelled 460 

product derived from emissivity as measured by the MODIS thermal sensor (Wan and Li, 1997), 461 
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which is correlated, though not synonymous with air temperature, and effective for differentiating 462 

landscapes based on a combination of thermal energy and properties of surface types. The MODIS 463 

datasets utilized in this research (EVI was derived from the MCD43B4 product and the MOD11A2 464 

LST product was used directly) were acquired as composite datasets created using imagery collected 465 

over multiple days, a procedure that results in products with eight-day temporal resolutions. Despite 466 

compositing, the EVI and LST datasets contained gaps due to persistent cloud cover found in forested 467 

equatorial regions, and these gaps were filled using a previously described approach (Weiss et al., 468 

2014). The EVI and LST datasets were then aggregated from their native 1km x 1km spatial 469 

resolution to a final 5km x 5km resolution, calculating both the mean and the range of the values of 470 

the subpixels making up each larger pixel. These spatial summaries therefore characterise both the 471 

mean temperature in each location as well as the degree of spatial heterogeneity within that pixel. This 472 

is of interest as humans and susceptible species are more likely to come into contact in transitional 473 

areas (e.g. boundary areas between areas of highly suitable susceptible species habitat and areas 474 

heavily utilised by humans). The final covariate production step consisted of summarising temporally 475 

across the 13-year data archive to produce synoptic datasets devoid of annual or seasonal anomalies 476 

(Weiss et al., 2014). 477 

Implicated bat reservoir distributions 478 

Over recent years, significant research has been undertaken in investigating the role bats have to play 479 

in the transmission cycle of Ebola viruses (Olival and Hayman, 2014) and evidence of asymptomatic 480 

infection in fruit bats has been documented to varying extents (Hayman et al., 2010; Hayman et al., 481 

2012; Leroy et al., 2005; Pourrut et al., 2007; Pourrut et al., 2009). In order to incorporate this 482 

potential driver of Ebola virus transmission into the model we developed predicted distribution maps 483 

for three species of fruit bat implicated as primary reservoirs of the disease: Hypsignathus monstrosus, 484 

Epomops franqueti and Myonycteris torquata. The evidence was strongest for these three species 485 

having a reservoir role as Ebola virus RNA (all nested within the Zaire ebolavirus phylogeny (Leroy 486 

et al., 2005)) has been detected in all three. Whilst a handful of other bat species have been found to 487 

be seropositive, no further viral isolations have been recorded (Olival and Hayman, 2014). 488 

Whilst expert opinion range maps for these species exist (Schipper et al., 2008), there is some 489 

disagreement with independently-sourced occurrence data (all archived in the Global Biodiversity 490 

Information Facility). As a result, a predictive modelling approach was used to create a continuous 491 

surface of habitat suitability for these species which we then included as a predictor in the model. 492 

Occurrence data for all Megachiroptera in Africa was extracted from GBIF (GBIF, 2014) using the R 493 

packages dismo (Hijmans et al., 2014) and taxize (Chamberlain et al., 2014). To remove apparently 494 

erroneous records in the GBIF archive all occurrence records more than 100km from the species 495 

known ranges, as determined by expert-opinion range maps (Schipper et al., 2008), were excluded, as 496 
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were duplicate records and those located in the ocean. This resulted in a total dataset of 1341 unique 497 

occurrence records. 498 

The occurrence database was then used to train separate boosted regression tree species distribution 499 

models (Elith et al., 2008) to predict the likely distribution of each of these suspected reservoir 500 

species. For each model, occurrence records for the target species (H. monstrosus, n=67; E. franqueti, 501 

n=120; and M. torquata, n=52) were considered presence records and occurrence records of all other 502 

species were used as background records. This procedure is designed to account for the potentially 503 

biasing effect of spatial variation in recording of Megachiroptera occurrences (Phillips et al., 2009). 504 

For each species we ran fifty submodels each trained to a randomly selected bootstrap of this dataset, 505 

subject to the constraint that each bootstrap contained a minimum of ten occurrence and ten 506 

background records. Each submodel was fitted using the gbm.step subroutine (Elith et al., 2008) in 507 

the dismo R package. In each submodel the background records were down weighted so that the 508 

weighted sum of presence records equalled the weighted sum of background records (Barbet-Massin 509 

et al., 2012) in order to maximise the discrimination capacity of the model. We generated a prediction 510 

map from each of these submodels and calculated both the mean prediction and 95% confidence 511 

interval around the prediction for each 5km x 5km pixel for each species. 512 

Model accuracy was assessed by calculating the mean area under the curve (AUC) statistic for each 513 

submodel under a stringent ten-fold cross validation for each submodel and obtaining the mean and 514 

standard deviation across all fifty submodels. Under this procedure the dataset was split into ten 515 

subsets, each containing approximately equal numbers of presence and background points. The ability 516 

of a model trained on each subset to predict the distribution of the other 90% of records was assessed 517 

by AUC and the mean value taken. As so few presence records were used to train each fold model 518 

(i.e. around five presence records for M. torquata up to twelve for E. franqueti), this represents a very 519 

stringent test of the model’s predictive capacity. Additionally, to prevent inflation of the accuracy 520 

statistics due to spatial sorting bias, these statistics were estimated using a pairwise distance sampling 521 

procedure (Hijmans, 2012). Consequently, the AUC statistics presented here are lower than would be 522 

returned by standard procedures but gives a more realistic quantification of the model’s ability to 523 

extrapolate predictions to new regions (Wenger and Olden, 2012). We also generated marginal effect 524 

plots with associated uncertainty intervals and relative contribution statistics (how often each 525 

covariate was selected during the model fitting process) as quantification of the sensitivity of the 526 

model to the different covariates. These allow us to make inferences about the ecological relationship 527 

between each species and its environment as well as to identify where this relationship is most 528 

uncertain. 529 
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To generate a single surface describing the distribution of the bat reservoir species to be used as a 530 

covariate in the subsequent Ebola modelling, the three mean prediction distribution maps were 531 

merged by taking the average habitat suitability for each of the three bat species at each pixel. 532 

Ebola distribution modelling 533 

The Ebola virus occurrence dataset was supplemented with a background record dataset generated by 534 

randomly sampling 10,000 locations across Africa, biased towards more populous areas as a proxy for 535 

reporting bias (Phillips et al., 2009). We fitted 500 submodels to bootstraps of this dataset. To account 536 

for uncertainty in the geographic location of those occurrences reported as polygons, for each 537 

submodel one point was randomly selected from each of these occurrence polygons. This Monte 538 

Carlo procedure enabled the model to efficiently integrate over the environmental uncertainty 539 

associated with imprecise geographic data. A bootstrap sample was then taken from each of these 540 

datasets and used to train the BRT model using the same procedure and weighting of background 541 

records as for the bat distribution models. Similarly, we generated a prediction map from each of 542 

these models and calculated both the mean prediction and corresponding 95% confidence intervals for 543 

each pixel and analysed prediction accuracy using the same stringent cross validation and sensitivity 544 

analysis procedure as for the bat distribution models (detailed above).  545 

The predicted distribution map produced by this approach represents the environmental suitability of 546 

each pixel for zoonotic Ebola virus transmission. This may be interpreted as a relative probability of 547 

presence in the sense that more suitable pixels are more likely to contain zoonotic transmission than 548 

less suitable pixels, though not an absolute probability that transmission occurs in a given pixel. 549 

Similarly, the presence of zoonotic transmission increases the risk of transmission to a human, though 550 

this is also contingent on how humans interact with these zoonotic pools, through hunting or other 551 

activities. 552 

Population living in areas of environmental suitability for zoonotic transmission. 553 

In order to identify areas which are likely to be at risk of transmission of Ebolavirus from zoonotic 554 

reservoir hosts to humans, the continuous map of the predicted environmental suitability for zoonotic 555 

transmission (shown in Figure 5) was converted into a binary map classifying pixels as either at risk 556 

or not at risk. A pixel was assumed to be at risk if its predicted environmental suitability for zoonotic 557 

Ebola virus transmission was greater than 0.673, the lowest suitability value predicted at the locations 558 

of known transmission to humans (point records of human index cases). Countries containing at least 559 

one at-risk pixel are shown in Figure 5B – those countries that previously report an index case were 560 

defined as Set 1; countries with at least one at-risk pixel with no previous index cases of EVD were 561 

categorised as Set 2. The number of people living in at-risk areas in each of these countries was 562 

calculated by summing the estimated population of at-risk pixels using population density maps from 563 
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the AfriPop project (Linard et al., 2012; WorldPop, 2014) and the proportion of those living in urban, 564 

periurban and rural areas was evaluated using the Global Rural Urban Mapping Project 565 

(CIESIN/IFPRI/WB/CIAT, 2007). 566 

The R code used for all of the analysis has been made available on an open source basis 567 

(https://github.com/SEEG-Oxford/ebola_zoonotic). 568 

National level demographic and mobility data 569 

For three separate years (1976, 2000 and 2014), total national populations were retrieved and the 570 

proportion of rural to urban populations noted from World Bank statistics (World Bank, 2014). To 571 

describe global air travel patterns from Set 1 and Set 2 countries, flight schedules data from the 572 

Official Airline Guide, reflecting an estimated 95% of all commercial flights worldwide, were 573 

analysed between 2000 and 2013 to calculate the annual volume of seats on direct flights that depart 574 

from each predicted country and which have an international destination. Complementing these seat 575 

capacity data, worldwide data on anonymised, individual passenger flight itineraries from the 576 

International Air Transport Association (2012) (IATA, 2014) were analysed between 2005 and 2012 to 577 

calculate the annual volume of international passenger departures out of each Set 1 and Set 2 country. 578 

The IATA dataset represents an estimated 93% of the world’s commercial air traffic at the passenger 579 

level and includes points of departure and arrival and final destination information for travellers as 580 

well as their connecting flights.  581 
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Table 1: Locations of outbreaks of Ebola virus disease in humans. DRC = Democratic Republic of the Congo, ROC = Republic of Congo 1032 

Outbreak Countries Date range Location Species Reference 

1 South Sudan Jun – Nov 1976 Nzara SUDV (WHO International Study Team, 1978) 

2 DRC Sep – Oct 1976 Yambuku EBOV (International Commission, 1978) 

3 DRC Jun 1977 Bonduni EBOV (Heymann et al., 1980) 

4 South Sudan Jul – Oct 1979 Nzara SUDV (Baron et al., 1983) 

5 Côte d’Ivoire Nov 1994 Tai Forest TAFV (Formenty et al., 1999; Le Guenno et al., 1995) 

6 
Gabon Nov 1994 – Feb 1995 

Mekouka and Andock mining 

camps 
EBOV 

(Amblard et al., 1997; Georges et al., 1999; Milleliri et 

al., 2004) 

7 DRC Jan – Jul 1995 Mwembe Forest EBOV (Khan et al., 1999; Muyembe and Kipasa, 1995) 

8 Gabon Jan – Mar 1996 Mayibout 2 EBOV (Georges et al., 1999; Milleliri et al., 2004) 

9 Gabon Jul 1996 – Jan 1997 Booue EBOV (Georges et al., 1999; Milleliri et al., 2004) 

10 Uganda Oct 2000 – Feb 2001 Rwot-Obillo SUDV (Lamunu et al., 2004; Okware et al., 2002; WHO, 2001) 

11 

Gabon & ROC Oct 2001 – Mar 2002 

Memdemba 

Entsiami, Abolo and Ambomi 

Ekata 

Oloba 

Etakangaye 

Grand Etoumbi 

EBOV 
(Milleliri et al., 2004; Nkoghe et al., 2005; Pourrut et al., 

2005; WHO, 2003) 

12 

ROC Dec 2002 – Apr 2003 

Yembelangoye 

Nearby hunting camp 

Mvoula 

EBOV (Pourrut et al., 2005; WHO, 2003) 
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13 ROC Oct – Dec 2003 Mbandza EBOV (Boumandouki et al., 2005) 

14 South Sudan Apr – Jun 2004 Forests bordering Yambio SUDV (Onyango et al., 2007; WHO, 2005) 

15 ROC Apr – May 2005 Odzala National Park EBOV (Nkoghe et al., 2011) 

16 DRC May – Nov 2007 Mombo Mounene 2 market EBOV (Leroy et al., 2009) 

17 
Uganda Aug – Dec 2007 Kabango BDBV 

(MacNeil et al., 2010; Towner et al., 2008; Wamala et al., 

2010) 

18 DRC Nov 2008 – Feb 2009 Luebo EBOV (Grard et al., 2011) 

19 Uganda May 2011 Nakisamata SUDV (Shoemaker et al., 2012) 

20 DRC July – Nov 2012 Isiro BDBV (CDC, 2014; WHO, 2012) 

21 Uganda July - Oct 2012 Nyanswiga SUDV (CDC, 2014; WHO, 2012) 

22 Uganda Nov 2012 – Jan 2013 Luwero District SUDV (CDC, 2014; WHO, 2012) 

23 Guinea Dec 2013 -  Meliandou EBOV (Baize et al., 2014; Bausch and Schwarz, 2014) 
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Table 2: Locations of reported infections with Ebola virus in animals. ROC = Republic of Congo 1035 

Site Country Date range Location Species Diagnosis Reference 

1 Côte d’Ivoire Oct – Nov 1994 Tai Forest Chimpanzee Serology (Formenty et al., 1999) 

2 Gabon Jan 1996 Mayiboth 2 Chimpanzee PCR (Lahm et al., 2007) 

3 Gabon Jul 1996 Near Booue 
Chimpanzee 

Serology 
(Georges-Courbot et al., 

1997) 

4 Gabon Sept 1996 Lope National Park Chimpanzee PCR (Lahm et al., 2007) 

5 Gabon & ROC Aug 2001 
Mendemba / Lossi Animal 

Sanctuary 

Chimpanzee 
PCR (Lahm et al., 2007) 

6 Gabon & ROC Aug 2001 
Mendemba / Lossi Animal 

Sanctuary 
Gorilla PCR (Lahm et al., 2007) 

7 Gabon & ROC Aug 2001 
Mendemba / Lossi Animal 

Sanctuary 
Cephalophus dorsalis PCR (Lahm et al., 2007) 

8 Gabon Nov 2001 Zadie Gorilla PCR (Rouquet et al., 2005) 

9 Gabon Nov 2001 Ekata Gorilla PCR (Wittmann et al., 2007) 

10 Gabon Dec 2001 
Medemba and neighbouring 

villages 
Chimpanzee and Gorilla PCR (Leroy et al., 2002) 

11 Gabon Feb 2002 Zadie Gorilla PCR (Rouquet et al., 2005) 

12 Gabon Feb 2002 Ekata Various bat species Serology (Leroy et al., 2005) 

13 Gabon Mar 2002 Zadie Gorilla PCR (Rouquet et al., 2005) 

14 Gabon Mar 2002 Grand Etoumbi Gorilla PCR (Wittmann et al., 2007) 

15 Gabon Apr 2002 Ekata Gorilla PCR (Wittmann et al., 2007) 

16 ROC May 2002 Oloba Chimpanzee PCR (Lahm et al., 2007) 

17 ROC Dec 2002 Lossi Animal Sanctuary Gorilla PCR (Rouquet et al., 2005) 
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18 ROC Dec 2002 Lossi Animal Sanctuary Gorilla PCR (Rouquet et al., 2005) 

19 ROC Dec 2002 Lossi Animal Sanctuary Chimpanzee Serology (Rouquet et al., 2005) 

20 ROC Dec 2002 Lossi Animal Sanctuary Gorilla PCR (Rouquet et al., 2005) 

21 ROC Dec 2002 Lossi Animal Sanctuary Gorilla PCR (Rouquet et al., 2005) 

22 ROC Dec 2002 Lossi Animal Sanctuary Cephalophus spp. PCR (Rouquet et al., 2005) 

23 Gabon Feb 2003 Mbomo Various bat species PCR (Leroy et al., 2005) 

24 ROC Feb 2003 Lossi Animal Sanctuary Gorilla Serology (Rouquet et al., 2005) 

25 Gabon Feb 2003 Lossi Animal Sanctuary Chimpanzee PCR (Wittmann et al., 2007) 

26 Gabon Jun 2003 Mbomo Various bat species PCR and serology (Leroy et al., 2005) 

27 
ROC 

Jun 2003 
Near Mbomo and Ozala 

National Park 
Epomops franqueti Serology (Pourrut et al., 2009) 

28 
ROC 

Jun 2003 
Near Mbomo and Ozala 

National Park 
Hypsignathus monstrosus Serology (Pourrut et al., 2009) 

29 
ROC 

Jun 2003 
Near Mbomo and Ozala 

National Park 
Myonycteris torquata Serology (Pourrut et al., 2009) 

30 ROC Jun 2003 Mbanza Gorilla PCR (Rouquet et al., 2005) 

31 ROC Jan – Jun 2004 Lokoué Gorilla Reported (Caillaud et al., 2006) 

32 ROC May 2004 Lokoué Gorilla PCR (Wittmann et al., 2007) 

33 Gabon Feb 2005 Near Franceville Epomops franqueti Serology (Pourrut et al., 2009) 

34 Gabon Feb 2005 Near Franceville Myonycteris torquata Serology (Pourrut et al., 2009) 

35 Gabon Apr 2005 Near Lambarene 
Epomops franqueti and 

Hypsignathus monstrosus 
Serology (Pourrut et al., 2007) 

36 
ROC 

May 2005 
Near Mbomo and Ozala 

National Park 
Epomops franqueti Serology (Pourrut et al., 2009) 

37 ROC May 2005 Near Mbomo and Ozala Hypsignathus monstrosus Serology (Pourrut et al., 2009) 
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National Park 

38 
ROC 

May 2005 
Near Mbomo and Ozala 

National Park 
Myonycteris torquata Serology (Pourrut et al., 2009) 

39 ROC Jun 2005 Odzala National Park Gorilla PCR (Wittmann et al., 2007) 

40 Gabon Feb 2006 Near Tchibanga Various bat species Serology (Pourrut et al., 2009) 

41 
ROC 

May 2006 
Near Mbomo and Ozala 

National Park 
Epomops franqueti Serology (Pourrut et al., 2009) 

42 
ROC 

May 2006 
Near Mbomo and Ozala 

National Park 
Hypsignathus monstrosus Serology (Pourrut et al., 2009) 

43 
ROC 

May 2006 
Near Mbomo and Ozala 

National Park 
Myonycteris torquata Serology (Pourrut et al., 2009) 

44 Gabon Oct 2006 Near Franceville Epomops franqueti Serology (Pourrut et al., 2009) 

45 Ghana May 2007 Sagyimase Epomops franqueti Serology (Hayman et al., 2012) 

46 Ghana May 2007 Sagyimase Hypsignathus monstrosus Serology (Hayman et al., 2012) 

47 Ghana May 2007 Adoagyir Epomophorus gambianus Serology (Hayman et al., 2012) 

48 Ghana May 2007 Adoagyir Epomops franqueti Serology (Hayman et al., 2012) 

49 Ghana Jun 2007 Oyibi Epomophorus gambianus Serology (Hayman et al., 2012) 

50 Ghana Jan 2008 Accra Eidolon helvum Serology (Hayman et al., 2010) 

51 Gabon Mar 2008 Near Franceville Epomops franqueti Serology (Pourrut et al., 2009) 
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Figure 1 – The epidemiology of Ebola virus transmission in Africa. Of the suspected reservoir 1037 

species, 1, 2 and 3 represent the three bat species from which Ebola virus has been isolated 1038 

(Hypsignathus monstrosus, Myonycteris torquata and Epomops franqueti) and n represents unknown 1039 

reservoirs of the disease yet to be discovered. Of the susceptible species, A represents Pan 1040 

troglodytes, B Gorilla gorilla and m represents other organisms susceptible to the disease, such as 1041 

duikers. H represents humans. Blue arrows indicate unknown transmission cycles or infection routes 1042 

and red arrow routes have been confirmed or are suspected. Adapted from Groseth et al. (2007). 1043 

Figure 2 –The locations of Ebola virus disease outbreaks in humans in Africa. Panel A illustrates 1044 

the 23 reported outbreaks of Ebola virus disease through time, with the area of each circle and its 1045 

position along the y-axis representing the number of cases. The onset year is represented by the colour 1046 

as per Panel B. Panel B shows a map of the index cases for each of these outbreaks. Panels C through 1047 

H show these outbreaks over a series of time periods. Numbers refer to outbreaks as listed in Table 1. 1048 

In panels B-H the species of Ebolavirus responsible for the outbreak is illustrated by the symbol 1049 

shape, the number of resulting cases and onset date by symbol colour. The most recent outbreak (#23) 1050 

is indicated in orange. Countries in which zoonotic transmission to humans has been reported or is 1051 

assumed to have occurred are coloured in blue. In each map the Democratic Republic of Congo is 1052 

outlined for reference.  1053 

Figure 3 –The locations of reported Ebola virus infection in animals in Africa. Panel A shows the 1054 

locations of reported Ebola virus infection in animals. Panels B through D show these records in 1055 

animals over three different time periods. Numbers refer to records as listed in Table 2. In all panels, 1056 

the species in which infection was detected is given by symbol shape and the year recorded by symbol 1057 

colour. Blue countries represent locations where zoonotic transmission to humans has been reported 1058 

or is assumed to have occurred. In each map the Democratic Republic of Congo is outlined for 1059 

reference. 1060 

Figure 4 – Predicted geographical distribution of the three species of Megachiroptera suspected 1061 

to reservoir Ebola virus. Panel A shows the distribution of the hammer-headed bat (Hypsignathus 1062 

monstrosus), panel B the little collared fruit bat (Myonycteris torquata) and panel C Franquet's 1063 

epauletted fruit bat (Epomops franqueti). In each map, the locations of reported observations of each 1064 

species, extracted and curated from the Global Biodiversity Information Facility (GBIF, 2014) and 1065 

used to train each model are given as grey points (H. monstrosus, n=67; E. franqueti, n=120 and M. 1066 

torquata, n=52). Expert opinion maps of the known range of each species, generated by the IUCN 1067 

(Schipper et al., 2008), are outlined in grey. The colour legend represents a scale of the relative 1068 

probability that the species occurs in that location from 0 (white, low) to 1 (green, high). Area under 1069 

the curve statistics, calculated under a stringent ten-fold cross validation procedure, are 0.63±0.04, 1070 
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0.59±0.04 and 0.58±0.03 for H. monstrosus, M. torquata and E. franqueti respectively. Panel D is a 1071 

composite distribution map giving the mean, relative probability of occurrence from panels A-C.  1072 

Figure 5 – Predicted geographical distribution of the zoonotic niche for Ebola virus. Panel A 1073 

shows the total populations living in areas of risk of zoonotic transmission for each at-risk country. 1074 

The grey rectangle highlights countries in which index cases of Ebola virus disease have been 1075 

reported (Set 1); the remainder are countries in which risk of zoonotic transmission is predicted, but in 1076 

which index cases of Ebola have not been reported (Set 2). These countries are ranked by population 1077 

at risk within each set. The population at risk figure in 100,000s is given above each bar. Panel B 1078 

shows the predicted distribution of zoonotic Ebola virus. The scale reflects the relative probability that 1079 

zoonotic transmission of Ebola virus could occur at these locations; areas closer to 1 (red) are more 1080 

likely to harbour zoonotic transmission than those closer to 0 (blue). Countries with borders outlined 1081 

are those which are predicted to contain at-risk areas for zoonotic transmission based on a 1082 

thresholding approach (see Methods). The area under the curve statistic, calculated under a stringent 1083 

ten-fold cross-validation procedure is 0.85±0.04. Solid lines represent Set 1 whilst dashed lines 1084 

delimit Set 2. Areas covered by major lakes have been masked white.  1085 

Figure 5 – figure supplement 1 – Covariates used in predicting zoonotic transmission niche of 1086 

Ebola. Panel A displays elevation across Africa measured in metres, relative to sea level. Panels B 1087 

and C show enhanced vegetation index (EVI) values (mean and spatial range respectively) on a scale 1088 

from 0 to 1. Panels D through G display land surface temperature (LST) (mean and spatial range for 1089 

day and night respectively) measured in degrees Celsius. Panel H shows potential evapotranspiration 1090 

(PET) for Africa, in millimetres per month and Panel I gives the composite, relative probability of 1091 

occurrence of the three suspected reservoir bat species. For details of how each of these covariate 1092 

layers was derived see Methods. 1093 

Figure 5 – figure supplement 2 – Marginal effect plots for each covariate used in the Ebola virus 1094 

distribution model. Each panel illustrates the marginal effect (averaging over the effects of other 1095 

covariates) that changes in each of the covariates has on the predicted relative probability of 1096 

occurrence of zoonotic Ebola virus transmission. Grey regions and solid lines give the 95% 1097 

confidence region (a metric of uncertainty) and mean value calculated across all 500 submodels. The 1098 

mean relative contribution of the covariate to the model (the proportion of iterations in which the 1099 

covariate was selected by the model-fitting algorithm, indicating sensitivity to the covariates) is given 1100 

as an inset number. The dependency plots are ordered by mean relative contribution of the covariate. 1101 

EVI = enhanced vegetation index, LST = land surface temperature and PET = potential 1102 

evapotranspiration. 1103 

Figure 5 – figure supplement 3 – Comparison of predictions for zoonotic niche of Ebola virus 1104 

excluding the Guinea outbreak. Panel A shows the predicted zoonotic niche excluding the index 1105 
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case for the Guinea outbreak from the dataset used to train the model. Panel B shows the prediction 1106 

when including the Guinea data in the model (the model presented in Figure 5). The circle depicts the 1107 

location of the Guinean index case (#23 in Table 1). As per Figure 5, the scale reflects the relative 1108 

probability that zoonotic transmission of Ebola virus could occur at these locations; areas closer to 1 1109 

(red) are more likely to harbour zoonotic transmission than those closer to 0 (blue). 1110 

Figure 6 – Changes in national population for countries predicted to contain areas at-risk of 1111 

zoonotic Ebola virus transmission. For each country the population (in millions) is presented for 1112 

three time periods (1976, 2000 and 2014) as three bars. Each stacked bar gives the rural (green) and 1113 

urban (blue) populations of the country. The grey rectangle highlights countries in which index cases 1114 

of Ebola virus diseases have been reported (Set 1); the remainder are countries in which risk of 1115 

zoonotic transmission is predicted, but where index cases have not been reported (Set 2). The 1116 

fractional change in population between 1976 and 2014 is given above each set of bars. 1117 

Figure 7 – Changes in international flight capacity and traveller volumes for countries predicted 1118 

to contain areas at-risk of zoonotic Ebola virus transmission. The grey rectangle highlights 1119 

countries in which index cases of EVD have been reported (Set 1). The remainder are countries in 1120 

which risk of zoonotic transmission is predicted, but where index cases have not been reported (Set 1121 

2). Panel A shows changes in annual outbound international seat capacity (between 2000 in red and 1122 

2013 in blue). Panel B depicts changes in annual outbound international passenger volume by country 1123 

(between 2005 in red and 2012 in blue). For each country, the fractional change in volume is given 1124 

above each set of bars. Note that only one bar is presented for South Sudan as data for this region 1125 

prior to formation of the country in 2011 were unavailable   .  1126 

Figure 8 – Numbers of airline passengers arriving from at-risk countries to other countries 1127 

stratified by major geographic regions and national income groups. Panel A shows the locations 1128 

of WHO regions (AFRO - African Region; AMRO – Region of the Americas; EMRO - Eastern 1129 

Mediterranean Region; EURO - European Region; SEARO – South-East Asian Region; WPRO - 1130 

Western Pacific Region). Panel B displays the numbers of passengers arriving in each of these regions 1131 

from countries predicted to contain areas at risk of zoonotic Ebola virus transmission (Sets 1 and 2) in 1132 

2005 and 2012. Panel C shows the income tiers of all countries as defined by the World Bank. Panel 1133 

D displays the total numbers of passengers arriving in countries in each of these income strata from 1134 

at-risk countries in 2005 and 2012. The number above each pair of bars indicates the fractional change 1135 

in these numbers of incoming passengers between 2005 and 2012. 1136 


















