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Abstract Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The 
largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and 
predicted niche. We assembled location data on all recorded zoonotic transmission to humans and 
Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these 
occurrence data were paired with environmental covariates to predict a zoonotic transmission 
niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, 
evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas 
are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very 
low probability of transmission to humans. Increasing population sizes and international connectivity 
by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human 
secondary transmission in contemporary outbreaks will be very different to those of the past.
DOI: 10.7554/eLife.04395.001

Introduction
Ebola viruses have for the last forty years been responsible for a number of outbreaks of Ebola virus 
disease (EVD) in humans (Pattyn et al., 1977), with high case fatality rates typically around 60–70%, 
but potentially reaching as high as 90% (Feldmann and Geisbert, 2011). The most recent outbreak 
began in Guinea in December 2013 (Baize et al., 2014; Bausch and Schwarz, 2014) and has subse-
quently spread to Liberia, Sierra Leone and Nigeria (ECDC, 2014). The unprecedented size and scale 
of this ongoing outbreak has the potential to destabilise already fragile economies and healthcare 
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systems (Fauci, 2014), and fears of international spread of a Category A Priority Pathogen (NIH, 2014) 
have made this a massive focus for international public health (Chan, 2014). This has led to the current 
outbreak being declared a Public Health Emergency of International Concern on the 8 August 2014 
(Briand et al., 2014; Gostin et al., 2014; WHO, 2014d).

The Filoviridae, of which Ebolavirus is a constituent genus, belong to the order Mononegavirales. 
Two other genera complete the family: Marburgvirus, itself responsible for a number of outbreaks of 
haemorrhagic fever across Africa (Gear et al., 1975; Conrad et al., 1978; Smith et al., 1982; Towner 
et al., 2006) and Cuevavirus, recently isolated from bats in northern Spain (Negredo et al., 2011). 
Five species of Ebolavirus have been isolated to date (Kuhn et al., 2010; King et al., 2012); the earli-
est recognised outbreaks of EVD were reported in Zaire (now the Democratic Republic of the Congo 
[DRC]) and Sudan in 1976 (International Commission, 1978; WHO International Study Team, 1978). 
The causative viruses were isolated (Pattyn et al., 1977) and later identified to be distinct species, 
Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). A third species of Ebolavirus, Reston ebolavirus, 
was isolated from Cynomologus monkeys imported from the Philippines to a facility in the United 
States, where they experienced severe haemorrhaging (Jahrling et al., 1990). Whilst serological evi-
dence of infection with this species has been reported in individuals in the Philippines (Miranda et al., 
1991), no pathogenicity has been reported beyond primates and porcids (Barrette et al., 2009; 
Feldmann and Geisbert, 2011). In 1994 a fourth species, Tai Forest ebolavirus was isolated from a 
veterinarian who had autopsied a chimpanzee in Côte d’Ivoire (Le Guenno et al., 1995), though the 
virus has not been detected subsequently. The final species, Bundibugyo ebolavirus, was responsible 
for an outbreak of EVD in Uganda in 2007 (Towner et al., 2008), as well as a more recent outbreak in 
the DRC (WHO, 2012b).

Initial analysis suggested that the viruses isolated from the current outbreak, originating in Guinea, 
formed a separate clade within the five Ebolavirus species (Baize et al., 2014). Subsequent re-analysis 

eLife digest Since the first outbreaks of Ebola virus disease in 1976, there have been numerous 
other outbreaks in humans across Africa with fatality rates ranging from 50% to 90%. Humans can 
become infected with the Ebola virus after direct contact with blood or bodily fluids from an infected 
person or animal. The virus also infects and kills other primates—such as chimpanzees or gorillas—
though Old World fruit bats are suspected to be the most likely carriers of the virus in the wild.

The largest recorded outbreak of Ebola virus disease is ongoing in West Africa: more people 
have been infected in this current outbreak than in all previous outbreaks combined. The current 
outbreak is also the first to occur in West Africa—which is outside the previously known range of 
the Ebola virus.

Pigott et al. have now updated predictions about where in Africa wild animals may harbour the 
virus and where the transmission of the virus from these animals to humans is possible. As such, the 
map identifies the regions that are most at risk of a future Ebola outbreak. The data behind these 
new maps include the locations of all recorded primary cases of Ebola in human populations—the 
‘index’ cases—many of which have been linked to animal sources. The data also include the locations 
of recorded cases of Ebola virus infections in wild bats and primates from the last forty years. The 
maps, which were modelled using more flexible methods than previous predictions, also include 
new information—collected using satellites—about environmental factors and new predictions of 
the range of wild fruit bats.

Pigott et al. report that the transmission of Ebola virus from animals to humans is possible in  
22 countries across Central and West Africa—and that 22 million people live in the areas at risk. 
However, outbreaks in human populations are rare and the likelihood of a human getting the 
disease from an infected animal still remains very low. The updated map does not include data 
about how infections spread from one person to another, so the next challenge is to use existing 
data on human-to-human transmission to better understand the likely size and extent of current  
and future outbreaks. As more people live in, and travel to and from, the at-risk regions than ever 
before, Pigott et al. note that new outbreaks of Ebola virus disease are likely to be very different to 
those of the past.
DOI: 10.7554/eLife.04395.002
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of the same sequences however, indicated that these isolates instead nest within the Zaire ebolavirus 
lineage (Dudas and Rambaut, 2014), and diverged from Central Africa strains approximately ten 
years ago (Gire et al., 2014).

Which reservoir species are responsible for maintaining Ebola transmission between outbreaks is 
not well understood (Peterson et al., 2004b), but over the last decade significant progress has been 
made in narrowing down the list of likely hosts (Peterson et al., 2007) (Figure 1). Primates have long 
been known to harbour filoviral infections, with the first Marburg strains identified in African green 
monkeys in 1967 (Siegert et al., 1967; Beer et al., 1999). Significant mortality has also been reported 
in wild primate populations across Africa, most notably in gorilla (Gorilla gorilla) and chimpanzee (Pan 
troglodytes) populations (Formenty et al., 1999; Rouquet et al., 2005; Bermejo et al., 2006). The 
high case fatality rates recorded in the great apes combined with their declining populations and 
limited geographical range, indicate they are likely dead-end hosts for the virus and not reservoir 
species (Groseth et al., 2007). A large survey of small mammals in and around Gabon identified three 
species of bats which were infected with Ebola viruses—Hypsignathus monstrosus, Epomops franqueti 
and Myonycetris torquata (Leroy et al., 2005). Subsequent serological surveys (Pourrut et al., 2009; 
Hayman et al., 2010) and evidence linking the potential source of human outbreaks to bats (Leroy 
et al., 2009) lend support to the hypothesis of a bat reservoir. This, coupled with repeated detection 
of Marburgvirus in the fruit bat Rousettus aegypticus (Towner et al., 2009) and the only isolations of 
Cuevavirus also from bats (specifically Llovia virus [Negredo et al., 2011]), all support the suspicion 
that Chiroptera play an important role in the natural life-cycle of the filoviruses.

Humans represent a dead-end host for the virus, with only stuttering chains of transmission 
reported between humans in the majority of previous outbreaks (Chowell et al., 2004; Legrand et al., 
2007) and no indication that humans can reintroduce the virus back into reservoir species (Karesh 
et al., 2012). The incubation period in humans ranges from two days to three weeks, after which a 
variety of clinical symptoms arise, affecting multiple organs of the body. At the peak of illness, haem-
orrhaging shock and widespread tissue damage can occur and can eventually lead to death within 
6–16 days (Feldmann and Geisbert, 2011). Human-to-human transmission is mainly through direct 
unprotected contact with infected individuals and cadavers, with infectious particles detected in a 

number of different body fluids (Feldmann and 
Geisbert, 2011). The typical outbreak profile is 
defined by an index individual that has recently 
come into contact with the blood of another 
mammal through either hunting or the butcher-
ing of animal carcasses (Pourrut et al., 2005). 
Whilst it has been difficult to identify the zoonotic 
source for the index cases of some outbreaks, a 
recurring theme of hunting and handling bush-
meat is suspected (Table 1; Boumandouki et al., 
2005; Nkoghe et al., 2005, 2011; Leroy et al., 
2009). For some outbreaks, including the most 
recent, the initial source of zoonotic transmission 
has not been identified. In subsequent human-to-
human transmission, the highest risk activities are 
those that bring humans into close contact with 
infected individuals. These include medical set-
tings where insufficient infection control precau-
tions have been taken, as well as home care and 
funeral preparations carried out by families or 
close friends (Baron et al., 1983; Georges et al., 
1999; Boumandouki et al., 2005). As the condi-
tions required for transmission are culturally and 
contextually dependent, opportunities for sus-
tained transmission are highly heterogeneously 
distributed. Typically, chains of infection do not 
exceed three or four sequential transmission 
events, although occasionally (and particularly in 

Figure 1. The epidemiology of Ebola virus transmission 
in Africa. Of the suspected reservoir species, 1, 2 and  
3 represent the three bat species from which Ebola  
virus has been isolated (Hypsignathus monstrosus, 
Myonycteris torquata and Epomops franqueti) and  
n represents unknown reservoirs of the disease yet to 
be discovered. Of the susceptible species, A represents 
Pan troglodytes, B Gorilla gorilla and m represents 
other organisms susceptible to the disease, such as 
duikers. H represents humans. Blue arrows indicate 
unknown transmission cycles or infection routes and 
red arrow routes have been confirmed or are suspected. 
Adapted from Groseth et al. (2007).
DOI: 10.7554/eLife.04395.003
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Table 1. Locations of outbreaks of Ebola virus disease in humans

Outbreak Countries Date range Location Species Reference

1 South Sudan Jun–Nov 1976 Nzara SUDV (WHO International  
Study Team, 1978)

2 DRC Sep–Oct 1976 Yambuku EBOV (International  
Commission, 1978)

3 DRC Jun 1977 Bonduni EBOV (Heymann et al., 1980)

4 South Sudan Jul–Oct 1979 Nzara SUDV (Baron et al., 1983)

5 Côte d’Ivoire Nov 1994 Tai Forest TAFV (Le Guenno et al., 1995; 
Formenty et al., 1999)

6 Gabon Nov 1994–Feb 1995 Mekouka and  
Andock mining  
camps

EBOV (Amblard et al., 1997;  
Georges et al., 1999;  
Milleliri et al., 2004)

7 DRC Jan–Jul 1995 Mwembe Forest EBOV (Muyembe and Kipasa,  
1995; Khan et al., 1999)

8 Gabon Jan–Mar 1996 Mayibout 2 EBOV (Georges et al., 1999;  
Milleliri et al., 2004)

9 Gabon Jul 1996–Jan 1997 Booue EBOV (Georges et al., 1999;  
Milleliri et al., 2004)

10 Uganda Oct 2000–Feb 2001 Rwot-Obillo SUDV (WHO, 2001; Okware  
et al., 2002; Lamunu  
et al., 2004)

11 Gabon & ROC Oct 2001–Mar 2002 Memdemba  
Entsiami, Abolo  
and Ambomi

EBOV (WHO, 2003; Milleliri  
et al., 2004; Nkoghe  
et al., 2005; Pourrut  
et al., 2005)Ekata

Oloba

Etakangaye

Grand Etoumbi

12 ROC Dec 2002–Apr 2003 Yembelangoye EBOV (WHO, 2003; Pourrut  
et al., 2005)Nearby hunting  

camp

Mvoula

13 ROC Oct–Dec 2003 Mbandza EBOV (Boumandouki et al.,  
2005)

14 South Sudan Apr–Jun 2004 Forests bordering  
Yambio

SUDV (WHO, 2005; Onyango  
et al., 2007)

15 ROC Apr–May 2005 Odzala National  
Park

EBOV (Nkoghe et al., 2011)

16 DRC May–Nov 2007 Mombo Mounene 2  
market

EBOV (Leroy et al., 2009)

17 Uganda Aug–Dec 2007 Kabango BDBV (Towner et al., 2008;  
MacNeil et al., 2010;  
Wamala et al., 2010)

18 DRC Nov 2008–Feb 2009 Luebo EBOV (Grard et al., 2011)

19 Uganda May 2011 Nakisamata SUDV (Shoemaker et al.,  
2012)

20 DRC July–Nov 2012 Isiro BDBV (CDC, 2014; WHO, 2012b)

21 Uganda July–Oct 2012 Nyanswiga SUDV (CDC, 2014; WHO, 2012a)

22 Uganda Nov 2012–Jan 2013 Luwero District SUDV (WHO, 2012c; CDC, 2014)

23 Guinea Dec 2013 - Meliandou EBOV (Baize et al., 2014;  
Bausch and Schwarz,  
2014)

DRC = Democratic Republic of the Congo, ROC = Republic of Congo.
DOI: 10.7554/eLife.04395.004
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the early stages of infection) a single individual may be responsible for directly infecting a large number 
of others (Brady et al., 2014). In the outbreak in Gabon in 1996, a single person was responsible for 
infecting ten other individuals (Milleliri et al., 2004) whilst in the 1995 outbreak in the DRC, thirty five 
cases resulted from one individual (Khan et al., 1999). Secondary transmission can be restricted by 
effective case detection and isolation measures (Shoemaker et al., 2012; WHO, 2014c). Where this 
cannot be achieved, either due to a lack of infrastructure, poor understanding of the disease, or 
distrust of medical practices, secondary cases can continue to occur (Khan et al., 1999; Larkin, 2003; 
Hewlett et al., 2005). As the number of infections grows, the ability of healthcare systems to control 
the further spread diminishes and the risk of a large outbreak increases.

The recent outbreak in Guinea and surrounding countries indicate that the previous paradigm for 
Ebola outbreaks is shifting (Briand et al., 2014; Chan, 2014). The last 40 years of EVD outbreaks were 
accompanied by considerable changes in demographic patterns throughout Africa. There has been a 
large increase in population size coupled with increasing urbanisation (Cohen, 2004; Seto et al., 
2012; Linard et al., 2013). African populations have also become better connected internally and 
internationally (Linard et al., 2012; Huang and Tatem, 2013). Only recently have we begun to under-
stand the dynamic nature of these travel patterns (Garcia et al., 2014; Gonzalez et al., 2008; Simini 
et al., 2012; Wesolowski et al., 2013, 2012) which have been clearly demonstrated to influence 
disease transmission over different temporal and spatial scales (Hufnagel et al., 2004; Yang et al., 
2008; Stoddard et al., 2009; Talbi et al., 2010; Brockmann and Helbing, 2013; Pindolia et al., 
2014). Changes in land use and penetration into previously remote areas of rainforest bring humans 
into contact with potential new reservoirs (Daszak, 2000), while changes in human mobility and con-
nectivity will likely have profound impacts on the dispersion of Ebola cases during outbreaks. These 
conditions are thought to have a major role in setting the stage for the current outbreak.

This paper aims to define the areas suitable for zoonotic transmission of Ebolavirus (i.e., those 
routes defined in Figure 1 excluding human-to-human transmission) through species distribution 
modelling techniques. The fundamental niche of a species can be conceptualised as the confluence of 
environmental conditions that support its presence in a particular location (Franklin, 2009). Species 
distribution models quantitatively describe this niche based on known occurrence records of the 
organism and their associated environmental conditions, enabling predictions of the likely geographic 
distribution of the species in other regions (Elith and Leathwick, 2009). The era of satellites and 
geographical information systems has made high resolution global data on environmental conditions 
increasingly available (Hay et al., 2006; Weiss et al., 2014b). Species distribution modelling using 
flexible machine learning approaches have been successfully applied to map the global distributions 
of disease vectors (Sinka et al., 2012) and pathogens such as dengue (Bhatt et al., 2013), influenza 
(Gilbert et al., 2014) and leishmaniasis (Pigott et al., 2014).

Previous studies applied the GARP (Genetic Algorithm for Rule-set Production) species distribution 
modelling approach (Stockwell and Peters, 1999) to the locations of 12 Ebola outbreaks in humans 
between 1976 and 2002 to map the likely distribution of Ebola viruses (Peterson et al., 2004a) and as 
a mechanism to identify potential reservoir hosts (Peterson et al., 2004b; Peterson et al., 2007). 
Here we update and improve the maps of the zoonotic transmission niche of EVD by: (i) incorporating 
more recent outbreak data from outside the formerly predicted niche of EVD; (ii) integrating for the first 
time data on outbreaks in primates and the occurrence of the virus in the suspected Old World fruit 
bat (OWFB) reservoirs; (iii) using new satellite-derived information on bespoke environmental covari-
ates from Africa, including new distribution maps of the OWFB; and (iv) using new increasingly flexible 
niche mapping techniques in the modelling framework. To elucidate the relevance of these maps for trans-
mission, we have also calculated the population at risk of primary spillover outbreaks from the zoonotic 
niche of EVD in Africa, and we investigated the changing nature of the populations within this niche.

Results
Reported EVD outbreaks
In total, 23 outbreaks of Ebola virus were identified in humans across Africa, consisting of a hypothe-
sised 30 independent primary infection events (Table 1; Figure 2). These outbreaks span the last 
40 years from the first outbreaks in 1976 to the five outbreaks that have occurred since 2010 (Table 1). 
The locations of the index cases span from West Africa, with the most westerly outbreak ongoing in 
Guinea, to Gabon, the Republic of Congo (ROC), the DRC, South Sudan and Uganda. Before December 

http://dx.doi.org/10.7554/eLife.04395
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Figure 2. The locations of Ebola virus disease outbreaks in humans in Africa. (A) Illustrates the 23 reported outbreaks of Ebola virus disease through 
time, with the area of each circle and its position along the y-axis representing the number of cases. The onset year is represented by the colour as per 
(B). (B) Shows a map of the index cases for each of these outbreaks. (C–H) Show these outbreaks over a series of time periods. Numbers refer to 
outbreaks as listed in Table 1. In (B–H) the species of Ebola virus responsible for the outbreak is illustrated by the symbol shape, the number of resulting 
cases and onset date by symbol colour. The most recent outbreak (#23) is indicated in orange. Countries in which zoonotic transmission to humans has 
been reported or is assumed to have occurred are coloured in blue. In each map the Democratic Republic of Congo is outlined for reference.
DOI: 10.7554/eLife.04395.005

2013, a total of 2322 cases had occurred from Ebolavirus infections, a number already overtaken by 
the likely underreported current case count of the ongoing outbreak >2250 (WHO, 2014a) (Figure 2A). 
Of the four viruses circulating in Africa, Zaire ebolavirus has been responsible for the most outbreaks 
(13), followed by Sudan ebolavirus (7) and Bundigbuyo ebolavirus with just two outbreaks in 2007/8 
and 2012. Tai Forest has caused one confirmed infection in humans, from which the patient recovered 
(Le Guenno et al., 1995; Formenty et al., 1999). Although outbreaks have been reported since 1976, 
there was an absence of reported outbreaks in humans for 15 years between 1979 and 1994 (although 
antibodies in humans were identified over the period [Kuhn, 2008]) and the frequency of outbreaks 
has increased substantially post 2000 (Figure 2A).

Reported Ebola virus infections in animals
A total of 51 surveyed locations reporting infections in animals were identified in the literature since 
the discovery of the disease (Table 2; Figure 3). These comprised 17 infections in gorillas (Gorilla 
gorilla), nine infections in chimpanzees (Pan troglodytes), 18 in OWFB and 2 in duikers (Cephalophus 
spp.). A large proportion of the great ape cases originated from the ROC/Gabon border, coinciding 
with the main known distributions of both chimpanzees and gorillas (Petter and Desbordes, 2013) 
and representing a period of well-documented great ape Ebola outbreaks in and around the Lossi 
Animal Sanctuary (Rouquet et al., 2005; Bermejo et al., 2006; Walsh et al., 2009). All animal isola-
tions of Ebola viruses have come from countries that have also reported index cases of human out-
breaks, with the exception of several seropositive bats from a survey in southern Ghana.

http://dx.doi.org/10.7554/eLife.04395
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Table 2. Locations of reported infections with Ebola virus in animals

Site Country Date range Location Species Diagnosis Reference

1 Côte d’Ivoire Oct–Nov 1994 Tai Forest Chimpanzee Serology (Formenty et al., 1999)

2 Gabon Jan 1996 Mayiboth 2 Chimpanzee PCR (Lahm et al., 2007)

3 Gabon Jul 1996 Near Booue Chimpanzee Serology (Georges-Courbot  
et al., 1997)

4 Gabon Sept 1996 Lope National  
Park

Chimpanzee PCR (Lahm et al., 2007)

5 Gabon & ROC Aug 2001 Mendemba/Lossi  
Animal Sanctuary

Chimpanzee PCR (Lahm et al., 2007)

6 Gabon & ROC Aug 2001 Mendemba/Lossi  
Animal Sanctuary

Gorilla PCR (Lahm et al., 2007)

7 Gabon & ROC Aug 2001 Mendemba/Lossi  
Animal Sanctuary

Cephalophus  
dorsalis

PCR (Lahm et al., 2007)

8 Gabon Nov 2001 Zadie Gorilla PCR (Rouquet et al., 2005)

9 Gabon Nov 2001 Ekata Gorilla PCR (Wittmann et al., 2007)

10 Gabon Dec 2001 Medemba and  
neighbouring  
villages

Chimpanzee  
and Gorilla

PCR (Leroy et al., 2002)

11 Gabon Feb 2002 Zadie Gorilla PCR (Rouquet et al., 2005)

12 Gabon Feb 2002 Ekata Various bat  
species

Serology (Leroy et al., 2005)

13 Gabon Mar 2002 Zadie Gorilla PCR (Rouquet et al., 2005)

14 Gabon Mar 2002 Grand Etoumbi Gorilla PCR (Wittmann et al., 2007)

15 Gabon Apr 2002 Ekata Gorilla PCR (Wittmann et al., 2007)

16 ROC May 2002 Oloba Chimpanzee PCR (Lahm et al., 2007)

17 ROC Dec 2002 Lossi Animal  
Sanctuary

Gorilla PCR (Rouquet et al., 2005)

18 ROC Dec 2002 Lossi Animal  
Sanctuary

Gorilla PCR (Rouquet et al., 2005)

19 ROC Dec 2002 Lossi Animal  
Sanctuary

Chimpanzee Serology (Rouquet et al., 2005)

20 ROC Dec 2002 Lossi Animal  
Sanctuary

Gorilla PCR (Rouquet et al., 2005)

21 ROC Dec 2002 Lossi Animal  
Sanctuary

Gorilla PCR (Rouquet et al., 2005)

22 ROC Dec 2002 Lossi Animal  
Sanctuary

Cephalophus  
spp.

PCR (Rouquet et al., 2005)

23 Gabon Feb 2003 Mbomo Various bat  
species

PCR (Leroy et al., 2005)

24 ROC Feb 2003 Lossi Animal  
Sanctuary

Gorilla Serology (Rouquet et al., 2005)

25 Gabon Feb 2003 Lossi Animal  
Sanctuary

Chimpanzee PCR (Wittmann et al., 2007)

26 Gabon Jun 2003 Mbomo Various bat  
species

PCR and  
serology

(Leroy et al., 2005)

27 ROC Jun 2003 Near Mbomo  
and Ozala  
National Park

Epomops  
franqueti

Serology (Pourrut et al., 2009)

28 ROC Jun 2003 Near Mbomo  
and Ozala  
National Park

Hypsignathus  
monstrosus

Serology (Pourrut et al., 2009)

29 ROC Jun 2003 Near Mbomo  
and Ozala  
National Park

Myonycteris  
torquata

Serology (Pourrut et al., 2009)

Table 2. Continued on next page

http://dx.doi.org/10.7554/eLife.04395
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Site Country Date range Location Species Diagnosis Reference

30 ROC Jun 2003 Mbanza Gorilla PCR (Rouquet et al., 2005)

31 ROC Jan–Jun 2004 Lokoué Gorilla Reported (Caillaud et al., 2006)

32 ROC May 2004 Lokoué Gorilla PCR (Wittmann et al., 2007)

33 Gabon Feb 2005 Near Franceville Epomops  
franqueti

Serology (Pourrut et al., 2009)

34 Gabon Feb 2005 Near Franceville Myonycteris  
torquata

Serology (Pourrut et al., 2009)

35 Gabon Apr 2005 Near Lambarene Epomops  
franqueti and  
Hypsignathus  
monstrosus

Serology (Pourrut et al., 2007)

36 ROC May 2005 Near Mbomo  
and Ozala  
National Park

Epomops  
franqueti

Serology (Pourrut et al., 2009)

37 ROC May 2005 Near Mbomo  
and Ozala  
National Park

Hypsignathus  
monstrosus

Serology (Pourrut et al., 2009)

38 ROC May 2005 Near Mbomo  
and Ozala  
National Park

Myonycteris  
torquata

Serology (Pourrut et al., 2009)

39 ROC Jun 2005 Odzala National  
Park

Gorilla PCR (Wittmann et al., 2007)

40 Gabon Feb 2006 Near Tchibanga Various bat  
species

Serology (Pourrut et al., 2009)

41 ROC May 2006 Near Mbomo  
and Ozala  
National Park

Epomops  
franqueti

Serology (Pourrut et al., 2009)

42 ROC May 2006 Near Mbomo  
and Ozala  
National Park

Hypsignathus  
monstrosus

Serology (Pourrut et al., 2009)

43 ROC May 2006 Near Mbomo  
and Ozala  
National Park

Myonycteris  
torquata

Serology (Pourrut et al., 2009)

44 Gabon Oct 2006 Near Franceville Epomops  
franqueti

Serology (Pourrut et al., 2009)

45 Ghana May 2007 Sagyimase Epomops  
franqueti

Serology (Hayman et al., 2012)

46 Ghana May 2007 Sagyimase Hypsignathus  
monstrosus

Serology (Hayman et al., 2012)

47 Ghana May 2007 Adoagyir Epomophorus  
gambianus

Serology (Hayman et al., 2012)

48 Ghana May 2007 Adoagyir Epomops  
franqueti

Serology (Hayman et al., 2012)

49 Ghana Jun 2007 Oyibi Epomophorus  
gambianus

Serology (Hayman et al., 2012)

50 Ghana Jan 2008 Accra Eidolon  
helvum

Serology (Hayman et al., 2010)

51 Gabon Mar 2008 Near Franceville Epomops  
franqueti

Serology (Pourrut et al., 2009)

ROC = Republic of Congo.
DOI: 10.7554/eLife.04395.006

Table 2. Continued

Predicted distribution of suspected reservoir species of bats
Three species of bats, Hypsignathus monstrosus, Myonycteris torquata and Epomops franqueti, 
were identified as the most likely candidates to be reservoir species for Ebola viruses due to high 
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Figure 3. The locations of reported Ebola virus infection in animals in Africa. (A) Shows the locations of reported Ebola virus infection in animals. (B–D) 
Show these records in animals over three different time periods. Numbers refer to records as listed in Table 2. In all panels, the species in which infection 
was detected is given by symbol shape and the year recorded by symbol colour. Blue countries represent locations where zoonotic transmission to 
humans has been reported or is assumed to have occurred. In each map the Democratic Republic of Congo is outlined for reference.
DOI: 10.7554/eLife.04395.007

seroprevalence and the isolation of RNA closely related to Zaire ebolavirus (Leroy et al., 2005; 
Olival and Hayman, 2014). In total, 239 locations were identified from the Global Biodiversity 
Information Facility (GBIF) (GBIF, 2014): 67 for H. monstrosus (Figure 4A), 52 for M. torquata 
(Figure 4B) and 120 for E. franqueti (Figure 4C). Distribution models for all three species demon-
strated predictive skill (indicated by an area under the curve (AUC) greater than 0.5) as follows:  
H. monstrosus AUC 0.63 ± 0.04; M. torquata AUC = 0.59 ± 0.04; E. franqueti AUC = 0.58 ± 0.03, 
n = 50 submodels for all three species. In addition, each species was broadly predicted within its 
considered expert opinion range (Figure 4A–C) (Schipper et al., 2008). The marginal effect plots 
(not shown) were strongly influenced by land surface temperature (LST) and vegetation (as measured 
by the enhanced vegetation index [EVI]). The predicted combined distribution of these species 
(Figure 4D), covers West and Central Africa, specifically the moist forests of the northeastern, 
western and central Congo basin, and Guinea, as well as the Congolian coastal forest ecoregions 
(WWF, 2014).

Predicted environmental suitability for zoonotic transmission of Ebola
The predicted environmental niche for zoonotic transmission of EVD is shown in Figure 5. All coun-
tries with observed index cases of EVD (n = 7, hereafter Set 1) have areas of the highest environmen-
tal suitability (see list in Table 1). In addition, areas of high environmental suitability for zoonotic 

http://dx.doi.org/10.7554/eLife.04395
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Figure 4. Predicted geographical distribution of the three species of Megachiroptera suspected to reservoir Ebola 
virus. (A) Shows the distribution of the hammer-headed bat (Hypsignathus monstrosus), (B) The little collared fruit 
bat (Myonycteris torquata) and (C) Franquet's epauletted fruit bat (Epomops franqueti). In each map, the locations 
of reported observations of each species, extracted and curated from the Global Biodiversity Information Facility 
(GBIF, 2014) and used to train each model are given as grey points (H. monstrosus, n = 67; E. franqueti, n = 120 
and M. torquata, n = 52). Expert opinion maps of the known range of each species, generated by the IUCN (Schipper 
et al., 2008), are outlined in grey. The colour legend represents a scale of the relative probability that the species 
occurs in that location from 0 (white, low) to 1 (green, high). Area under the curve statistics, calculated under a 
stringent ten-fold cross validation procedure, are 0.63 ± 0.04, 0.59 ± 0.04 and 0.58 ± 0.03 for H. monstrosus,  
M. torquata and E. franqueti respectively. (D) Is a composite distribution map giving the mean, relative probability 
of occurrence from (A–C).
DOI: 10.7554/eLife.04395.008

transmission are predicted in a further 15 countries where, to date, index cases of the four African 
species of Ebolavirus have not been recorded. These are Nigeria, Cameroon, Central African Republic 
(CAR), Ghana, Liberia, Sierra Leone, Angola, Tanzania, Togo, Ethiopia, Mozambique, Burundi, Equatorial 
Guinea, Madagascar and Malawi (hereafter Set 2).

The AUC for the Ebola model was relatively high (AUC = 0.85 ± 0.04, n = 500 submodels) indicating 
that the model could strongly distinguish regions of environmental suitability for EVD. Enhanced veg-
etation index had the greatest impact on the distribution (relative contribution [RC] of 65.3%) followed 
by elevation (RC = 11.7%), night-time land surface temperature (LST) (RC = 7.7%), potential evapo-
transpiration (PET) (RC = 5.7%) and combined bat distribution (RC = 3.8%). Marginal effect plots are 
presented in Figure 5—figure supplement 2.

In total, 22.2 million people are predicted to live in areas suitable for zoonotic transmission of 
Ebola. The vast majority, 21.7 million (approximately 97%), live in rural areas, as opposed to urban or 
peri-urban areas (CIESIN/IFPRI/WB/CIAT, 2007; WorldPop, 2014). Of these, 15.2 million are in Set 1 
and 7 million are in Set 2. In terms of ranked populations at risk, DRC, Guinea and Uganda are highest 

http://dx.doi.org/10.7554/eLife.04395
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Figure 5. Predicted geographical distribution of the zoonotic niche for Ebola virus. (A) Shows the total populations 
living in areas of risk of zoonotic transmission for each at-risk country. The grey rectangle highlights countries in 
which index cases of Ebola virus disease have been reported (Set 1); the remainder are countries in which risk of 
zoonotic transmission is predicted, but in which index cases of Ebola have not been reported (Set 2). These 
countries are ranked by population at risk within each set. The population at risk Figure in 100,000 s is given above 
each bar. (B) Shows the predicted distribution of zoonotic Ebola virus. The scale reflects the relative probability that 
zoonotic transmission of Ebola virus could occur at these locations; areas closer to 1 (red) are more likely to harbour 
zoonotic transmission than those closer to 0 (blue). Countries with borders outlined are those which are predicted 
to contain at-risk areas for zoonotic transmission based on a thresholding approach (see ‘Materials and methods’). 
Figure 5. Continued on next page
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in Set 1 and Nigeria, Cameroon and CAR are top in Set 2. For a full listing of these populations living 
in areas of risk, see the stacked bar plot in Figure 5A.

National level demographic and mobility changes
Over the 40 year period since discovery of EVD, the total population living in those countries pre-
dicted to be within the zoonotic niche has nearly tripled (from 230 million to 639 million) and the 
proportion of the population in these countries living in an urban (rather than rural) setting has changed 
from 25.5% to 59.2% (Figure 6).

Data on the connectivity of human populations over this period were not available. We can infer 
however, intuitively, empirically and theoretically (Zipf, 1946; Simini et al., 2012) that rates of popu-
lation movement within a country will scale directly in proportion to population growth.

International connectivity by airline traffic
Records of passenger seat capacity are available since 2000 and show substantive increases over the 
period in Set 1 (from 2.96 to 4.77 million, a fractional change of 1.61) and Set 2 (from 5.6 to 15.6 mil-
lion, a change of 2.8) (Figure 7A). More specific data on passenger volumes show almost universally 
similar increases since 2005 with Set 1 nations changing from 2 million to 2.5 million, a fractional 
change of 1.22 and Set 2 changing from 5 million to 7.9 million, a change of 1.57 (Figure 7B).

Global analysis of airline passenger volumes demonstrates that international connectivity has 
increased amongst all global regions and national income strata (Figure 8). Total passenger volumes 

The area under the curve statistic, calculated under a stringent 10-fold cross-validation procedure is 0.85 ± 0.04. 
Solid lines represent Set 1 whilst dashed lines delimit Set 2. Areas covered by major lakes have been masked white.
DOI: 10.7554/eLife.04395.009
The following figure supplements are available for figure 5:

Figure supplement 1. Covariates used in predicting zoonotic transmission niche of Ebola. 
DOI: 10.7554/eLife.04395.010

Figure supplement 2. Marginal effect plots for each covariate used in the Ebola virus distribution model. 
DOI: 10.7554/eLife.04395.011

Figure supplement 3. Comparison of predictions for zoonotic niche of Ebola virus excluding the Guinea outbreak. 
DOI: 10.7554/eLife.04395.012

Figure 5. Continued

Figure 6. Changes in national population for countries predicted to contain areas at-risk of zoonotic Ebola virus transmission. For each country the 
population (in millions) is presented for three time periods (1976, 2000 and 2014) as three bars. Each stacked bar gives the rural (green) and urban (blue) 
populations of the country. The grey rectangle highlights countries in which index cases of Ebola virus diseases have been reported (Set 1); the remain-
der are countries in which risk of zoonotic transmission is predicted, but where index cases have not been reported (Set 2). The fractional change in 
population between 1976 and 2014 is given above each set of bars.
DOI: 10.7554/eLife.04395.013
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Figure 7. Changes in international flight capacity and traveller volumes for countries predicted to contain areas at-risk of zoonotic Ebola virus transmis-
sion. The grey rectangle highlights countries in which index cases of EVD have been reported (Set 1). The remainder are countries in which risk of 
zoonotic transmission is predicted, but where index cases have not been reported (Set 2). (A) Shows changes in annual outbound international seat 
capacity (between 2000 in red and 2013 in blue). (B) Depicts changes in annual outbound international passenger volume by country (between 2005 in 
red and 2012 in blue). For each country, the fractional change in volume is given above each set of bars. Note that only one bar is presented for South 
Sudan as data for this region prior to formation of the country in 2011 were unavailable.
DOI: 10.7554/eLife.04395.014

have increased by a third from 9.5 to over 14 million during the eight year window (2005–2012) where 
records are available. The largest increases have occurred in WHO regions (WHO, 2014b) outside of the 
sub-Saharan African region (AFRO) (Figure 8A,B). In 2012, almost half of the final destinations of those 
travelling from these at-risk countries were to other AFRO nations (47%). Other frequent destinations 
were in Europe (EURO; 27%) and the Eastern Mediterranean (EMRO; 13%). Similarly, analysis of pas-
senger volumes by World Bank national income groupings (WHO, 2014b) (Figure 8C,D) show that in 
2012 40% of all passenger final destinations were to low or low-middle income countries.

Discussion
Summary of the main findings
We have re-evaluated the zoonotic niche for EVD in Africa. In doing so we have (i) used all existing 
outbreaks to assemble an inventory of index cases (n = 30); (ii) added to this all confirmed records of 
Ebola virus in animals (n = 51); (iii) assembled more accurate and contemporary environmental covari-
ates including new maps of the distribution of confirmed OWFB reservoirs of the disease; and (iv) used 

http://dx.doi.org/10.7554/eLife.04395
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Figure 8. Numbers of airline passengers arriving from at-risk countries to other countries stratified by major geographic regions and national income 
groups. (A) Shows the locations of WHO regions (AFRO–African Region; AMRO–Region of the Americas; EMRO–Eastern Mediterranean Region; 
EURO–European Region; SEARO–South-East Asian Region; WPRO–Western Pacific Region). (B) Displays the numbers of passengers arriving in each of 
these regions from countries predicted to contain areas at risk of zoonotic Ebola virus transmission (Sets 1 and 2) in 2005 and 2012. (C) Shows the income 
tiers of all countries as defined by the World Bank. (D) Displays the total numbers of passengers arriving in countries in each of these income strata from 
at-risk countries in 2005 and 2012. The number above each pair of bars indicates the fractional change in these numbers of incoming passengers 
between 2005 and 2012.
DOI: 10.7554/eLife.04395.015

the latest niche modelling techniques to predict the geographic distribution of potential zoonotic 
transmission of the disease. Using these predictions we have estimated the populations at risk  
of EVD both in countries which have confirmed index cases (Set 1, n = 7) and those for which we 
predict strong environmental suitability for outbreaks (Set 2, n = 15). In all countries at risk we 
show that since the discovery of EVD in 1976, urban and rural populations have increased and 
have become more interconnected both within and across national borders. During the last 40 years 
the increasing size and connectivity of these populations may have facilitated the subsequent spread 
of EVD outbreaks. These factors underline a change in the way in which EVD interacts with human 
populations.

Interpreting the zoonotic niche
The remote and isolated nature of Ebola zoonotic transmission events, paired with the relatively poor 
diagnostics and understanding of the disease transmission routes in early outbreaks, mean that under-
reporting of previous outbreaks is probable. An increasing understanding and description of a broader 
range of symptoms used in case definitions of EVD (Leroy et al., 2000; Feldmann and Geisbert, 
2011) also increase the possibility that past outbreaks may have been misattributed to different dis-
eases (Tignor et al., 1993). This poor detectability of EVD also clearly limits capacity to accurately 
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identify the locations and transmission routes of index cases (Heymann et al., 1980; Baize et al., 
2014). We must assume, as has been done previously (Peterson et al., 2004a; Jones et al., 2008), 
that the first reported cases are representative of the true location of the index cases. Where possible 
we have represented this geographic uncertainty by attributing the index case to a wide-area polygon 
which then incorporated this uncertainty into the mapping process (see ‘Materials and methods’).

The relationship between the EVD niche and the environmental covariates (Figure 5—figure 
supplement 2), particularly the high relative contribution of the vegetation index, underscore that 
there are clear environmental limits to transmission of the virus from animals to humans, and that 
ecoregions dominated by rainforest are the primary home of such zoonotic cycles. Our analysis has 
shown that the zoonotic niche of the pathogen is more widespread than previously predicted or 
appreciated (Peterson et al., 2004a), most notably in West Africa.

This analysis used information from all human outbreaks and animal infections to delineate the 
likely zoonotic niche of the disease. Further analysis, excluding the existing outbreak focussed in 
Guinea from the dataset used to train the model (Figure 5—figure supplement 3), still resulted in 
prediction of high suitability in this region, with the presumed index village located within 5 km of an 
at-risk pixel. This implies that the eco-epidemiological situation in Guinea is very similar to that in past 
outbreaks, mirroring phylogenetic similarity in the causative viruses (Dudas and Rambaut, 2014; Gire 
et al., 2014). The ecological similarity between the past and current outbreaks also lends support to 
the notion that the scale of this outbreak is more heavily influenced by patterns of human-to-human 
transmission than any expansion of the zoonotic niche.

Interpreting population at risk
It is important to appreciate that this zoonotic niche map delineates areas in which populations are 
at-risk of zoonotic transmission of EVD (Figure 5B). It does not predict the likelihood of EVD spill-
over, the likelihood of an outbreak establishing, or its subsequent rate of spread within a population. 
Increasing human encroachment and certain cultural practices sometimes linked with poverty, such as 
bushmeat hunting, result in increasing exposure of humans to animals which may harbour diseases 
including Ebola (Daszak, 2000; Wolfe et al., 2005, 2007). Increasing human population may accel-
erate the degree of risk through these processes but spatially refined information on these factors is 
not available comprehensively. It is hoped that as the understanding of the risk factors for zoonotic 
transmission of Ebolavirus to humans increases, it will be possible to incorporate this information into 
future risk mapping assessments.

Previous considerations of the geographic distribution of EVD have used human outbreaks alone. 
We have updated this work to include the last decade of outbreaks, as well as disaggregated out-
breaks where evidence suggests multiple independent zoonotic transmission events overlap in space 
and time. Furthermore, our modelling process accommodates uncertainty in geopositioning of these 
index cases by utilising both point and polygon data. In addition, we include occurrence of infection 
in wildlife, important to the wider scale of zoonotic transmission (Figure 1), which in total has increased 
the dataset used in the model to 81 occurrences. The rareness of EVD outbreaks and the prevalence 
of detectable Ebola virus in reservoir species suggests that there will always be a limited set of obser-
vation data when compared to mapping of more prevalent zoonoses (Pigott et al., 2014). The results 
demonstrate predictive skill using a stringent validation procedure, however, indicating strong model 
performance even with this relatively limited observation dataset.

A broad zoonotic niche is predicted across 22 countries in Central and West Africa. Whilst sev-
eral of these countries have reported index cases of EVD, others have not, although serological evi-
dence in some regions points to possible underreporting of small-scale outbreaks (Kuhn, 2008). 
With improved ecological understanding, particularly with improvements to our knowledge of specific 
reservoir species and their distributions, it may be possible to delineate areas not at risk due to the 
absence of these species.

Despite relatively a large population living in areas of risk and the widespread practice of bush-
meat hunting in these predicted areas (Wolfe et al., 2005; Mfunda and Røskaft, 2010; Brashares 
et al., 2011; Kamins et al., 2011), Ebolavirus is rare both in suspected animal reservoirs (Leroy et al., 
2005; Olival and Hayman, 2014) and in terms of human outbreaks (Table 1). There is some indication 
however, that the frequency of Ebola outbreaks has increased since 2000, as shown in Figure 2A. We 
have shown that the human population living within this niche is larger, more mobile and better inter-
nationally connected than when the pathogen was first observed. As a result, when spillover events do 
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occur, the likelihood of continued spread amongst the human population is greater, particularly in 
areas with poor healthcare infrastructure (Briand et al., 2014; Fauci, 2014).

Whilst rare in comparison to other high burden diseases prevalent in this region, such as malaria 
(Gething et al., 2011; Murray et al., 2012), Ebola outbreaks can have a considerable economic and 
political impact, and the subsequent destabilisation of basic health care provisioning in affected 
regions increases the toll of unrecorded morbidity and mortality of more common infectious dis-
eases (Murray et al., 2014; Wang et al., 2014), throughout and after the epidemic period. The 
number of concurrent infections during the present outbreak represents a significant strain on health-
care systems that are already poorly provisioned (Briand et al., 2014; Chan, 2014; Fauci, 2014) and 
many other Set 1 and Set 2 countries rank amongst the lowest per capita healthcare spenders. These 
considerations should be paramount when international organizations debate the financing require-
ments for the improvement of healthcare needed in the region and the urgency with which new thera-
peutics and vaccines can be brought into production (Brady et al., 2014; Goodman, 2014).

Together, these considerations necessitate prioritisation of efforts to reinforce and improve 
existing surveillance and control, and encourage the development of therapeutics and vaccines. 
The national population at risk estimates presented here would be a strong rationale for improving, 
prioritising and stratifying surveillance for EVD outbreaks and diagnostic capacity in these countries. 
We believe it would be prudent to test OWFB species in Set 2 countries for Ebola virus (Hayman 
et al., 2012), particularly during the bat breeding season to maximise chances of isolation in order 
to clarify the outbreak risk in these countries. In all Set 1 and Set 2 countries, raising awareness about 
the risk presented by reservoir bats and incidental primate hosts and the modes of transmission of 
this disease could be of value. Finally, increasing our capacity to rapidly map ever changing biolog-
ical threats is also a core need (Hay et al., 2013b).

Interpreting International connectivity
The increasing connectedness of the Africa region means that EVD is now a problem of international 
concern. While most EVD secondary transmission occurs locally and is likely transported via ground 
transit (Francesconi et al., 2003), the potential for international spread of infection is possible, as dem-
onstrated by the importation of the disease from Liberia to Nigeria, culminating in further secondary 
transmission in Lagos (WHO, 2014a). The aetiology of EVD infection and disease progression means 
that an international outbreak propagated by air travel remains unlikely, particularly in high-income 
countries better able to handle EVD cases (Fauci, 2014). Nevertheless, a non-negligible threat remains, 
particularly in the low and middle income destinations and the rapid increase in global connectivity of 
these at-risk regions indicates that international airports could see more imported cases (Chan, 2014).

Future work
We have focussed on reanalysing the zoonotic niche for EVD transmission and the characterisation of 
the populations at risk to improve the landscape in which future risk and impact of EVD outbreaks can 
be discussed. During the current emergency much of the work will concentrate on routes of secondary 
transmission in the human population—conceptually the red arrow of the H box in Figure 1. An impor-
tant task is to stratify the risk of EVD spread both within and between countries and identify the most 
likely pathways of spread for characterisation and surveillance. Our next priority therefore is to inves-
tigate aspects of secondary human-to-human transmission by documenting the rate of geographic 
spread of EVD during the past and ongoing epidemics to help understand changes in these patterns 
in the historical record. Simulating these movements in a real landscape of population movement pat-
terns, inferred from population movements assessed by mobile phones and other data (Garcia et al., 
2014), as well as parametric movement models (Simini et al., 2013) is a logical next step, and can be 
used in future targeting of interventions and potential new treatments for both the current and future 
outbreaks (Brady et al., 2014; Goodman, 2014).

As previously discussed, whilst there is the risk of human travel during the latent phase of infection, 
and therefore potential for international spread, the high pathogenicity during infectiousness (immo-
bilising infected persons) and the likely rapid and effective isolation measures implemented in regions 
with strong health care systems, limit the pandemic potential of EVD. Nevertheless, improvement of 
international containment plans and informed discussions of potential risks to airline carriers and pop-
ulations of other regions will be supported by knowledge of local, regional and international popula-
tion flows. Assessing these flows by air traffic volumes is an ongoing priority.
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There are several other zoonotic viral haemorrhagic fevers (for example Marburgvirus, Lassa 
fever, hantaviral infections and arenaviruses) that are of similar public health and biosecurity concern 
(Bannister, 2010), due to their high virulence and mortality and their potential to cause outbreaks and 
spread internationally. Despite this their geographical distributions are poorly understood (Hay et al., 
2013a). Many of the methods applied here can be adapted to these diseases and improve our geo-
graphical understanding of the risk presented by these pathogens.

We are in the midst of a public health emergency that will likely last for many more months (Chan, 
2014) and which has brought EVD to global attention. We emphasise that the maps of zoonotic trans-
mission presented here do not enable assessment of secondary transmission rates in human popula-
tions, but they do act as an evidenced-based indicator of locations with potential for future zoonotic 
transmission and thus outbreaks. Interestingly, early reports of another independent zoonotic out-
break in the DRC (MSF, 2014) are in predicted at-risk areas. An improved understanding of the spatial 
extent of the zoonotic niche can only help future efforts in biosurveillance.

Materials and methods
Methodological overview
A boosted regression tree (BRT) modelling framework was used to generate predictive risk maps of 
the zoonotic Ebola virus niche in Africa. This methodology combines regression trees, where trees are 
built according to optimal decision rules based on how binary decisions best accommodate a given 
dataset (De'ath, 2007; Elith et al., 2008), and boosting, which selects the tree that minimises the loss 
function. In doing so, a parameter space is defined which captures the greatest amount of variation 
present in the dataset. In order to train the model, four component datasets were compiled: (i) a com-
prehensive dataset of the reported locations of Ebola virus transmission from a zoonotic reservoir to a 
human; (ii) a dataset of the locations of Ebola virus infections in suspected reservoir and (non-human) 
susceptible host species (iii) a suite of ecologically relevant environmental covariates for Africa, 
including predicted distribution maps of suspected reservoir bat species and (iv) background (or 
pseudo-absence) records representing locations where zoonotic Ebola virus has not been reported. 
This study was limited to the African continent since no natural outbreaks of EVD have occurred out-
side the continent (CDC, 2014). Only Reston ebolavirus has a distribution reported outside of Africa, 
focussed in the Philippines, but has never been reported as pathogenic in humans; as a result this 
species was not included in the analysis.

Identifying index cases and reconstructing zoonotic transmission events 
in space and time
Tables detailing proven outbreaks of Ebola virus, initially sourced from the scientific literature (Kuhn, 
2008) and from health reporting organisations (CDC, 2014), were used to coordinate searches of the 
formal scientific literature using Web of Science and PubMed for each specific outbreak. Relevant 
papers were abstracted and where possible outbreak-specific epidemiological surveys were sourced. 
The citations in these references were obtained in order to reconstruct the outbreak in detail and to 
identify the most probable index case. Index cases were defined as any human infection resulting from 
interaction with non-human sources of the disease. Some of these cases arose from presumed interac-
tions with zoonotic reservoirs or hosts, such as primates and other mammals during hunting trips 
(Boumandouki et al., 2005; Nkoghe et al., 2005, 2011; WHO, 2003) or butchering of bats (Leroy 
et al., 2009). Any cases arising from existing human infections are considered as secondary infections 
rather than index cases. Similar to methodology employed elsewhere (Messina et al., 2014), the site, 
or supposed site, of this zoonotic transmission event was geopositioned using Google Earth. For loca-
tions where precise geographic information (e.g., geographic coordinates of a hunting camp) was 
provided by the authors, these were used. Where precise geographic information could not be accu-
rately geopositioned, a geographic area (termed a polygon) was defined covering the reported region. 
In several cases only the first reported patient could be identified, with the source of infection unknown. 
With these outbreaks the location of the first patient was geopositioned under the assumption that an 
initial zoonotic spillover event occurred in the vicinity of this location. In two outbreaks multiple inde-
pendent zoonotic transmission events were identified (WHO, 2003; Nkoghe et al., 2005; Pourrut 
et al., 2005), and each unique event was geopositioned and included in the model as separate enti-
ties. Table 1 catalogues the outbreaks used in this study.
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Assembling a database of reported infections in animals
A literature search was conducted in Web of Science using the search term “Ebola” that returned 8635 
citations. The abstracts were examined and for those that contained possible data on animal Ebola 
infection, the full text was obtained. The sampling site or location of the animal in the study was identi-
fied and geopositioned using Google Maps. These locations were recorded either as precise locations 
or as polygons, as with human index cases. Records for which local transmission of Ebola virus was 
deemed unlikely (e.g., seropositive primates tested in containment facilities several years after their 
capture) were excluded from the study. The non-human Ebola virus occurrence data collected are 
detailed in Table 2, including the diagnostic methods used.

GenBank isolates
The open access sequence database GenBank (NCBI, 2014) was searched using MESH Umbrella 
search terms for Ebola virus, returning 181 results. These were then manually cross-referenced with 
the existing human and animal Ebola information, collected above, and 30 duplicates were removed. 
For the remaining isolates, original references and GenBank information fields were examined, but 
as there was insufficient information to establish precise location of isolation and/or whether the iso-
late represented an index case for any of these data sources, they were excluded from subsequent 
analyses.

Covariates assembled and used in the analyses
A suite of ecologically relevant gridded environmental covariates for Africa was compiled, each having 
a nominal resolution of 5 km × 5 km. The environmental covariates used in this analysis were: elevation 
(from the shuttle radar topography mission [ORNL DAAC, 2000]); the mean value, and a measure of 
spatial variation (range, described below) between 2000 and 2012 of Enhanced Vegetation Index 
(EVI), daytime Land Surface Temperature (LST) and night-time LST; and mean potential evapotranspi-
ration from 1950–2000 (Trabucco and Zomer, 2009) (Figure 5—figure supplement 1).

The EVI and LST datasets were derived from satellite imagery collected by NASA's Moderate 
Resolution Imaging Spectroradiometer (MODIS) remote sensing platform (Tatem et al., 2004). EVI is 
a metric designed to characterise vegetation density and vigour based on the ratio of absorbed pho-
tosynthetically active radiation to near infrared radiation (Huete et al., 2002). LST is a modelled prod-
uct derived from emissivity as measured by the MODIS thermal sensor (Wan and Li, 1997), which is 
correlated, though not synonymous with air temperature, and effective for differentiating landscapes 
based on a combination of thermal energy and properties of surface types. The MODIS datasets uti-
lized in this research (EVI was derived from the MCD43B4 product and the MOD11A2 LST product was 
used directly) were acquired as composite datasets created using imagery collected over multiple 
days, a procedure that results in products with 8-day temporal resolutions. Despite compositing, the 
EVI and LST datasets contained gaps due to persistent cloud cover found in forested equatorial 
regions, and these gaps were filled using a previously described approach (Weiss et al., 2014a). The 
EVI and LST datasets were then aggregated from their native 1 km × 1 km spatial resolution to a final 
5 km × 5 km resolution, calculating both the mean and the range of the values of the subpixels 
making up each larger pixel. These spatial summaries therefore characterise both the mean tem-
perature in each location as well as the degree of spatial heterogeneity within that pixel. This is of 
interest as humans and susceptible species are more likely to come into contact in transitional areas 
(e.g., boundary areas between areas of highly suitable susceptible species habitat and areas heavily 
utilised by humans). The final covariate production step consisted of summarising temporally across 
the 13-year data archive to produce synoptic datasets devoid of annual or seasonal anomalies (Weiss 
et al., 2014a).

Implicated bat reservoir distributions
Over recent years, significant research has been undertaken in investigating the role bats have to play 
in the transmission cycle of Ebola viruses (Olival and Hayman, 2014) and evidence of asymptomatic 
infection in fruit bats has been documented to varying extents (Leroy et al., 2005; Pourrut et al., 
2007, 2009; Hayman et al., 2010; Hayman et al., 2012). In order to incorporate this potential driver 
of Ebola virus transmission into the model we developed predicted distribution maps for three species 
of fruit bat implicated as primary reservoirs of the disease: Hypsignathus monstrosus, Epomops franqueti 
and Myonycteris torquata. The evidence was strongest for these three species having a reservoir role 
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as Ebola virus RNA (all nested within the Zaire ebolavirus phylogeny [Leroy et al., 2005]) has been 
detected in all three. Whilst a handful of other bat species have been found to be seropositive, no 
further viral isolations have been recorded (Olival and Hayman, 2014).

Whilst expert opinion range maps for these species exist (Schipper et al., 2008), there is some 
disagreement with independently-sourced occurrence data (all archived in the Global Biodiversity 
Information Facility). As a result, a predictive modelling approach was used to create a continuous 
surface of habitat suitability for these species which we then included as a predictor in the model. 
Occurrence data for all Megachiroptera in Africa was extracted from GBIF (GBIF, 2014) using the 
R packages dismo (Hijmans et al., 2014) and taxize (Chamberlain et al., 2014). To remove apparently 
erroneous records in the GBIF archive all occurrence records more than 100 km from the species 
known ranges, as determined by expert-opinion range maps (Schipper et al., 2008), were excluded, 
as were duplicate records and those located in the ocean. This resulted in a total dataset of 1341 
unique occurrence records.

The occurrence database was then used to train separate boosted regression tree species distri-
bution models (Elith et al., 2008) to predict the likely distribution of each of these suspected reser-
voir species. For each model, occurrence records for the target species (H. monstrosus, n = 67;  
E. franqueti, n = 120; and M. torquata, n = 52) were considered presence records and occurrence 
records of all other species were used as background records. This procedure is designed to account 
for the potentially biasing effect of spatial variation in recording of Megachiroptera occurrences 
(Phillips et al., 2009).

For each species we ran fifty submodels each trained to a randomly selected bootstrap of this 
dataset, subject to the constraint that each bootstrap contained a minimum of 10 occurrence and 
10 background records. Each submodel was fitted using the gbm.step subroutine (Elith et al., 2008) 
in the dismo R package. In each submodel the background records were down weighted so that the 
weighted sum of presence records equalled the weighted sum of background records (Barbet-Massin 
et al., 2012) in order to maximise the discrimination capacity of the model. We generated a prediction 
map from each of these submodels and calculated both the mean prediction and 95% confidence 
interval around the prediction for each 5 km × 5 km pixel for each species.

Model accuracy was assessed by calculating the mean area under the curve (AUC) statistic for 
each submodel under a stringent 10-fold cross validation for each submodel and obtaining the mean 
and standard deviation across all 50 submodels. Under this procedure the dataset was split into ten 
subsets, each containing approximately equal numbers of presence and background points. The 
ability of a model trained on each subset to predict the distribution of the other 90% of records was 
assessed by AUC and the mean value taken. As so few presence records were used to train each fold 
model (i.e., around 5 presence records for M. torquata up to 12 for E. franqueti), this represents a 
very stringent test of the model's predictive capacity. Additionally, to prevent inflation of the accu-
racy statistics due to spatial sorting bias, these statistics were estimated using a pairwise distance 
sampling procedure (Hijmans, 2012). Consequently, the AUC statistics presented here are lower 
than would be returned by standard procedures but gives a more realistic quantification of the 
model's ability to extrapolate predictions to new regions (Wenger and Olden, 2012). We also gen-
erated marginal effect plots with associated uncertainty intervals and relative contribution statistics 
(how often each covariate was selected during the model fitting process) as quantification of the 
sensitivity of the model to the different covariates. These allow us to make inferences about the 
ecological relationship between each species and its environment as well as to identify where this 
relationship is most uncertain.

To generate a single surface describing the distribution of the bat reservoir species to be used 
as a covariate in the subsequent Ebola modelling, the three mean prediction distribution maps 
were merged by taking the average habitat suitability for each of the three bat species at each 
pixel.

Ebola distribution modelling
The Ebola virus occurrence dataset was supplemented with a background record dataset generated 
by randomly sampling 10,000 locations across Africa, biased towards more populous areas as a proxy 
for reporting bias (Phillips et al., 2009). We fitted 500 submodels to bootstraps of this dataset. To 
account for uncertainty in the geographic location of those occurrences reported as polygons, for each 
submodel one point was randomly selected from each of these occurrence polygons. This Monte 
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Carlo procedure enabled the model to efficiently integrate over the environmental uncertainty associated 
with imprecise geographic data. A bootstrap sample was then taken from each of these datasets and 
used to train the BRT model using the same procedure and weighting of background records as for 
the bat distribution models. Similarly, we generated a prediction map from each of these models and 
calculated both the mean prediction and corresponding 95% confidence intervals for each pixel and 
analysed prediction accuracy using the same stringent cross validation and sensitivity analysis proce-
dure as for the bat distribution models (detailed above).

The predicted distribution map produced by this approach represents the environmental suita-
bility of each pixel for zoonotic Ebola virus transmission. This may be interpreted as a relative prob-
ability of presence in the sense that more suitable pixels are more likely to contain zoonotic 
transmission than less suitable pixels, though not an absolute probability that transmission occurs in 
a given pixel. Similarly, the presence of zoonotic transmission increases the risk of transmission to a 
human, though this is also contingent on how humans interact with these zoonotic pools, through 
hunting or other activities.

Population living in areas of environmental suitability for zoonotic 
transmission
In order to identify areas which are likely to be at risk of transmission of Ebolavirus from zoonotic res-
ervoir hosts to humans, the continuous map of the predicted environmental suitability for zoonotic 
transmission (shown in Figure 5) was converted into a binary map classifying pixels as either at risk 
or not at risk. A pixel was assumed to be at risk if its predicted environmental suitability for zoonotic 
Ebola virus transmission was greater than 0.673, the lowest suitability value predicted at the locations 
of known transmission to humans (point records of human index cases). Countries containing at least 
one at-risk pixel are shown in Figure 5B—those countries that previously report an index case were 
defined as Set 1; countries with at least one at-risk pixel with no previous index cases of EVD were 
categorised as Set 2. The number of people living in at-risk areas in each of these countries was calcu-
lated by summing the estimated population of at-risk pixels using population density maps from the 
AfriPop project (Linard et al., 2012; WorldPop, 2014) and the proportion of those living in urban, 
periurban and rural areas was evaluated using the Global Rural Urban Mapping Project (CIESIN/IFPRI/
WB/CIAT, 2007).

The R code used for all of the analysis has been made available on an open source basis (https://
github.com/SEEG-Oxford/ebola_zoonotic).

National level demographic and mobility data
For three separate years (1976, 2000 and 2014), total national populations were retrieved and the 
proportion of rural to urban populations noted from World Bank statistics (World Bank, 2014). To 
describe global air travel patterns from Set 1 and Set 2 countries, flight schedules data from the 
Official Airline Guide, reflecting an estimated 95% of all commercial flights worldwide, were analysed 
between 2000 and 2013 to calculate the annual volume of seats on direct flights that depart from each 
predicted country and which have an international destination. Complementing these seat capacity 
data, worldwide data on anonymised, individual passenger flight itineraries from the International Air 
Transport Association (2012) (IATA, 2014) were analysed between 2005 and 2012 to calculate the 
annual volume of international passenger departures out of each Set 1 and Set 2 country. The IATA 
dataset represents an estimated 93% of the world's commercial air traffic at the passenger level and 
includes points of departure and arrival and final destination information for travellers as well as their 
connecting flights.
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