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Abstract How generalist parasites with wide host ranges can evolve is a central question in

parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many

physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome

sequence assemblies of five isolates, we show they represent three races that are genetically

diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being

introgressed from other races. Sequential infection experiments show that infection by adapted

races enables subsequent infection of hosts by normally non-infecting races. This facilitates

introgression and the exchange of effector repertoires, and may enable the evolution of novel races

that can undergo clonal population expansion on new hosts. We discuss recent studies on

hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin’s finches, sunflowers

and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological

environment.

DOI: 10.7554/eLife.04550.001

Introduction
Most parasites have a restricted host range and are often unable to exploit even closely related hosts

(Thompson, 2005; Poulin and Keeney, 2014). Compared to necrotrophs that reproduce on

dead plant material, obligate biotrophic parasites can only reproduce on living tissue, and thus

are intimately associated with their hosts (Thines, 2014). This might be expected to result in host

specialization. The adaptive evolution of, for example, new effectors that enable more efficient

exploitation of one host species, increases the risk of detection in other host species by

triggering their immune system (Martin and Kamoun, 2012). Due to this trade-off, the saying

‘Jack of all trades, master of none’ is especially true for obligate biotrophic parasites, because

natural selection that maximises parasite fitness on one particular host species might lead to

specialisation and reduced host range (e.g., Dong et al., 2014). Yet there are generalist

biotrophic parasites that appear to have overcome this evolutionary dilemma and show virulence

on diverse hosts.
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Some ‘generalist’ parasite species have solved the dilemma by evolving multiple specialised races,

each of which infect different hosts. For example, the eukaryotic oomycete order Albuginales consists

entirely of obligate biotrophic pathogens that cause disease on a broad range of plant hosts

(Biga, 1955; Choi and Priest, 1995; Walker and Priest, 2007). Its largest genus, Albugo,

comprises ∼50 (usually) specialist pathogens (Choi et al., 2009; Thines et al., 2009; Ploch et al.,

2010; Choi et al., 2011), yet Albugo candida (Pers.) Roussel can infect over 200 species of plants

in 63 genera from the families of Brassicaceae, Cleomaceae and Capparaceae (Saharan and

Verma, 1992; Choi et al., 2009). A. candida infections are the causal agent of ‘white blister rust’

disease resulting in 9–60% losses on economically important oilseed and vegetable Brassica crops.

(Harper and Pittma, 1974; Barbetti and Carter, 1986; Saharan and Verma, 1992; Meena

et al., 2002). A. candida consists of different physiological races that each usually show high

host specificity (Hiura, 1930; Pound and Williams, 1963; Petrie, 1988). ∼24 races of A. candida

have been defined, based primarily on their host range (Saharan and Verma, 1992).

A. candida is a diploid organism that reproduces both asexually and sexually (Holub et al. 1995),

but the relative importance of both reproductive modes is not well established. During asexual

reproduction, diploid zoospores are formed in a special propagule (the zoosporangium) on a thallus

of hyphae beneath the leaf epidermis. White blisters comprising large numbers of dehydrated

sporangia eventually rupture the epidermis to release inoculum for dispersal. When reproducing

sexually, fertilization between two isolates results in non-motile diploid thick-walled oospores that

can resist extreme temperatures and desiccation. Although the relative importance of different

eLife digest Many microorganisms live as parasites inside another living organism, and gain

nutrients at their host’s expense. Plants and animals have immune systems that serve to protect

against this kind of exploitation, but successful parasites have evolved ways to avoid detection by

their hosts’ immune systems, and/or to suppress hosts’ defence mechanisms.

Parasites often avoid detection by releasing molecules that interfere with specific aspects of

a host’s immune system. The same molecules, however, can be recognised by the immune systems of

other species and trigger defence responses that eradicate the parasites; this explains why most

parasites can colonise only a limited number of host species. It is less clear how parasites evolve to

become ‘generalists’ that can infect many host species. However, some generalist parasites have

several distinct subgroups—each of which is specialised to infect a limited number of host species.

Albugo candida is a generalist parasite that infects over 200 plant species, including mustard

greens, oilseed and vegetable crops. Even though its looks and its lifestyle resemble those of

a fungus, A. candida is actually an oomycete: a group of organisms that are more closely related to

golden-brown algae than they are to fungi. About 24 subgroups (or ‘races’) of this generalist parasite

have been identified to date, but it remains unclear how these subgroups have evolved.

McMullan, Gardiner et al. tested different isolates of A. candida—four from southeast England

and one from western Canada—which had been collected from different plant species and confirmed

that each could only infect a narrow range of plant hosts.

Next, the genome sequences of these five A. candida strains were assembled and compared. This

analysis revealed that the five strains represented three distinct subgroups (or races) of A. candida.

Moreover, some parts of one subgroup’s genome were most similar to those found in a second

subgroup; and other parts were more like sections of the third subgroup’s genome. McMullan,

Gardiner et al. point out that such ‘mosaic-like genomes’ indicate crossbreeding between the

different subgroups. But as A. candida must infect a plant in order to reproduce, and different

subgroups infect different host plants, how can different subgroups meet in order to mate and

reproduce?

In answer to this question, McMullan, Gardiner et al. showed that a plant that is infected with one

subgroup of A. candida becomes susceptible to co-infection with other subgroups, including those

that couldn’t normally infect this plant species on their own. These findings reveal that generalist

parasites can therefore evolve new subgroups via a mechanism that is similar to the way that

crossbreeding (or hybridization) between existing species can lead to the evolution of new species.

DOI: 10.7554/eLife.04550.002
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mechanisms of reproduction in the Albugo life cycle remains poorly understood, clonal reproduction

enables rapid population expansion, especially in genetically uniform crop monocultures.

A. candida is considered a single species despite the fact it comprises several specialised

physiological races that colonize different host plants (cf. Drès and Mallet, 2002). According to

evolutionary and population genetic theory, adaptations and trade-offs associated with host-

specialisation combined with strong population structuring can result in adaptive radiation and

speciation (Abbott et al., 2013; Stukenbrock, 2013). Conceivably, A. candida is an adaptive

radiation ‘in progress’, and the broad host range is realised by ongoing specialisation of

independent races that are on the road to speciation (Drès and Mallet, 2002). This raises the

important question; does parasite specialization inevitably lead to speciation?

Albugo spp. infection strongly suppresses host innate immunity and Albugo spp. are unique

compared to other microbial plant pathogens in enhancing host susceptibility to secondary infection

by otherwise avirulent pathogens, including downy mildews (Cooper et al., 2008). It has been

suggested that enhanced susceptibility imposed by Albugo might accelerate adaptation of other

pathogen species to an Albugo-susceptible host (Thines, 2014). However, no evolutionary

rationale has been put forward to explain why it might be adaptive for Albugo sp. to render its

hosts so susceptible to other pathogens that could compete for access to the same resources

(Cooper et al., 2008). Arguably, suppression of host innate immunity could facilitate cohabitation of

distinct physiological races and thus may enable genetic exchange between them. Introgression,

here defined as the introduction by recombination of syntenic nucleotide variation from a parental

donor race into the genome of a recipient race (Hedrick, 2013), could slow down genetic

divergence, and hence, retard speciation. On the other hand, introgression between races that are

well-adapted to exploit different host plants could be maladaptive and strongly selected against

because hybrids will inherit effector alleles derived from both parental races. Given that immune

recognition of even a single effector is sufficient to trigger the immune response and stop an

infection, hybrids that possess an expanded repertoire of effector alleles are likely to have a strong

fitness disadvantage on most potential host plants.

Much of the ecology and evolution of A. candida remains unknown, but with its many

specialized races and a broad host range, this ‘generalist’ plant pathogen is a fascinating study

organism. The questions we addressed in the present study are: (1) Are the distinct physiological

A. candida races genetically isolated and ‘on the road to speciation’? (2) Does suppression of host

innate immunity enable cohabitation and growth of races with non-overlapping host ranges?

To answer these questions, we generated genome sequence assemblies of five isolates that were

collected from four host species (Brassica oleracea, Brassica juncea, Capsella bursa-pastoris,

and Arabidopsis thaliana). We sequenced one isolate of one race, and two isolates of each of two

additional races. We show that these races are not genetically isolated despite having non-

overlapping host ranges. Recombination analysis shows there is widespread genetic exchange

between A. candida races, and that hybridisation leading to introgression has occurred numerous

times, which include exchanges in the recent past. To explain this observation, we examined

whether pre-infection of Arabidopsis and Brassica with virulent A. candida races results in enhanced

host susceptibility, and found that pre-infection with a virulent strain enables proliferation of an

A. candida isolate that would otherwise not colonize that host. For the two races with two isolates,

we show that population expansion is by clonal reproduction. We discuss the impact of genetic

exchange on A. candida evolution, and consider the implications for pathogen evolution and

reproduction in an agro-ecological environment.

Results

A. candida host specificity: single race isolates are host specific
AcNc2 was recovered from infected leaves of A. thaliana Eri-1 field-grown plants in Norwich (UK) in

2007. AcEm2 was isolated from wild C. bursa-pastoris in Kent (UK) in 1993 (Borhan et al., 2008).

Isolate AcBoT was harvested from infected inflorescences of B. oleracea cultivar ‘Bordeaux F1’ in

Lincolnshire in May 2009, and another isolate AcBoL was harvested from infected leaves of B. oleracea

in Lincolnshire (UK) in January 2009. Races were single spore purified (Kemen et al., 2011). The Ac2V

isolate virulent on B. juncea was provided by M Borhan (Agriculture and Agri-Food, Canada

[Links et al., 2011]) and single-spore purified.
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We tested the virulence of single race infections of AcNc2, Ac2V and AcBoT on different host

species and cultivars. AcNc2 was propagated on A. thaliana Ws-2. Two B. juncea cultivars

(‘Cutlass’ and ‘Czerniac’) and 18 cultivars of B. oleracea were resistant to AcNc2. We screened 356

A. thaliana accessions for their susceptibility to AcNc2 and 38.5% were susceptible (Table 1,

Supplementary files 1, 2). Race Ac2V was originally isolated in Canada on B. juncea (Rimmer

et al., 2000). We confirmed virulence of Ac2V on B. juncea by spray inoculation of B. juncea

‘Cutlass’ and ‘Czerniac’. On 3-week-old A. thaliana plants, all 107 tested accessions were resistant.

Two B. oleracea cultivars were also resistant to Ac2V (Table 1, Supplementary files 1, 2). Race AcBoT

was virulent on all 15 tested cultivars of B. oleracea. In contrast, 34 accessions of A. thaliana were

fully resistant to AcBoT, as were Brassica rapa and B. juncea cultivars (Table 1, Supplementary file 1).

These tests confirm that A. candida races show pronounced host specificity to distinct host species.

While we cannot prove that there are no host species in nature that support growth of more than

one of the three races we define here, our experiments and all literature strongly suggest that Ac2V

only grows on B. juncea, and on some accessions of B. rapa, a diploid ancestor of tetraploid

B. juncea (Kole et al., 2002), AcBoT and AcBoL only grow on B. oleracea, and AcNc2 and AcEm2

can only grow on a subset of Arabidopsis and Capsella genotypes. Genetic exchange between races

is unlikely to occur unless they colonize the same host. In our study, only the immune-compromised

A. thaliana Ws-2-eds1 mutant was susceptible to all races.

Genome assemblies of A. candida isolates
The AcNc2 A. candida assembly was used as the reference in this study, and comprises 34 Mb in 5212

contigs of ∼160-fold coverage (Table 2). We assembled ∼73% of an estimated 45 Mb genome of

A. candida AcNc2 (Voglmayr and Greilhuber, 1998; Links et al., 2011). In a previous study,

a similar proportion (76%) of the A. candida Ac2V race genome was assembled (Links et al., 2011).

The unassembled part of the genome (∼11 Mb) is likely to include repeats and duplicated

sequences. Repeat sequences constitute ∼17.4% of the AcNc2 assembly. Approximately 8% of

annotated repeats represent collapsed regions with coverage several times higher than average, so

the real repeat content may be higher.

Ab initio gene predictions were conducted with several gene prediction programs, resulting

in 10,907 predicted gene models. About 90% (9830) of the predicted proteins have homologous

sequences in the proteome of A. candida Ac2V race (15,824 genes) (Links et al., 2011). In about

1000 cases, when we predict a single copy gene in the AcNc2 race, Links and co-authors (2011)

have predicted multi-gene families in the Ac2V race, explaining the discrepancy in the predicted

gene number for two assemblies.

Only 37% of AcNc2 proteins showed significant sequence similarity to known proteins (BLASTP

E-value ≤ 10−5). Using the Tribe-MCL algorithm, 3522 genes (32% of the predicted AcNc2 gene

repertoire) were clustered into 1020 gene families. The largest gene tribes are protein kinases

Table 1. Virulence of the A. candida races on different plant host accessions

A. candida race

Arabidopsis thaliana Brassica rapa Brassica junceae Brassica oleraceae

+ − + − + − + −
AcNc2 137 219 0 1 0 1 0 18

AcBoT 1* 34 0 1 0 2 15 0

Ac2V 1*,† 107 1‡ 4‡ 6‡ 0‡ 0 2

+ Host-pathogen compatible interactions (number of susceptible accessions).

− Host-pathogen incompatible interactions (number of resistant accessions).

*A. thaliana Ws-eds1 (enhanced disease susceptibility) mutants were susceptible to all tested A. candida races.

†In the laboratory conditions, the cotyledons of the A. thaliana accession Ws-3 were found to be susceptible to the

Ac2V (Cooper et al., 2008).

‡Data from (Rimmer et al., 2000) incorporated; in this study, one cultivar B. rapa (CrGC1-18, rapid-cycling

accession) was infected by Ac2V race and four other tested cultivars (‘Torch’, ‘Colt’, ‘Horizon’, ‘Reward’) were

incompatible with Ac2V race. All analysed cultivars of B. juncea (CrGC4-1S, ‘Burgonde’, ‘Domo’, ‘Cutlass’) were

susceptible to Ac2V.

DOI: 10.7554/eLife.04550.003
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(187 members), kinesin- (59 genes) and myosin- (44 genes) like proteins and 35 genes homologous

to the secreted ‘CHXC’ proteins of Albugo laibachii (Kemen et al., 2011).

915 genes in the AcNc2 assembly are predicted to encode putative proteins with amino-terminal

secretory signal peptides, but no trans-membrane domain. Only 34% of the predicted secretome was

functionally annotated (BLASTP, E-value ≤ 10−5), including 115 proteins (proteases, hydrolases,

elicitin-like proteins, elicitors, protease inhibitors) that could be involved in plant cell wall degradation

and protection against host defense enzymes. In addition to the 35 CHXC proteins (Tyler et al.,

2006), further candidate virulence factors were identified including 19 homologs of the Phytophthora

Crinkler effectors (Haas et al., 2009), and another 23 secreted proteins with ‘RXLR’ and 35 proteins

with similar ‘RXLQ’ motifs. Both motifs are located in the N-terminal part of protein after the

predicted signal peptide, thus resembling the RXLR effectors of Phytophthora infestans and

Hyaloperonospora arabidopsidis (Haas et al., 2009; Baxter et al., 2010), but not having any

other significant sequence similarity to these proteins.

After carrying out several assemblies based on different k-mer lengths, the quality of each

assembly was assessed with various parameters and one best assembly was chosen for each

isolate (Table 2). The high similarity of the five A. candida isolates enabled us to conclude we had

sequenced three ‘races’, within which AcNc2 and AcEm2 were isolates of the same race and

AcBoT and AcBoL were also isolates of the same race (Figure 1). Therefore, genome comparisons

were first conducted on one representative from each race (AcNc2, Ac2V and AcBoT), from each

of which ∼33–34 Mb of genome was assembled (Table 2).

Genome-wide similarity between races with non-overlapping host range
To assess the overall genome-wide similarity between races, we performed alignments of reads

against the AcNc2 reference assembly. For the majority of the AcNc2 genome, we observed a

significant positive correlation between read depth in the reference assembly and mapping depth of

the Ac2V and AcBoT reads (r = 0.65, p < 2.2e-16; Figure 2A). Some AcNc2 regions (3–4% of the

assembly) showed low or zero coverage by Ac2V and/or AcBoT reads (Figure 2—figure supplement 1),

suggesting the presence of highly divergent or unique regions amongst the races. These are gene

sparse regions (150 and 234 genes predicted in the AcNc2, respectively), without apparent enrichment

for genes encoding for secreted proteins (χ2 = 0.11, d.f. = 1, p > 0.7). Amplification of randomly

selected AcNc2 genes from these regions revealed that four of the selected five genes are indeed

absent/or highly diverged in the AcBoT and Ac2V races, and present in the AcNc2 genome.

The overall mean level of nucleotide identity in the homologous genomic regions amongst races

is ∼99% (Figure 2B). We verified 25 polymorphic genomic regions by Sanger sequencing

(Supplementary file 3). We used the longest of all contigs from AcNc2, ‘contig 1’ (398,508 bp), to

Table 2. Summary of the A. candida AcNc2, AcEm2, AcBoT, AcBoL and Ac2V genome assemblies

AcNc2 AcEm2 AcBoT AcBoL Ac2V

Number of contigs 5212 11,581 11,929 11,143 12,210

N50 length (bp) 41,078 29,326 14,673 14,953 24,005

N50 number 231 284 584 581 353

Mean contig length (bp) 6610 2668 2781 2998 2770

Assembly size (bp) 34,454,169 33,409,146 33,184,526 33,409,856 33,823,601

GC content (%) 43.19% 43.09% 43.15% 43.15% 43.11%

CEGMA gene space coverage (%)* 93.55% 92.74% 93.55% 93,13% 92.34%

Average genome coverage 160 150 140 140 200

Repeat content (%) 17.4% NA NA NA NA

Predicted genes 10,907 NA NA NA NA

*Completeness of the gene space in the different genome assemblies was estimated using CEGMA pipeline; the

presence of over 90% of core eukaryotic genes in the assembly serves as an indication of a overall complete gene

space.

DOI: 10.7554/eLife.04550.004
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compare the levels of divergence between races vs the number of heterozygous positions within each

race. An extremely low proportion of sites (0.03% and 0.01%) on ‘contig 1’ are heterozygous within

AcNc2, AcEm2 and Ac2V races, respectively (Figure 3). Races AcBoT and AcBoL are more

heterozygous than Ac2V and AcNc2, with 0.65% of nucleotide positions in ‘contig 1’ being

heterozygous in AcBoT (Figure 3). Importantly, >97% of all heterozygous positions are shared in

AcBoL and AcBoT (see below). In between-race comparisons, ∼1.0% of nucleotide positions on

‘contig 1’ have diverged between AcBoT, Ac2V and AcNc2.

Mosaic-like genome structure of A. candida races
Polymorphisms are not homogeneously distributed among A. candida races. Some regions of the

genome are identical for up to 10,000 base pairs, whereas the local nucleotide identity is as low as

89% in other regions of up to 5 kb (Figure 2B). We examined 133 contigs (12,373,253 bp), covering

38% of the reference assembly. Stretches of nucleotide similarity amongst races are distributed in

a block-like structure; there are regions where AcNc2 is highly similar (or identical) to AcBoT and

significantly (nucleotide divergence π > 1%) diverged from Ac2V, and vice versa (Figure 4). By using

multiple different algorithms that can detect recombination in DNA sequence data incorporated

in the software RDP3 (Martin et al., 2010), we examined whether this pattern can be explained

by genetic introgression amongst races. In addition, we used the software HybRIDS (http://www.

norwichresearchpark.com/HybRIDS) to perform a probabilistic recombination analysis, calculate

the coalescence time of each recombinant block, and visualize the mosaic-like genome structure.

Recombination analysis of 133 contigs highlighted a total of 675 recombined blocks on 127 contigs

that were significant (after Bonferroni correction) in three or more tests using RDP3 (Supplementary

file 4). The combined length of all identified blocks is nearly 3 Mb or ∼25% of the analysed regions.

These blocks indicate regions of genome in one race that derive from another race (or the ancestor

of another race). Figure 4 illustrates the effect of genetic introgression on the pattern of nucleotide

similarity between the three races in the largest contig of ∼400 kb. The sequence (dis)similarity

between the three races shows a mosaic-like genome structure with large regions where races AcNc2

and AcBoT show near sequence identity (yellow blocks in Figure 4B), whilst other areas show a high

Figure 1. Phylogeny shows that the five sequenced Albugo candida isolates fall into three divergent races.

BEAST tree constructed based on using contig 1 (398,508 bp) shows the divergence among the three A. candida races

(AcEm2 and AcNc2; AcBoT and AcBoL; Ac2V). Blue bars represent the 95% Higher Posterior Density (HPD). Here, we

used a strict molecular clock fixed at 1.0 in order to show the relationship in the scale of substitutions per site.

DOI: 10.7554/eLife.04550.005
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level of sequence similarity between AcNc2 and Ac2V, and AcBoT and Ac2V (indicated by the purple

and turquoise regions, respectively). Note that the presence of such well-defined blocks of high

sequence similarity in an otherwise diverged genome is characteristic for rare introgression between

organisms that show a high (yet incomplete) level of reproductive isolation. Noteworthy too is the fact

that a high level of recombination (relative to the mutation rate) would homogenise the sequence

divergence between the races, and hence, that this would not result in the observed mosaic-like

structure.

Despite the fact that introgression between races is rare, it must have occurred multiple times

between the ancestors of the three races given that the coalescence times varies markedly between the

different blocks (Figure 5). Assuming a base mutation rate of μ = 10−8 per cell cycle, with 100 cell cycles

per year (i.e., a combined mutation rate of 10−6 per year), analysis in the software HybRIDS show

that the most recent introgression event has occurred circa 220 years ago, whilst the oldest event

occurred almost 200,000 years ago. The mean age calculated across all introgression events equals

6237 (±12,594) years (Figure 5). (With a combined mutation rate of μ = 10−7 per base per year, the

range in the age of introgression would span from 2200 to 2,000,000 years). Irrespective of the mutation

rate, the principal finding is that genetic introgression amongst A. candida races is an ongoing

evolutionary process occurring across a wide range of evolutionary times, and that it gives rise to mosaic

genomes with the introgression blocks interspersed in the recipient genomic background.

Figure 2. Comparison of A. candida races using alignments of Illumina reads against the AcNc2 assembly.

(A) Positive correlation between the depths of coverage of the reference assembly (AcNc2) by the Ac2V and AcBoT

reads. For the reference contigs less than 20 kb, the mean coverage was calculated across the whole contig length

and log-transformed. For the contigs over 20 kb, the mean coverage was calculated for the sliding window of 20 kb

and log-transformed. Y-axis shows the log-transformed depth of the reference coverage by the Ac2V reads; X-axis

shows the log-transformed depth of the reference coverage by the AcBoT reads. (B) Nucleotide identity amongst

the homologous genomic regions of Ac2V, AcBoT and AcNc2. The mean identity was calculated for the sliding

window of 20 kb.

DOI: 10.7554/eLife.04550.006

The following figure supplement is available for figure 2:

Figure supplement 1. Coverage of the reference assembly (AcNc2) by Ac2V and AcBoT.

DOI: 10.7554/eLife.04550.007
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A total of 1655 predicted genes are located in the recombined regions, and amongst these, 125

are predicted to encode secreted proteins. In the introgression regions, we identified 14 genes

encoding secreted proteases and hydrolases that in some pathogens act as virulence factors

(Monod et al., 2002; Soanes et al., 2007; Lebrun et al., 2009). Thus, recombination between races,

resulting in introgression can act as a mechanism for exchange of virulence gene alleles.

However, neither gene density nor dN/dS are enriched or depleted in regions affected by

introgression, compared to regions not affected (Paired t-test: T = −0.05, p = 0.958;

Mann–Whitney test: W = 3.15 × 166, p = 0.152, respectively). It is however entirely likely that by

studying only a small subset of all the known races, we have underestimated the actual level of

introgression across all races.

Intra-race diversity suggests clonal propagation after creation of novel
adapted allele repertoires
To better understand the evolution and diversification of A. candida genomes, we analysed the

pattern of recombination and nucleotide divergence with the inclusion of two additional A. candida

isolates. AcBoL is an additional isolate from the AcBoT race and AcEm2 is an additional isolate of the

AcNc2 race (see Figure 1). We found evidence for 581 recombination events, of which 335 included

AcBoT or AcBoL as recombinants. These two isolates shared a recombinant block in 97.3% of

recombination events (AcBoT and AcBoL = 326; AcBoT = 6; AcBoL = 3). AcNc2 and AcEm2 shared

a recombinant block in 99.6% of events (AcNc2 and AcEm2 = 246; AcNc2 = 0; AcEm2 = 1).

This demonstrates that the AcBoT/AcBoL and AcNc2/AcEm2 races have remained largely

unchanged since their initial emergence.

Figure 3. Nucleotide polymorphism within and between A. candida isolates. Mean (±5–95%CI) polymorphism

expressed as the percentage observed heterozygote sites (solid symbols) and percentage nucleotide divergence

(open symbols) at contig 1. Confidence intervals were calculated using a bootstrap of contig 1 after removal of

indels. Isolates infecting the same host plant (i.e., AcBoT-AcBoL and AcEm2- AcNc2) show little nucleotide

divergence, which indicates that they are genotypically almost identical (i.e., diverged by less than 0.05%).

Nevertheless, the Brassica oleracea infecting race (AcBoT and AcBoL) possess a relatively high heterozygosity

compared to the isolates of the Arabidopsis thaliana infecting race. Moreover, most of this heterozygous

polymorphism is shared (low nucleotide divergence) and presence of the majority of heterozygous sites is consistent

with clonal reproduction.

DOI: 10.7554/eLife.04550.008

McMullan et al. eLife 2015;4:e04550. DOI: 10.7554/eLife.04550 8 of 24

Research article Genomics and evolutionary biology | Plant biology

http://dx.doi.org/10.7554/eLife.04550.008
http://dx.doi.org/10.7554/eLife.04550


The nucleotide diversity within genomes (i.e., the observed heterozygosity) and the nucleotide

divergence between genomes (i.e., genetic differentiation) can be used to further understand

A. candida population biology. Isolates AcBoT and AcBoL were both collected in Lincolnshire in 2009,

and the observed heterozygosity in these isolates was at least 13 times higher than that of any of the

other races (percentage heterozygous positions in contig 1: AcBoT = 0.653%; AcBoL = 0.644%;

AcNc2 = 0.047%; AcEm2 = 0.044%; Ac2V = 0.028%) (see Figure 3). Remarkably, AcBoT and AcBoL

are heterozygous for almost all of the same sites; 97.2% of the sites that are heterozygous in AcBoT

are also heterozygous in AcBoL (and 98.5% vice versa). This is only consistent with clonal reproduction

because after just one generation of sexual reproduction (or selfing with recombination), Mendelian

segregation would eradicate this high level of genotypic similarity. Notably, such evidence for clonal

propagation of a race would be difficult to obtain for haploid fungal pathogens.

With little evidence for recombination and gene flow, most nucleotide divergence between AcBoT

and AcBoL must have accumulated through mutation. The nucleotide divergence between these

isolates is just 0.030% (121 polymorphisms in 398,508 bp in contig 1) (Figure 3). Assuming a mutation

rate of 1 × 10−8 per cell division, and 100 cell divisions per lineage per year, we estimate that these

isolates could have diverged 305 (262–353) years ago. The other pair of isolates, AcNc2 and AcEm2,

were collected in Norfolk in 2007 and in Kent in 1993 (160 km apart), respectively. Similar to the

Figure 4. Variation in sequence similarity between races. (A) Alignment of nucleotides in between positions 158,779 and 167,382 within ‘contig 1’ of three

A. candida races (AcNc2, AcBoT and Ac2V) illustrating two recombination blocks coloured blue and green. Both blocks show high sequence similarity

between races. Also shown is the sequence divergence in between blocks. Alignment gaps and monomorphic sites have been removed. (B) The sequence

similarity at ‘contig 1’ amongst three A. candida races was visualised using the colours of a RBG colour triangular in the software HybRIDS (http://www.

norwichresearchpark.com/HybRIDS). Areas where two contigs have the same colour (yellow, purple or turquoise) are indicative of two races sharing the

same polymorphisms. The linear plot of the proportion of SNPs shared between the three pairwise comparisons between the races. Shown on the X-axis is

the actual base position. The graphs were made in the R package HybRIDS (http://www.norwichresearchpark.com/HybRIDS).

DOI: 10.7554/eLife.04550.009
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former two isolates, AcNc2 and AcEm2 are also nearly identical (nucleotide divergence

π = 0.046%, that is, they are >99.95% identical) (Figure 3). If we again assume that their

nucleotide divergence arose by mutation alone, their estimated divergence time is 890 (814–970)

years. However, unlike AcBoT and AcBoL, AcNc2 and AcEm2 are much less heterozygous (see

Figure 3), which suggests that another genetic mechanism, for example, loss of heterozygosity

Figure 5. Age of recombination blocks. (A) Age of the 675 recombination blocks (mutation rate of μ = 10−6)

estimated using binomial mass function; (B) Boxplot of the median (plus first nation blocks and third quartile)

log-age of recombination events in contigs. Only contigs with eight or more events are shown. There is no significant

difference in age of events between contigs (GLM: F22, 233 = 1.06, p = 0.387).

DOI: 10.7554/eLife.04550.010
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(Lamour et al., 2012), might be operating which has eradicated the gene diversity in the clonally

propagating races over time.

Sequential infections abolish host specificity of susceptibility to
A. candida infection
A. candida infection compromises host resistance against otherwise avirulent pathogen species

(Cooper et al., 2008). Conceivably, A. candida could suppress host defenses to otherwise avirulent

races of A. candida, enabling co-infection and sexual exchange. To test this we performed sequential

inoculation experiments, identifying races using the genome sequences to create race-specific DNA

markers. Race-specific PCR of pre-inoculated plants (Supplementary files 5, 6) shows preinfection by

AcNc2 suppresses resistance in A. thaliana accession Ws-2 leaves towards the B. juncea-infecting race,

Ac2V (Figure 6A). Also, preinfection by AcBoT suppresses B. oleracea resistance towards Ac2V

(Figure 6B). Furthermore, defense suppression was so effective that Ac2V was able to complete its

life cycle on both A. thaliana Ws-2 and B. oleracea as observed by successful subsequent infection on

B. juncea from the sequentially inoculated plants. In a reciprocal experiment, preinfection of B. juncea

with Ac2V enabled AcNc2 growth on B. juncea (Figure 6C). Therefore, AcNc2 not only can suppress

Ac2V recognition on A. thaliana, but Ac2V is also capable of suppressing B. juncea resistance

towards AcNc2. TIR-NB-LRR resistance genes likely confer Ac2V resistance in Arabidopsis

(McHale et al., 2006), as Ac2V grows on an eds1-1 mutant of A. thaliana Ws-2 (Supplementary

file 6; [Parker et al., 1996]). It has long been noted that Albugo sp. have a remarkable capacity to

suppress immunity in their hosts (Cooper et al., 2008). We hypothesise that suppression of host

innate immunity enables co-infection of hosts by races with otherwise non-overlapping host ranges,

thus providing a remarkable mechanism to enable sexual genetic exchange between specialised

A. candida races.

Discussion
A. candida comprises distinct races that specialize on different plant species (Liu et al., 1996; Rimmer

et al., 2000) and its physiological races can infect over 200 species of plants. Here, we describe the

genomes of five isolates from three races of A. candida that colonize distinct host plant species and

appear to have non-overlapping host ranges. Genome analyses show that the races have a mosaic-like

genome structure that is consistent with genetic introgression between races that have significantly

diverged (mean nucleotide divergence ∼1%). Despite this divergence, ∼25% of the nucleotide

sequence within the analysed genome (3.2 Mb out of 12.4 Mb) is derived from other A. candida races.

675 introgressed blocks were identified in the 127 analysed contigs and each block was confirmed by

at least three independent recombination algorithms. Based on the high nucleotide similarity of the

recombined regions, it appears that some genetic exchange must have occurred recently and that

introgression has happened multiple times between the ancestors of the three races.

An alternative hypothesis for the observed mosaic-like genome structure is that the polymorphisms

were already present in the ancestor of A. candida, and that those may have sorted stochastically

among descendant host races. This is known as incomplete lineage sorting (Pamilo and Nei, 1988;

Hobolth et al., 2007), and such ancestrally shared polymorphism is notoriously difficult to distinguish

from polymorphisms shared through secondary contact and introgression. However, by estimating

the coalescence time of the introgressed regions we showed that hybridisation between the races is

an ongoing evolutionary process, with some introgression events occurring as recent as 220 years

ago. We therefore reject the hypothesis of incomplete lineage sorting and propose that genetic

exchanges between the A. candida host races have occurred through rare but nevertheless significant

introgression events.

If host-ranges are determined by multiple loci, one might expect that recombination will

quickly lead to ‘super genotypes’ with very wide host ranges. However, this is unlikely because of

the dual consequences of effector alleles; they not only can contribute to virulence, but if

recognized by Resistance (R) gene alleles in a particular host, they can result in the complete loss of

virulence on that host (Dodds and Rathjen, 2010). Effectors selected to facilitate infection and evade

recognition by R genes in one host might be recognised by the R genes in another host and be

maladaptive. Thus, genotypes that are highly virulent on multiple hosts are unlikely to arise by

recombination between races that specialize on distinct specific hosts, although occasionally, acquiring an
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effector from one race by introgression might offer an adaptive advantage assuming that the effector

is not recognised.

Strikingly, each race shared a mosaic pattern of large genomic regions (>10,000 bp) that were

virtually identical between two races (and diverged from the third). Given that mutations accumulate

over time, this implies that the exchange must have occurred relatively recently. Yet, A. candida is an

Figure 6. PCR with race-specific markers on DNA prepared from plant tissue generated from co-infection assays.

(A) Co-infection assay of AcNc2 followed by Ac2V onto Ws-eds1 and Ws-2. (B) Co-infection of AcBoT followed by

Ac2V onto Ws-eds1 and B. oleracea (B.o). (C) Co-infection of Ac2V followed by AcNc2 onto Ws-eds1 and B. juncea

(B.j). Bands highlighted in orange indicate amplification of secondary inoculum on usually non-host plants upon

primary inoculation with virulent A. candida. These experiments were repeated multiple times with similar results

(see Supplementary file 6).

DOI: 10.7554/eLife.04550.011
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obligate biotrophic parasite that is highly host-specific. The host-specificity of A. candida races was

confirmed in our experiments, and this raises the question of how distinct A. candida races can

achieve the physical contact required for them to have sex and recombine. We addressed this

question using experimental infections of host plants with multiple races. Crucially, we showed that

infection with a virulent race of A. candida suppresses host immunity sufficiently to enable subsequent

co-colonization by an otherwise non-virulent race (see also Cooper et al., 2008). Although this opens

up competition between races for the same (limited) resource, it also brings a significant evolutionary/

ecological advantage by blurring the borders of host range, thereby creating secondary contact zones

that enable sexual reproduction and genetic exchange between races. Given the high-host specificity

of obligate biotrophic parasites, this ability of A. candida to enable occasional genetic exchange

between specialised races could create novel repertoires of effector alleles that would enable

colonization of new hosts (‘host jumps’). For example, Arabidopsis resistance to race Ac2V can at least

in part be explained by the WRR4 gene, a classical NB-LRR R gene, which presumably recognizes

an Ac2V effector (Borhan et al., 2008). Hypothetically, if this Ac2V effector would segregate

away in hybrid offspring, or by loss of heterozygosity, these offspring could become virulent on

WRR4-carrying Arabidopsis hosts.

Once a new hybrid race has been established, it can reproduce asexually and clonally on

susceptible hosts without continued genetic exchange with other races. We base this inference on the

exceptionally high genotypic similarity between independent isolates that infect the same host plant

(i.e., AcBoT-AcBoL and AcEm2-AcNc2). For example, AcBoT and AcBoL share >97% of their

heterozygous sites. This observation is significant because it rules out sexual reproduction

(or selfing with recombination), given that Mendelian segregation would eradicate this high level

of genotypic similarity within a single generation. Hence, we conclude that reproduction of AcBoT

and AcBoL is asexual and clonal, and we speculate that these races may have derived from a

common ancestor that was selected coincident with the onset of widespread B. oleracea cultivation in

Europe. The A. thaliana-infecting isolates (AcNc2 and AcEm2) were sampled at a broad spatiotemporal

scale (14 years and 100 miles apart), and yet they showed a very high nucleotide similarity (>99.95%
identical). This shows that clonal reproduction coincided with their rapid population expansion.

Remarkably though, compared to the former two isolates, AcEm2 and AcNc2 had a relatively low level

of observed heterozygosity, and the number of heterozygous sites was >13 times less than that of

AcBoT and AcBoL. Since these races do not self-fertilize, this suggests that gene conversion or another

mechanism might be operating to reduce the nucleotide diversity within their genomes over time.

Such loss of heterozygosity (LOH) has also been reported for Phytophthora capsici (Lamour et al.,

2012), and in yeast, LOH events can encompass entire chromosomes, which is thought to be

explained by the break-induced replication (BIR) mechanism (Diogo et al., 2009).

‘Hybrid speciation’ or ‘recombinational speciation’ is often associated with a mosaic genome

(Baack and Rieseberg, 2007; Stukenbrock et al., 2012) and because introgressed genes have been

‘pre-tested’ by selection, they are more likely to be adaptive than random changes to the genetic

code by mutations (Hedrick, 2013). For example, Helianthus anomalus is a wild sunflower species

derived via hybridization between two parental species, and its genome is characterised by parental

species blocks. In this case, however, hybridisation and speciation occurred over a short evolutionary

time-span (10–60 generations) (Ungerer et al., 1998), which differs from hybridisation in A. candida,

where it appears to be a persistent evolutionary process. Darwin’s finches are a classic example of

a young adaptive radiation, and recent research by Lamichhaney et al. (2015) showed that species

from different islands show extensive genomic exchange through recent hybridisation. Introgressive

hybridization was found to occur throughout the radiation, fuelling the genetic variation in beak

shape, and thereby facilitating adaptive evolution. Perhaps more pertinently, the relationships of

members of the parasite’s principal host, plants of the Brassica genus, are themselves considered to

be the result of a number of hybridisation events, as defined by the Triangle of U (Nagahara, 1935).

Hybridisation events have also been implicated in speciation and adaptive radiation in vertebrates

(Nichols et al., 2015). Furthermore, rare introgression events among Heliconius butterflies are

believed to have facilitated the exchange of mimicry genes across multiple time points post speciation

(Martin et al., 2013). Evidence for more frequent introgression has been observed in the malaria

vector species complex (Anopheles gambiae) (Fontaine et al., 2015). More examples of such

introgression can be anticipated to emerge given the continued improvement and reduction in
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cost of DNA sequencing methods, and the development of novel software that enable analysis

of whole genome recombination (Ward and van Oosterhout, submitted).

Perhaps more than any other system, studies on yeasts have offered valuable insights into how

introgression and hybridisation can affect genome architectures of eukaryotic microorganisms

(reviewed by Dujon, 2010). Genetic exchanges amongst three strains of Saccharomyces cerevisiae

have been quantified using genomic data which show that the rate of outcrossing is remarkably low,

with only 314 outcrossing events during circa 16 million cell divisions (Ruderfer et al., 2006). With

such a low rate of genetic exchange, the strains accumulate sequence variation by mutation and thus

genetically diverge. Given the low level of genetic exchange amongst the A. candida host races, this

may also explain their genetic divergence. In yeast, natural hybrids have been reported in many

species (Dujon, 2010), with hybridisation leading to the nonreciprocal genetic exchange

accompanied by the loss of genes and genomic regions. This results in chimeric sequences from

which novel lineages could emerge (Greig et al., 2002; Usher and Bond, 2009). For example,

Lachancea kluyveri possesses mega-base long chromosomal fragments of distinct composition (Payen

et al., 2009). Furthermore, the genomes of wine strains of S. cerevisiae contain introgressed

regions from Saccharomyces paradoxus, S. kudriavzevii kudriavzevii, S. uvarum uvarum, and

Zygosaccharomyces bailii (Dujon, 2010). Given that the introgressed sequences in the genome of

S. cerevisiae are nearly identical to those in the donor genomes, hybridisation must have occurred

recently, which is similar to what we observe in A. candida. Although introgression appears to be

a general phenomenon in yeast genomes, its importance for evolution has yet to be determined

(Dujon, 2010). The mosaic-like genome structure of A. candida suggests that hybridisation and

genetic introgression may play an equally important role in the biology of this oomycete.

Introgression can introduce novel adaptive trait combinations (Seehausen, 2004; Hedrick, 2013)

as well as enable the loss by segregation of host-specific ‘avirulent’ effector alleles that can trigger the

immune response in potential hosts. In rare novel recombinant races, such maladapted effectors that

trigger the response of a specific host may be segregated away, allowing the recombinant to avoid

immune recognition and colonise this new host. Once this happens, the new hybrid can rapidly

expand its geographic range and population size through clonal reproduction. Hybrids between

Phytophthora spp. races can show expanded host range compared to their parental lineages

(Ersek et al., 1995) while the importance of virulence gene transfer that subsequently leads to the

expansion of pathogens’ host range has also been reported for bacterial and fungal pathogens

(Doolittle, 1999; Mehrabi et al., 2011).

The ability of pathogens to recombine and generate novel recombinant genotypes and

subsequently proliferate clonally may be particularly favoured in the agro-ecological environment.

Recent fusion between genetically distinct plant pathogens has been shown in Mycosphaerella

graminicola (Stukenbrock et al., 2012), where a hybrid speciation event has generated a generalist

pathogen of grass species, and in Blumeria graminis (Hacquard et al., 2013), where a mosaic genome

structure has been generated by sex between divergent isolates. Adaptation of pathogens to agro-

ecosystems can be correlated with a reduction in diversity of recently emerged lineages and at the

same time, high levels of genome plasticity (Stukenbrock and Bataillon, 2012). This genome

plasticity has also been observed in B. graminis (Hacquard et al., 2013). Race specialization observed

in the potato late blight pathogen P. infestans, the rice blast pathogen Magnaporthe oryzae, and the

wheat yellow rust pathogen Puccinia striiformis (Stukenbrock and Bataillon, 2012), may represent

the result of a broader mechanism of pathogen adaptation to a crop monoculture. A. candida, which

is known to live on both wild weeds (e.g., A. thaliana) and important crop species (e.g., B. juncea), thus

provides remarkable insights into the impact of recombination in generating new virulent races and

subsequent clonal propagation of a novel race. These findings are particularly relevant to modern

agricultural methods and the emergence of new epidemic pathogen strains on crop monocultures.

Materials and methods

Pathogen isolation and cultivation
A. candida races were isolated and propagated by first washing zoosporangia from infected

leaves and then infecting A. thaliana Ws-eds1 (enhanced disease susceptibility [Parker et al.,

1996]) plants. After 2 weeks, one pustule was punched out and spores were treated on ice for

30 min to release zoospores. Unhatched zoosporangia were removed by filtration and zoospores
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were diluted to ∼10 zoospore per ml and sprayed on A. thaliana Ws–eds1 plants (∼100 μl/plant).
This procedure was repeated four times until spores were bulked up on A. thaliana Ws-eds1

plants. Zoosporangia were harvested using a homemade cyclone spore collector (Mehta and

Zadoks, 1971). Subsequently, A. candida races AcEm2/AcNc2, AcBoT/AcBoL and Ac2v were

propagated and maintained on A. thaliana Ws-2, B. oleracea and B. juncea, respectively.

Virulence test
Host specificity was tested for the AcNc2, Ac2V and AcBoT races on a number of A. thaliana and

Brassica spp. accessions (Supplementary files 1, 2). A. candida inoculations were performed using

the following method: zoospores were suspended in water (105 spores/ml) and incubated on ice for

30 min; the spore suspension was then sprayed on plants using a spray gun (∼700 μl/plant), and plants

were incubated in a cold room in the dark over night. Infected plants were kept under 10-hr light and

14-hr dark cycles with 20˚C day and 16˚C night temperature. Plants were scored susceptible if

a pathogen was capable of accomplishing its life cycle and sporulation was macroscopically visible

within 3 weeks after plant inoculations.

For sequential infection analyses, we developed A. candida race specific PCR primers from

genome sequences (Supplementary file 5). Regions in all vs all alignments were identified that lacked

read coverage by other isolates. Primers were designed within these regions to amplify products of

between 300 and 800 bases and were tested on pure genomic DNA extracts from each isolate.

Primary inoculum was sprayed onto control and test plants. In the case of AcNc2 defence

suppression assays, both A. thaliana Ws-2 and Ws-eds1 were inoculated; for AcBoT assays,

B. oleracea and Ws-eds1 were inoculated; for Ac2v assays, B. juncea and Ws-eds1 were

inoculated. Following inoculations, plants were incubated in the dark in a cold room over night

before transferring to a growth cabinet set to the conditions described above. In addition to

pathogen treatment, the same numbers of plants were also treated with water in order to serve

as a negative infection control. At 7 days post-inoculation a secondary infection with the avirulent

A. candida race was performed on 50% of the plants while the remaining 50% were water treated

(Supplementary file 6). Plants were returned to the growth cabinet and cultivated for a further

8 days. Inoculated plant tissue was harvested, washed in sterile water to remove surface adhering

spores, and flash frozen in liquid nitrogen. DNA was prepared using a DNeasy Plant Mini Kit

(Qiagen, Valencia, CA) as described in manufacturers instructions. PCR was performed using race-

specific primers and products visualised on a 1% agarose gel.

Plants from which tissue was harvested were maintained for a further 7 days before re-inoculation

onto the original host of the otherwise non-virulent pathogen. This was done in order to confirm

the completion of the secondarily inoculated pathogen race’s lifecycle on immunosuppressed

non-host plants.

DNA extraction and sequencing
DNA was extracted from zoosporangia according to the method described in Mckinney et al. (1995),

and Illumina libraries for sequencing were constructed according to Farrer et al. (2009). Paired-end

libraries of 800 bp and 400 bp insert lengths (for the race Ac2V only one library of ∼400 bp) were

sequenced using Illumina Genome Analyzer II platform at the Sainsbury Laboratory Sequencing

Centre (GA2). The base calling was done on the Illumina GAP v1.3 pipeline.

cDNA extraction and sequencing
A. thalianaWs-0 plants were infected with A. candida AcNc2 and infected plants were harvested at 0, 2,

4, 6, 8 and 10 days after infection. RNA was isolated using TRI Reagent RNA Isolation Reagent (Sigma,

UK), and subsequently enriched for mRNA with Dynabeads (Invitrogen). cDNA was prepared using the

SMART cDNA Library Construction Kit (Clontech, Sunnyvale, CA) according to manufacturer’s

instructions. These libraries were normalized using Evrogen Duplex-specific nuclease (DSN). Normalized

cDNA libraries were fragmented using Covaris sonicator and libraries prepared according to Illumina

genomic library preparation kit. Libraries were sequenced on the Illumina GA2 platform.

The sequence data have been deposited at the EMBL Nucleotide Sequence Database, with the

accession numbers for A. candida AcNc2: SRR1811450, SRR1811464, AcEm2: SRR1806791, AcBoT:

SRR1811472, SRR1811473, AcBoL: SRR1811474, Ac2V: SRR1811471.
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Genome and transcriptome assembly
The genomic assemblies were produced using program Velvet 1.0.19 (Zerbino and Birney, 2008).

Using BLAST (Altschul et al., 1990), resulting contigs were searched (BLASTN, E-value ≤ 10−5) against

genomic sequences of A. thaliana TAIR 9.0 (The Arabidopsis Genome Initiative, 2000), fungi

Neurospora crassa (Galagan et al., 2003), a collection of bacterial genomes (such as, Xanthomonas

sp. and Pseudomonas sp.: microbialgenomics.energy.gov), and against mitochondrion of Pythium

ultimum (Levesque et al., 2010) to remove potential contamination and mitochondrial DNA. The

assembly of AcNc2 was processed by merging the overlapping contigs from two velvet assemblies

(based on the k-mers 55 and 61) with the Minimus2 genome merge pipeline (Sommer et al., 2007)

and in-house perl scripts.

Read alignment and mapping was performed using programs BWA (0.7.3) and SAMtools (0.1.17)

(Li and Durbin, 2009; Li et al., 2009) and BedTools (Quinlan and Hall, 2010). Duplicates were

removed from mapped reads and SNP calling and filtering was done with BCFtools view and varFilter

(-D100). Where required, conversion to fasta format from vcf was done using the modified version of

vcf2fq which has been modified to include indels (http://sourceforge.net/p/vcftools/feature-requests/

19/) and then sequences were aligned using mafft online server (http://mafft.cbrc.jp/alignment/

server/).

Illumina sequenced cDNA from the AcNc2 infected A. thaliana Ws-0 leaves was assembled using

Velvet/Oases (Schulz et al., 2012) with different k-mer lengths (43, 45, 47, 51, 55, 57, 61, 63). We used

various characteristics (total number of contigs, assembly size, longest contig length and mean contig

length, and the proportion of core eukaryotic genes (KOGs) predicted by CEGMA) to assess assembly

quality. Two best assemblies based on the k-mers 55 and 57 were merged using VMATCH (http://

www.vmatch.de/). The cDNA orientation was predicted using Illumina generated cDNA 5′ tags. Using
Bowtie aligner (Langmead et al., 2009), cDNA 5′ tags were aligned against the assembled cDNA and,

based on tag counts, orientated in the 5′–3′ direction.

Gene prediction and annotation
Ab initio gene predictions were performed for A. candida AcNc2 using the Augustus gene prediction

package (Stanke et al., 2006), Geneid (Blanco et al., 2002) and GeneMark (Lomsadze et al., 2005).

Alternative splice variants were predicted with Augustus. To improve gene predictions, the ‘hints’ files

were created using cDNA evidence and gene homology information. The generated library of AcNc2

transcripts was aligned to the AcNc2 assembly using BLAT (Kent, 2002), setting minimal identity to

92; the ‘hints’ file was produced with script blat2hints.pl provided with the Augustus package.

The parameters previously obtained for the gene prediction in the A. laibachii genome project

were utilized when running the Augustus and Geneid. GeneMark predictions were made with the

default settings. Consensus gene models were generated with Evigan (Liu et al., 2008). Subsequently,

the catalog of non-overlapping gene models was created from the Evigan, Augustus, Genemark and

Geneid predictions. The gene space coverage was assessed with CEGMA (Parra et al., 2007).

Functional annotations of AcNc2 proteins were performed via comparison of the predicted protein

sequences with the protein databases; UniProtKB (Suzek et al., 2007) and NCBI non-redundant

RefSeq (Pruitt et al., 2009) databases were scanned using BLASTP algorithm (E-value ≤ 10−5);

and Pfam database (Punta et al., 2012) was searched with the program hmmscan from HMMER3

(Eddy, 2011) with the default settings. GO terms were assigned with BLAST2GO pipeline

(Conesa et al., 2005).

Gene families were predicted using Tribe-MCL algorithm that implements Markov cluster (MCL)

approach for the clustering of proteins into families based on the pre-computed sequence similarity

information (Enright et al., 2002).

Signal peptides and cleavage sites were predicted by the hidden Markov Model and the neutral

network algorithm implemented in SignlP 4.0 program (Petersen et al., 2011). Transmembrane

helices were predicted with the hidden Markov Model in TMHMM 2.0 (Moller et al., 2001).

Candidate cytoplasmic effectors carrying ‘RXLR’ motif were identified through the string search

of the predicted secreted proteins using ‘R[A-Z]L[RQ]’ regular expression in the first 100 residues

downstream of the signal peptide cleavage site. Crinkler’s homologs were detected using BLASTP

searches (E-value ≤ 10−5) against NCBI non-redundant RefSeq database (Pruitt et al., 2009).

Homologs of A. laibachii ‘CHXC’ proteins were identified through Tribe-MCL clustering, also using
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BLASTP searches (E-value ≤ 10−5) of the A. laibachii predicted proteome, and string search for the

‘CH[A-Z]C’ motif in the first 100 residues after predicted signal peptide.

Repetitive elements
The library of repeats in AcNc2 assembly was constructed with RepeatScout (Price et al., 2005) and

was joined with the previously made library for A. laibachii (Kemen et al., 2011). This updated library in

combination with RepeatMasker (http://www.repeatmasker.org/) was used for the identification of

repeats and their frequencies. Transposon elements were annotated using TBLASTX searches (E-value

≤ 10−5) against the database of transposon elements, RepBase (Jurka et al., 2005).

Phylogenetic analysis
Phylogenetic trees were built (MrBayes program [Huelsenbeck and Ronquist, 2001]) for the

nucleotide sequence alignments of the orthologous genes present in four A. candida races and A.

laibachii. Trees were built for 100 single copy genes (50 core eukaryotic genes and 50 singletons with

unknown function) Phylogenetic Bayesian inference and Markov chain Monte Carlo (MCMC) methods

were used to estimate the posterior distribution of model parameters. We used lset = 6, gamma

model, mcmc of 10 million, samfreq = 7000 and burnin = 375. Population genetic parameter ‘theta’ (Θ

= 4Neμ) was estimated using mlRho program (Haubold et al., 2010). Four different topologies were

inferred with equal support which warranted further investigation into the role of introgression.

Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7

(Drummond and Rambaut, 2007) was used to produce the race phylogeny (based on contig 1).

BEAST implements Markov chain Monte Carlo (MCMC) algorithms for Bayesian for divergence time

dating (Drummond and Rambaut, 2007). Bayesian phylogenetic trees were constructed with a HKY+
G nucleotide substitution model under a strict molecular clock (with units in mutations per site) and

a Yule tree prior. We ran ten independent MCMC analyses each of 10 million steps and a 10% burn-in.

MCMC chain mixing was assessed using Tracer 1.5 which showed ESS >3000 for each statistic.

Recombination analyses and detection of exchanged sequence blocks
Recombination events were statistically identified on contigs ≥10,000 bp using the software RDP3

using five independent detection algorithms: RDP (Heath et al., 2006), GENECONV (Padidam et al.,

1999), Maxchi (Smith, 1992), Chimaera (Posada and Crandall, 2001), and 3Seq (Boni et al., 2007).

Tests were conducted using a critical value α = 0.05 and p-values were Bonferroni corrected for

multiple comparisons of sequences. Sequences were linear using unphase base calling and the

random assignment of one of the nucleotides at each polymorphic site. Given that recombination

algorithms use cismutations to define regions of a sequence that share the same phylogenetic history,

the statistical power to detect recombination is reduced when using unphased data (Darren Martin

pers. comm.). This is because the signal of unphase base calling erodes any underlying signal of

recombination. This procedure is conservative and underestimates the true number of recombination

events because it reduces sequence similarity between the recombinant and parental sequence.

Phylogenetic evidence of recombination was required to confirm a recombination event. Window

sizes for each detection method were set to defaults. Only events for which the software identified the

parental sequences (i.e., no ‘unknowns’) without ambiguous start and end position of the

recombination block are reported and used in the analyses. Furthermore, events were only

considered to be genuine if they were supported by at least three of the five detection

algorithms. Hence, the estimates of the number of recombination events are conservative.

The effects of recombination on the sequence similarity between three genomes was visualised

using a newly developed code in the R package HybRIDS (Hybrid Recombination, Identification and

Dating, Software, http://www.elsa.ac.uk/). HybRIDS uses a colour triangle to visualise the sequence

similarity between aligned sequences. It calculates the colour of each 100 bp window based on the

proportion of SNPs shared between the pairwise sequences. All monomorphic sites were excluded in

this calculation. HybRIDS uses the additive colour system in which the primary colours used are red,

green, and blue. These colours are plotted on the corners of the RGB colour triangle, which is shown

in the legend as a reference. In cases where all SNPs are shared between just two of the three races,

the hybrid colour is an exact 50% mix of two primary colours. The hybrid colours are yellow, purple

and turquoise, and these colours suggest recent gene exchange between the two races. At such
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recombined regions, the third race receives its primary colour (because by definition, it must be

unique at the 100 bp window and completely dissimilar from the other two races). Older recombined

regions are predicted to have accumulated SNPs unique to each race, causing the block of two

hybridizing races to diverge. In the graph, the colour of such areas contains more than 50% of the

primary colour of that race. The colours in the centre of the triangle are pale and reflect areas where

the three races share approximately similar numbers of polymorphisms. The SNPs in these pale

regions, and in regions where the colours are close to the primary colours, are more likely caused by

mutations than by genetic exchange. Note that primary colours can also be assigned to regions that

may have recombined, but which originate from a race that was not sampled, and hence, which

polymorphisms were not included in this analysis.

Dating recombination events
We used the sequence divergence of the recombination block between the recombinant and the

minor parent (i.e., the sequence donating the recombinant region) to estimate the divergence time

since a recombination event. We used two dating methods, a binomial mass function and an analysis

with the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version

1.7 (Drummond and Rambaut, 2007). A binomial mass function was used to estimate the mean

divergence time of a block of given size with an observed number of SNPs. In order to correct for

mutation saturation, homoplasy, back mutations and transition/transversion ratios, we converted the

observed number of SNPs into the number of mutations using a JC correction (Jukes and Cantor,

1969). The probability of finding a number of SNPs less or equal to the observed number in a block of

known size was calculated. The mean time is found when the binomial mass function returns

a probability value p = 0.5. This approach finds the most probable age of the recombination event,

and it assumes that since the recombination event, the block evolved neutrally over t years, and that

each base has the chance to mutate with a probability μ per year (μ = 10−6 and 10−7). The algorithm

uses a strict molecular clock, and because the mutation rate in oomycetes is unknown, we assumed

μ = 10−6 as well as μ = 10−7 per base per year. The lower value of the mutation rate of μ = 10−7 was

used as a more conservative estimate. Given that we do not know the mutation rate of oomycetes, the

estimated dates are merely an approximation and shown to illustrate that the exchanged blocks are

dated back to a wide range of evolutionary times. The simple dating method based on the binomial

mass function was compared to more computationally intensive analysis with BEAST by dating 20

recombination events from the ‘contig 1’ of AcNc2 and performing a linear regression analysis to

confirm application of the faster binomial algorithm to all 675 recombination events. The principle aim

of these analyses was to identify whether or not recombinant regions span a range of dates (in line

with the expectation under an introgression model).

BEAST bayesian phylogenetic trees were constructed with a HKY+G nucleotide substitution model

under a strict molecular clock (μ = 10−6) and a Yule tree prior. We ran 10 independent MCMC analyses

each of 10 million steps and a 10% burn-in for each of the 20 recombination events. MCMC chain

mixing was assessed using Tracer 1.5 which showed ESS >3000 for each statistic.

Note however that the divergence estimates made by the binomial mass function and the analysis

with BEAST are conservative (i.e., the true time of the recombination event are probably more recent)

given that we had only three sequences in the analysis. Consequently, the ‘true’ parental sequence

has probably not been sampled, which means that the observed divergence is larger than that of the

actual parental (donor) sequence.

Substitution rates and selection
The substitution rates (non-synonymous substitution rate per non- synonymous site (dN) and

synonymous substitution rate per synonymous site (dS)) and the ratio of the dN/dS for the

orthologous protein-coding sequences between three isolates were estimated with the M0

model in PAML (Yang, 2007). The dN/dS ratio is traditionally used as an indicator of the strength

and type of selective constrains acting upon a gene. Values of dN/dS ≈ 1 indicate neutral evolution.

Values of dN/dS significantly less than unity indicate purifying selection, whereas dN/dS significantly

larger than unity suggest positive selection. The Tajima’s D statistics (Tajima, 1989) were not

calculated because we do not possess allele frequency data.
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