
elifesciences.org

RESEARCH ARTICLE

Mapping microbial ecosystems and
spoilage-gene flow in breweries highlights
patterns of contamination and resistance
Nicholas A Bokulich1,2,3†, Jordyn Bergsveinson4, Barry Ziola4, David A Mills1,2,3*

1Department of Food Science and Technology, University of California, Davis, Davis,
United States; 2Department of Viticulture and Enology, University of California,
Davis, Davis, United States; 3Foods for Health Institute, University of California, Davis,
Davis, United States; 4Department of Pathology and Laboratory Medicine, University
of Saskatchewan, Saskatoon, Canada

Abstract Distinct microbial ecosystems have evolved to meet the challenges of indoor

environments, shaping the microbial communities that interact most with modern human activities.

Microbial transmission in food-processing facilities has an enormous impact on the qualities and

healthfulness of foods, beneficially or detrimentally interacting with food products. To explore

modes of microbial transmission and spoilage-gene frequency in a commercial food-production

scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in

a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing

critical control points for microbial management. Physically mapping microbial populations over time

illustrates patterns of dispersal and identifies potential contaminant reservoirs within this

environment. Habitual exposure to beer is associated with increased abundance of spoilage genes,

predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments

poses important practical implications for food-production systems and these concepts are

translatable to other built environments.

DOI: 10.7554/eLife.04634.001

Introduction
Microbial activity is an inherent feature of food-processing systems, influencing the quality and

healthfulness of foods for human consumption. Like other indoor environments, the building

materials, substrates, and physiochemical conditions encountered by microbes in food-processing

facilities differ dramatically from the outdoor conditions to which microbial life evolved (Kelley and

Gilbert, 2013). How this has impacted the adaptation and ecological assemblages of microbes in

food systems is largely unexplored. While the microbial communities of other indoor environments,

such as homes (Lax et al., 2014), office buildings (Kembel et al., 2014), and hospitals (Bokulich et al.,

2013a), can influence the health of their inhabitants, food-production facilities represent a unique

type of built environment wherein microbial activities are intimately tied to product-quality outcomes.

Thus, the sensory and safety effects of microbial growth in food-production streams have a much

broader impact, such that consumer enjoyment and health can be linked to the hygiene and

processing decisions at the food facility. Furthermore, both beneficial and detrimental microbial

activities are well defined in foods, making these systems a useful model for exploring microbial

ecosystem dynamics beyond the scope of contaminant mitigation.

Fermented foods, including beer, have the additional distinction that microbial activity is

central to their production, responsible for necessary transformations as well as product spoilage

(Bokulich et al., 2012a; Bokulich and Bamforth, 2013). Most modern food-fermentation practices
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occur under relatively aseptic conditions, employing pure starter cultures in their production, and

environmental contamination represents a prevalent threat to product integrity (Bokulich and

Bamforth, 2013). Beer is typically produced through fermentation of malted barley sugars (wort) to

alcohol by pure strains of Saccharomyces cerevisiae or Saccharomyces pastorianus, and any additional

organisms—including cross-contamination from different Saccharomyces strains used in the same

facility—are considered contaminants (Bokulich and Bamforth, 2013). In traditional fermentation

production practices, conversely, microbial communities introduced from raw materials and processing

environments are central to the fermentation process. For example, in the production of coolship

(lambic-style) beers, a type of sour beer, no starter cultures are added to the wort; instead, boiled wort

is allowed to cool overnight in a shallow, open-top vessel known as a coolship where indigenous

microbiota are presumably introduced to the product, initiating fermentation (Van Oevelen et al.,

1977; Bokulich et al., 2012b; Spitaels et al., 2014). The unique succession of indigenous microbiota in

coolship ale fermentations sets them apart chemically and sensorially from other beers (Van Oevelen

et al., 1976; Spaepen et al., 1978), making coolship breweries a particularly interesting system for

tracking microbial populations in food-processing environments.

Microbial spoilage genes are also well defined in brewing environments and can be studied in situ

without representing a direct threat to public health. Beer is protected from wholesale microbial

contamination through its alcoholic, low-pH, and antimicrobial properties, and modern sanitary

technologies and practices minimize the threat of spoilage organisms that have evolved specifically to

grow in beer (Bokulich and Bamforth, 2013). Nevertheless, biofilms and other environmental

reservoirs remain potential sources of microbial contamination in breweries (Timke et al., 2005;

Storgards et al., 2006; Timke et al., 2008; Mamvura et al., 2011; Matoulkova et al., 2012). As wort

is boiled prior to fermentation, the primary reservoir for spoilage microorganisms in beer production

eLife digest Many microbes—including bacteria and fungi—can affect the food and drink we

consume, for better and for worse. Some spoil food, making it less tasty or even harmful to health.

However, microbes can also be important ingredients: for example, yeast ferments malted barley

sugars to make the alcohol and flavor of beer.

Nowadays, many beers are made under carefully controlled conditions, where the only microbes

in the beer should be the strain of yeast added to the barley sugars. A more traditional ‘coolship’

method can be used to make sour beers; the barley sugars cool in an open-topped vessel and are

fermented by the yeast and bacteria found naturally on the raw ingredients and in the surrounding

environment.

Relatively little was known about how microbes spread around and adapt to living inside

buildings. Now, Bokulich et al. have used a range of molecular and statistical techniques to examine

how bacteria and fungi are dispersed throughout a North American brewery that produces beer

using both conventional and coolship brewing techniques. Most of the microbes found in the

building originated from the raw ingredients used to make the beer, with different parts of the

brewery containing different species. Over the course of a year, some species spread to new parts of

the building; a statistical method predicted the sources of these microbes, and revealed some key

areas and features of the brewery that affect microbial transfer.

Bokulich et al. also looked at the spread of genes that enable their bacterial hosts to spoil beer,

including those that protect bacteria from the antimicrobial action of the hops that flavor many

beers. Lactic acid bacteria are the main cause of beer spoilage and so are usually to be avoided in

breweries, but are also a normal ingredient in sour beer. In the brewery Bokulich et al. investigated,

beer-spoilage and hop-resistance genes were found throughout the brewery, even in areas not used

to produce sour beer. However, little beer spoilage occurred.

The techniques used by Bokulich et al. to track the spread of microbes and their detrimental

genes could be used in the future to understand how microbes adapt to other indoor environments.

Indeed, Bokulich et al. suggest that breweries could be used as models to safely understand the

factors that influence microbial movement in any food-production facility as well as other building

environments.

DOI: 10.7554/eLife.04634.002
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is the brewery environment. Lactic acid bacteria (LAB) are of particular concern, as some members of this

clade resist hop antimicrobial compounds, enabling growth and spoilage of beer through acidification,

hazes, and off-flavors (Suzuki et al., 2006; Bokulich and Bamforth, 2013). Hop iso-alpha-acids, the

primary antimicrobial compounds in beer, kill most Gram-positive bacteria by acting as ionophores,

dissipating proton-motive force across cell walls (Simpson and Fernandez, 1992, 1994; Simpson,

1993a), and via oxidative stress (Behr and Vogel, 2010). Very few resistance mechanisms have been

proposed (Suzuki et al., 2006), primarily being the multi-drug transporters horA (Sami et al., 1997;

Sakamoto et al., 2001) and horC (Suzuki et al., 2005; Iijima et al., 2006), the transcriptional

regulator of horC, horB (Suzuki et al., 2005; Iijima et al., 2006), and hitA, a divalent cation

transporter (Hayashi et al., 2001) that imports manganese into the cell. These genes are all located

on plasmids and transmit via horizontal gene transfer (Suzuki et al., 2005, 2006). The frequency and

transmission of these and other beer-spoilage genes within processing environments—or any other

reservoir for spoilage microbes—have yet to be tested.

Here, we employ mixed molecular approaches (Bokulich and Mills, 2012b) and a Bayesian

modeling method to interrogate the seasonal sources, reservoirs, and transmission of bacteria, fungi,

and beer-spoilage genes within a North American brewery over the course of one year. Given the

inherent role of environmental microbiota in conducting coolship ale fermentations, this serves as

a model system for studying mechanisms for microbial transfer within food-processing systems.

Information on population and gene flow extends to other food-processing systems where

environmental microbiota are involved positively or negatively in the production, stability, and

safety of human nutrition.

Results and discussion
The microbial ecosystems of breweries are inherently linked to successful product outcomes,

impacting the qualities and healthfulness of beer. In conventional brewing, any microbe not

intentionally inoculated is a contaminant (Bokulich and Bamforth, 2013). Conversely, in coolship

ale and other sour beer brewing, adventitious microbiota are integral to the process. Thus, we

studied microbial ecosystem dynamics in a brewery that produces conventional, sour, and coolship

beers, in order to observe food–ecosystem interactions from a dual perspective. First, how do microbial

community assemblages and spoilage-gene frequencies change over time with respect to contamina-

tion issues in a conventional brewery? Second, how do these same elements interact with the

production of sour beers?

Production environment microbiota are driven by substrate contact
Short-amplicon marker-gene sequencing was employed to survey the bacterial and fungal consortia

inhabiting the entire brewery environment. A total of 501 samples were collected during three

seasons, representing the main processing surfaces and equipment used throughout the brewing

process (Figure 1). Beta-diversity (between sample) comparisons provide useful assessments of the

taxonomic similarity between different sites. Bray–Curtis dissimilarity of complete microbial profiles

reveals that many samples cluster by processing room and substrate type regardless of season

(Figures 2–3). Thus, fermenter samples cluster, associated with Bacillaceae; cellar production areas,

associated with Micrococcaceae (including the beer-spoiling genera Kocuria and Micrococcus); wort,

malt, and hotside (wort-preparation) surfaces, associated with Enterobacteriaceae, Leuconostocaceae,

Candida santamariae, Pichia, and Rhodotorula; barrel-room floor samples, associated with

Staphylococcaceae and Carnobacteriaceae; and beer samples, associated with Lactobacillaceae and

Enterobacteriaceae. Barrels cluster, associated with Aspergillus, Eurotium, and Penicillium; coolship and

barrel-room samples with Cryptococcus and Cladosporium. These taxonomic trends each demonstrate

significant site associations (Kruskal–Wallis Bonferroni-corrected p < 0.05). S. cerevisiae was common

throughout the brewery, but especially in the fermentation cellar. LAB and acetic acid bacteria were

found sporadically at different sites and times, including on and near packaging equipment and

fermenters inoculated with LAB (Figure 3).

To further examine this relationship, the Bayesian technique sourcetracker (Knights et al., 2010)

was used to test whether raw substrates may act as sources for the microbial consortia of brewery

surfaces. This tool predicts the relative proportion of contamination in sink samples (in this case

brewery surfaces) from microbial sources (raw ingredients and extraneous sources). Raw substrates

(grain, hops, yeast, beer) and extraneous sources (human skin, outdoor air, soil, saliva, feces, freshwater,
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ocean water) from previous studies (Caporaso et al., 2011; Bowers et al., 2012; Caporaso et al., 2012;

Bowers et al., 2013) were tested as microbial sources. Results reveal distinct patterns of contamination

across seasons (Figure 4). Grains were predicted as the largest microbial contributor to hotside areas,

almost all surfaces in the coolship room, and areas of the cellar away from the main fermentation area.

Hops were predicted as the major contributor to cellar fermentation areas and fermentation equipment.

Yeast was predicted as the highest contributor to fermenters, conditioning tanks, and packaging

equipment. Beer was predicted to be a common contaminant around fermenters and barrels within the

cellar. Skin was a minor contributor to some surfaces in the cellar. Other surfaces, including most barrels

and barrel-room surfaces, were most influenced by unknown sources. Outdoor air, soil, saliva, feces,

freshwater, and ocean water were predicted to provide only a very low level of contamination (<0.001
relative abundance). These results suggest that raw substrates are the main contaminant sources within

the brewery, compared to extraneous sources. However, it is important to note that these

predictions do not indicate a causative role for contamination. These predicted source/sink

relationships could alternatively suggest that both are actually contaminated by another, untested

source (e.g, fruit flies or other vectors could transfer microbes between these and other surfaces

Figure 1. Brewery map and simplified brewing process diagrams. (A) Floorplan of brewery details surface sampling key and indicates separate sections of

the brewery. LAC/Br fermenters indicate they were inoculated intentionally with lactic acid bacteria or Dekkera spp., respectively, at the time of sampling.

(B) Process diagram for conventional beer brewing, illustrating the relationship between brewing stages and sections of the brewery. Grain is milled and

taken to the brewhouse (hotside) area where it is mashed (steeped in hot water) to form wort, which is lautered (extracted from the grain by filtering and

spraying with hot water) and then boiled with hops. Boiled wort is cooled and pumped to the fermentation cellar where it is inoculated with

Saccharomyces and fermented. Optionally, barrel-aged beers are transferred to barrels after fermentation. Finished beers are transferred to conditioning

tanks in a separate section of the brewery where they are cooled, carbonated, and then packaged. (C) Process diagram for coolship beer brewing. Same

as conventional, but following boiling wort is pumped to the coolship room where it is left to cool overnight, exposed to the atmosphere. The following

morning, the wort is pumped to barrels in which it is fermented and aged for 1–3 years. In the Autumn samples, this occurred in the barrel room in the

main brewery, but in Spring and Summer this moved to a newly built facility dedicated to sour beers. All coolship and sour beers were packaged on

separate equipment in this second facility. The distinction between coolship beers and sour beers is the use of this coolship; other sour beers are

produced using conventional brewing methods (panel B), but are fermented with organisms other than Saccharomyces yeasts.

DOI: 10.7554/eLife.04634.003
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Figure 2. Taxon abundance heatmaps depict genus-level relative abundance of fungi across sampling sites detected by marker-gene sequencing. The

relative abundances (RA) of each genus (columns) within each sample (rows) are indicated by the color of the intersecting tile. Sample types are indicated

by colored bars to the left of each row, classified according to the location within the brewery (Figure 1) or the type of substrate (grain, wort, hops, beer).

Figure 2. continued on next page
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within the brewery). Nevertheless, these predictions highlight potential sources of contamination, or

at least shared microbial transmission patterns, between substrates and equipment/surfaces within

the brewery.

These findings suggest that substrate contact drives the microbial communities of different

brewery surfaces. Consequently, raw materials (grain, hops, yeast) may be important vectors for any

spoilage organisms encountered in the facility. This substrate-centric community structuring has also

been observed in other food facilities (Bokulich and Mills, 2013a; Bokulich et al., 2013b, 2014).

However, the brewery surface niches clustered throughout time with only subtle changes across

seasons, unlike wineries, which were significantly impacted by seasonal factors (Bokulich et al.,

2013b). This reflects the divergent production schemes of these two foods: whereas most beers are

produced year-round, wine is an inherently seasonal product. The raw materials for beer are stored

and processed throughout the year in a continual production schedule, creating a stable environment

on equipment surfaces that interact with these same raw substrates on a daily basis. Instead, brewery

environments may function more like cheese-making environments, where facility-specific ‘house’

microbial communities form on equipment surfaces in response to idiosyncrasies in the indoor

environment (Bokulich and Mills, 2013a). Such a possibility would have interesting implications for

sour beer breweries, and comparative studies of lambic and coolship breweries could offer insight into

the brewery-specific flavor profiles displayed in these beers.

Physical mapping illustrates microbial dispersal in processing facility
By mapping surface samples to their physical location within the brewery, a spatial model emerges of

microbial dispersion across brewery surfaces over time (Figures 5–7). Several populations visibly

spread with time, most prominently S. cerevisiae, which progressed from dominating fermentation

and packaging areas only in Autumn to being the most abundant fungus detected across the brewery

in Spring and Summer. Likewise, C. santamariae displayed high abundance on hotside surfaces in

Autumn but became more abundant and spread to nearby sections of the cellar in Spring and Summer

(Figure 5). As building measurements were not taken during these times, the factors driving these

changes cannot be assessed with these data, but warming temperatures and increasing humidity in

the Spring and Summer months could be associated phenomena. Other taxa demonstrated more

localized patterns of dispersion, such asMicrococcus and Kocuria, which appeared to spread the most

around floors and other surfaces in cellar, barrel room, and packaging areas (Figure 6). Here, regular

contact with beer runoff diluted with rinse water may support growth of these populations, which are

associated with spoilage in low-alcohol beers (Back, 1981). High populations of Acetobacter and

Lactobacillus were found more disparately, and specifically in areas where high volumes of wort and

beer may be encountered: on conveyor belts and floors below packaging areas, hotside and cellar

area sinks, and on sample ports for isolated fermenters and kegs (Figure 6). On these sites microbial

communities can contact undiluted beer, for example, drips in the basin below the packaging-line

belt, wort and beer collected for specific gravity (sugar concentration) measurements then dumped in

sinks, and sampling ports on fermenters. This follows the known behavior of these bacteria, which can

spoil undiluted, higher-alcohol beers under appropriate conditions (Bokulich and Bamforth, 2013).

These results illustrate the progressive dissemination of microbes in space and time within

a functioning food-processing environment. Microbes not only associate with specific substrates, they

exhibit patterns of dispersion within confined regions of the brewery. This yields useful insight into the

transmission behavior of these organisms, and especially taxa associated with beer spoilage, through

physical space. Microbial confinement within discrete zones suggests that physical barriers (e.g., walls)

and physiochemical conditions (e.g., humidity and temperature control) can staunch the spread of

some microbes. Non-production surfaces that encounter beer and/or waste streams, such as floors,

sinks, and grain-handling equipment, are typically only cleaned by hose and may accumulate

substrates for supporting microbial growth and survival. Aerosols and splashing occur regularly in

Figure 2. Continued

Dendrograms represent Bray–Curtis dissimilarity between samples (vertical trees) and shared-niche similarity between taxa (horizontal trees), respectively

indicating taxonomic composition similarities and taxon co-occurrence patterns. Only taxa ≥0.05 relative abundance in at least one sample are shown.

DOI: 10.7554/eLife.04634.004
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Figure 3. Taxon abundance heatmaps depict family-level relative abundance of bacteria across sampling sites detected by marker-gene sequencing. The

relative abundances of each genus (columns) within each sample (rows) are indicated by the color of the intersecting tile. Sample types are indicated by

colored bars to the left of each row, classified according to the location within the brewery (Figure 1) or the type of substrate (grain, wort, hops, beer).

Figure 3. continued on next page
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a production brewery (indeed, hosing down floors is one obvious cause), increasing the likelihood for

microbial spread and colonization from these surfaces onto other surfaces, including equipment.

Human and insect traffic can also increase the rate of dispersal between these surfaces (e.g., from one

room to another). Physical partitions appear to inhibit this passage as observed in this brewery and,

where possible, may reduce the probability for contamination. This is particularly important in

packaging areas, where microbial dispersal can directly contaminate sanitary surfaces and open

packages, increasing the likelihood of spoilage in finished product. Separating packaging rooms from

cellar and hotside operations and using local partitions, such as blast shields, may help protect

packaging surfaces and beer from such routes of contamination. Further investigations into the

relationship between building materials, spatial area, indoor conditions (e.g., airflow, humidity, and

personnel traffic), and the rate and extent of microbial dispersion could yield important findings for

optimal brewery design from the perspective of microbial control. These findings are instructive but

indeed should not be interpreted with alarm: they illustrate microbial dispersal in a functioning

brewery that rarely suffers from any cases of product contamination.

Lactic acid bacteria profiles are also driven by substrate exposure
Different species of LAB are the principal spoilage bacteria in beer fermentations as well as important

members of sour beer fermentations. However, short 16S rRNA gene amplicons are frequently

inadequate to resolve reliable species-level identifications (Bokulich and Mills, 2012a). Therefore, we

used LAB-TRFLP (Bokulich and Mills, 2012a) to characterize genus- and species-level LAB community

compositions in a select subset of samples. This included raw material and beer samples, as well as

surfaces on which detection of Lactobacillales by marker-gene sequencing was particularly high.

Results indicate that different surface and sample types exhibit distinct lactic acid bacterial patterns,

corresponding to the substrates encountered at that site or contained in that sample (Figure 8).

Wort samples contained a mixture of Lactobacillus delbrueckii, Lactobacillus sakei, Lactobacillus

hilgardii, Leuconostoc mesenteroides, Lactococcus lactis, Streptococcus sp., and Bacillus sp. A, most of

which were only rarely detected in other fermenting and bottled beer samples. Many of these species

are also rarely found in beers (Bokulich and Bamforth, 2013), but instead appear associated with grain,

hence their detection in wort. Coolship and fermenting sour beers (in this case coolship beers produced

from different wort types) were dominated by Pediococcus and/or L. lindneri, corroborating previous

studies of coolship beers in this brewery (Bokulich et al., 2012b). Fermenters and barrel surfaces that

contacted these fermentations near the time of sampling exhibited similar communities, though

Lactobacillus brevis and Lactobacillus sp. A were more common on these surfaces than in the beers or

on other surfaces. Other sour and barrel-aged beers contained unique profiles, with involvement of

other Lactobacillus species only weakly detected in coolship beers. Floor and packaging area surfaces

contained a more diverse mixture of LAB, but primarily the L. lindneri, L. brevis, and L. delbrueckii

detected in the wort and beer samples. Interestingly, only Pediococcus was detected on grain samples,

though only weak amplification could be had from these samples, suggesting low LAB populations or

inhibition of PCR by grain polyphenols, possibly suppressing the detection of less abundant

populations. Hop pellet samples also contained a mixture of different LAB populations, including

Pediococcus, L. lindneri, and L. brevis.

These results illustrate that substrate drives the composition of LAB communities as well as whole

microbial communities and highlight the risk of cross-contamination between different equipment

surfaces. The detection of Lactobacillus spp. on both filler heads (only one of which is used for sour

beer packaging) makes this observation all the more pertinent. This observation is not likely to be an

exceptional case; cross-contamination between processing areas is very likely the prevailing cause of

spoilage in any brewery, where microbial biofilms have been previously reported even on packaging

equipment (Timke et al., 2005; Storgards et al., 2006; Timke et al., 2008; Mamvura et al., 2011;

Matoulkova et al., 2012). This observation underlines the need for constant hygiene surveillance in

Figure 3. Continued

Dendrograms represent Bray–Curtis dissimilarity between samples (vertical trees) and shared-niche similarity between taxa (horizontal trees), respectively

indicating taxonomic composition similarities and taxon co-occurrence patterns. Only taxa ≥0.05 relative abundance in at least one sample are shown.

DOI: 10.7554/eLife.04634.005
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Figure 4. Mapping microbial contamination sources inside the brewery. Floorplans of brewery indicate the predicted relative contamination of brewery

surfaces by microbial sources (grains, hops, yeast, beer, human skin, unknown) at each season, estimated by SourceTracker (Knights et al., 2010).

Coloration of each surface indicates the relative degree of microbial contamination from that source type (as indicated by keys to the right of each row;

Figure 4. continued on next page
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breweries but is hardly cause for alarm, if the exceedingly low incidence of microbial spoilage in

modern brewing practice is any indication.

Beer contact predicts spoilage-gene distribution on brewery surfaces
Beer-spoiling LAB possess several mechanisms that support their growth and survival in beer (Suzuki

et al., 2006). Several hop-resistance genes are principal among these, counteracting the antimicrobial

effects of iso-a-acids (hop bittering resins) (Simpson, 1993b; Simpson and Fernandez, 1994).

Hop-resistant LAB typically contain several of these genes, including horA (Sami et al., 1997;

Sakamoto et al., 2001), horB (Suzuki et al., 2005; Iijima et al., 2006), horC (Suzuki et al., 2005;

Iijima et al., 2006), and hitA (Hayashi et al., 2001), which are upregulated during growth in beer

(Bergsveinson et al., 2012; Pittet et al., 2013). However, the presence of these genes within

brewery environments and on brewing equipment has not been described previously. Thus, we

sought to quantify the abundance of these beer-spoilage genes on brewing equipment and in

beer during different times in conjunction with microbial community profiles.

Results demonstrate high gene frequencies on several surfaces within the brewery (Figure 9).

Sour beer samples contained the highest counts, between 2.0 × 104–4.8 × 104 copies/μl of horC, but
fermenter and packaging area surfaces (filler heads, below bottling line belt, and packaging sink)

also registered between 2.8–7.8 × 102 copies/cm2. None of these alleles were detected on hop

samples, keg samples, or one barrel bung (stopper) sample, though 1.1 × 103 total copies/cm2 were

detected on a keg faucet used for attaching kegs to beer lines at the brewery. Among the genes

analyzed, horC was the most abundant (Figure 9), which is interesting when considered in the

context of previous work showing that presence of this gene correlates with increased hop-tolerance

and beer-spoilage ability (Fujii et al., 2005; Iijima et al., 2006; Bergsveinson et al., 2012) and the

plasmid carrying horC is the most important for supporting growth of Lactobacillus brevis in beer

(Bergsveinson et al., 2015). The preferential expression of this gene observed in these previous

studies and the relative increased abundance with which it was found in this study suggests horC is

an important gene for facilitating beer-spoilage and is consequently selected for in the brewery

environment, particularly in areas where sour beers are produced. The purported transcriptional

regulator of horC, horB, was detected at stable ratios relative to horC in all samples, supporting

this putative function (Iijima et al., 2006). The least frequently observed hop-resistance gene,

hitA, is involved in manganese transport (Hayashi et al., 2001), supporting resistance against

manganese depletion by iso-a-acids (Behr and Vogel, 2010). Other studies have observed

similarly low frequencies of hitA presence and expression in LAB relative to the other hop-

resistance genes (Haakensen and Ziola, 2008; Bergsveinson et al., 2012).

The spoilage genes horA, horB, and horC all display high degrees of intercorrelation (Pearson’s

r = 0.83–1.0, p < 0.01) and significant but lesser correlation to hitA (r = 0.48–0.64, p ≤ 0.04).

All spoilage genes except for hitA demonstrate significant correlation with bulk detection of

Lactobacillales via 16S rRNA gene sequencing (r = 0.53–0.74, p ≤ 0.03), while bulk Lactobacillales

and all spoilage genes but horA correlate significantly with L. lindneri detection via LAB-TRFLP

(r = 0.48–0.77, p ≤ 0.04). The only gene correlated with Pediococcus abundance via LAB-TRFLP

was horA (r = 0.57, p = 0.01), consistent with previous observations that horA is the primary known

hop-resistance gene observed in Pediococcus spp. (Haakensen and Ziola, 2008). Interestingly, no

resistance genes correlated with L. brevis, strains of which are among the most common brewery

contaminants and most commonly positive for hop-resistance genes (Haakensen and Ziola, 2008).

This likely reflects the strains detected in this brewery only, and L. brevis was only a minor constituent of

sour beers and processing surfaces (Figure 7).

These results are the first indication of hop-resistance-gene abundance within a brewery

environment. As the primary reservoir for spoilage microbes in beer production, tracking spoilage

genes on brewing surfaces and materials is important for understanding contamination risks arising

from the environment. Sour beer contained the highest gene abundance, which is predictable given

Figure 4. Continued

units are relative abundance). Contamination from outdoor air, soil, feces, freshwater, ocean water, and saliva was negligible (<0.001 relative abundance)

and are not shown. See Figure 1 for a floorplan key and description of surfaces.
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Figure 5. Spatial distribution heatmaps of fungi in brewery environments across seasons. Plots indicate relative abundance of fungal taxa detected by ITS

sequence reads across brewery surfaces at different times: Autumn (left), Spring (center), and Summer (right). See Figure 1 for a floorplan key and description of

Figure 5. continued on next page
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that the LAB growing in these (coolship) beers must be adapted to resist hop antimicrobials.

Likewise, detection on barrel surfaces is also expected, given their regular and direct contact with

these sour beers. Fermenters and packaging-line surfaces also exhibited fairly high levels of hop-

resistance genes, with the highest detection on surfaces that contact sour beers and unsanitary

surfaces (below packaging belt, packaging-line sink). The only sanitary, conventional beer-making

surface among these is the second filler head, which only exhibited 4 cumulative copies/cm2 of the

resistance genes, compared to 2.1 × 102 in the first filler head, which is used for packaging sour and

barrel-aged beers. Nevertheless, this second filler head is also a sanitary surface ready for

packaging, and should be free of contaminants. DNA was used for ddPCR and thus these counts

may represent dead cells present on the equipment surfaces; the relative proportion of viable cells is

unknown. If the resistance genes detected by ddPCR do in fact represent any viable cells, this

demonstrates the resilience of these bacterial populations on equipment surfaces that regularly

contact ‘contaminated’ (in this case, intentionally contaminated) beers. These findings argue for

careful separation of equipment used in conventional beer-making from that used for sour beers:

equipment that contacts fermenting and finished sour beer or barrels, including pumps, hoses, and

especially packaging equipment, is best dedicated to sour beer production and should not be used

to handle conventional beers.

No hop-resistance genes were detected on hop pellets, though LAB were present, indicating

that hops are probably not a significant source of beer-spoilage bacteria. Iso-alpha-acids,

the antimicrobial compounds released from hops and against which hop-resistance genes

confer protection, are generated by the breakdown of humulones during boiling, and are not

present in raw hops (Steenackers et al., 2015). Undissociated humulones are significantly

less inhibitory to LAB, and the antimicrobial effects of hops are dependent upon acidic

conditions (Simpson and Smith, 1992). Thus, the selective pressure to acquire and maintain

hop-resistance genes only exists in the presence of hopped beer, not in raw hops. Only two hop

pellets were tested for hop-resistance genes, but this finding suggests that the brewery environment

itself is the site of hop-resistance-gene propagation. Larger studies of hop-resistance genes on brewery

surfaces and brewing materials will illuminate the role of environmental vs raw material contamination

in hop-resistance-gene transfer, and sites, conditions, and mechanisms of transfer within the brewery

environment.

Tracking spoilage-gene flow across brewery surfaces presents a unique opportunity for understanding

spoilage dynamics within food-processing systems and other built environments in general. This approach

will facilitate understanding how spoilage resistance propagates within production environments and the

reservoirs and vectors encouraging its spread, yielding novel insight for controlling spoilage—focused on

gene transmission rather than taxonomic populations. Moving forward, this facility-surveillance

model opens many questions and possibilities for mapping microbial spoilage dynamics within

food-production systems. What relationship do indoor environmental factors, building design,

and surface materials have with microbial transmission? What roles do cleaning and other

processes play in controlling contamination on a facility-wide scale? What other biomarkers are

associated with contamination and how does the spoilage-allele landscape behave over time and

in response to these conditions? The potential advantages of studying microbiology of breweries

are not confined to food systems alone, and lessons learned here may aid our understanding of

microbial communities in other built environments. For example, the hop-resistance genes include

ABC multi-drug transporters similar to other antimicrobial-resistance genes (Sakamoto et al.,

2001). Studying and manipulating their transmission within breweries may aid understanding of

similar gene-transfer events involved in pathogenesis in hospitals, homes, water systems, or public

environments where in situ modeling of such genes is unfeasible or a potential health hazard.

Breweries are a useful model for testing general theories of microbial transmission and spoilage-

gene dispersal in situ for functional indoor environments and food systems, as beer spoilage is not

actually detrimental to human health—merely human pleasure.

Figure 5. Continued

surfaces. Note that the floorplans change between seasons as some samples were only collected as specific timepoints and the wild brewing facility was built and

opened during the Spring sampling time.
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Figure 6. Spatial distribution heatmaps of bacteria in brewery environments across seasons. Plots indicate relative abundance of bacterial taxa detected

by 16S rRNA gene sequence reads across brewery surfaces at different times: Autumn (left), Spring (center), and Summer (right). Scales on right represent

relative abundance scale (maximum 1.0) for each row of plots. See Figure 1 for a floorplan key and description of surfaces. Note that the floorplans

Figure 6. continued on next page
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Materials and methods

Facility description
Samples were collected from a single brewery located in North America. This brewery operates as a

conventional brewing facility but also contains a dedicated coolship room, barrel room, and a

secondary cellar building, where it produces coolship and other sour and barrel-aged beers

seasonally. The coolship beers (a type of sour beer produced without inoculation) are produced

following the classic Belgian tradition, and their microbial profiles in this brewery have been

investigated previously (Bokulich et al., 2012b). The other sour beers are produced using pure-

culture inocula of non-Saccharomyces yeasts and bacteria, but the term ‘sour beer’ refers to both

coolship and other sour beers elsewhere in this study unless if a distinction is made between these

types of beer. The secondary cellar building was built and opened during the course of the

collection period. Thus, during the first sample collection time point (Fall, 2012) sour beers were

fermented and stored in the barrel room of the main facility. For the remaining times (Spring and

Summer, 2013), all sour beers were held in this second ‘wild fermentation’ facility. A facility map and

flow–through diagrams relating brewing stages to this space are presented in Figure 1.

Sample collection and DNA extraction
Samples were collected in Fall 2012, Spring 2013, and Summer 2013. In all, 445 surface swabs and

56 beer and ingredient samples were collected (Figure 1) as described previously (Bokulich et al.,

2013b). DNA was extracted using the ZR-96 Fecal DNAMiniPrep Kit (Zymo Research, Irvine, CA), with

bead beating in a FastPrep-24 bead beater (MP Bio, Solon, OH), and stored at −20˚C until further

processing.

Sequencing library construction
Amplification and sequencing were performed as described previously for bacterial (Bokulich, 2012b)

and fungal communities (Bokulich and Mills, 2013b). The V4 domain of bacterial 16S rRNA genes was

amplified using primers F515 (5′–NNNNNNNNGTGTGCCAGCMGCCGCGGTAA–3′) and R806

(5′–GGACTACHVGGGTWTCTAAT–3′) (Caporaso et al., 2011), with a unique 8 nt barcode

(italicized poly-N section) and 2 nt linker sequence (bold) at the 5′ terminus. Fungal internal transcribed

spacer (ITS) 1 loci were amplified with primers BITS (5′–NNNNNNNNCTACCTGCGGARGGATCA–3′)
and B58S3 (5′–GAGATCCRTTGYTRAAAGTT–3′) (Bokulich and Mills, 2013b). Amplicons were

combined into two separate pooled samples (keeping bacterial and fungal amplicons separate) at

roughly equal amplification intensity ratios, purified using the Qiaquick spin kit (Qiagen,

Germantown, MD), and submitted to the UC Davis DNA Technologies Core for Illumina paired-

end library preparation, cluster generation, and 250 bp paired-end sequencing on an Illumina MiSeq

instrument in four separate runs (separating bacterial and fungal libraries).

Data analysis
Raw fastq files were demultiplexed, quality-filtered, and analyzed using QIIME v.1.7.0 (Caporaso

et al., 2010b). The 250-bp reads were truncated at any site of ≥3 sequential bases receiving a quality

score < Q10, and any read with <75% (of total read length) consecutive high-quality base calls was

discarded (Bokulich et al., 2013c). Operational taxonomic units (OTUs) were clustered at 97% identity

using QIIME’s open-reference OTU-picking pipeline using UCLUST-ref (Edgar, 2010) against either

the Greengenes 16S rRNA gene database (May 2013 release) (McDonald et al., 2012) or the UNITE

fungal ITS database (Abarenkov et al., 2010), modified as described previously (Bokulich and Mills,

2013b). OTUs were classified taxonomically using RDP classifier (Wang et al., 2007) for bacteria and

BLAST (Altschul et al., 1990) for fungi. Any OTU comprising less than 0.0001% of total sequences for

each run were removed (Bokulich et al., 2013c). Bacterial 16S rRNA gene sequences were aligned

Figure 6. Continued

change between seasons as some samples were only collected as specific timepoints and the wild brewing facility was built and opened during the Spring

sampling time.
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Figure 7. Spatial distribution heatmaps of bacteria in brewery environments across seasons (part 2). Plots indicate relative abundance of bacterial taxa

detected by 16S rRNA gene sequence reads across brewery surfaces at different times: Autumn (left), Spring (center), and Summer (right). Scales on right

Figure 7. continued on next page
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using PyNAST (Caporaso et al., 2010a) and chimeric sequences were identified using ChimeraSlayer

(Haas et al., 2011). Sequences failing alignment or identified as chimera were removed prior to

downstream analysis. OTU tables were evenly subsampled to 400 sequences per sample for all

statistical tests. MANOVA with 999 permutations was used to test significant difference between

sample categories based on Bray–Curtis distance using Adonis (Anderson, 2001). Kruskal–Wallis tests

were used to identify significantly discriminant taxa (with Bonferroni error correction) between

sample groups. Pearson product-moment correlation analyses were performed using R software.

Environmental surveillance heatmaps were generated based on taxonomic abundance tables

generated in QIIME and visualized using SitePainter 1.1 (Gonzalez et al., 2012). Bacterial OTU

source-sink relationships were tested using SourceTracker (Knights et al., 2010) with 1000 burn-ins,

25 restarts, and rarefaction to 100 OTUs. Source-tracking predictions used bacterial profiles of

samples collected in this study, coolship beers from this brewery analyzed in a previous study

(Bokulich et al., 2012b), and outdoor air (Bowers et al., 2012, 2013), soil, saliva, feces, human skin,

freshwater, and ocean water samples (Caporaso et al., 2011, 2012) from previously published

studies as source samples. All studies were performed using bacterial V4 16S rRNA with the same

F515/R806 primer pair.

Terminal restriction fragment length polymorphism (TRFLP)
Lactic acid bacteria-specific TRFLP was performed as described previously using the primers

NLAB2F (5′-(5HEX)-GGCGGCGTGCCTAATACATGCAAGT-3′) and WLAB1R (5′-TCGCTTTACGCC-

CAATAAATCCGGA-3′) (Bokulich and Mills, 2012a). Purified amplicons were digested using

enzymes MseI and Hpy188I and submitted to the UC Davis College of Biological Sciences

Sequencing Facility for capillary electrophoresis fragment separation. Electropherogram traces

were visualized using the program Peak Scanner v1.0 (Applied Biosystems, Carlsbad, CA) using

Figure 7. Continued

represent relative abundance scale (maximum 1.0) for each row of plots. See Figure 1 for a floorplan key and description of surfaces. Note that the

floorplans change between seasons as some samples were only collected as specific timepoints and the wild brewing facility was built and opened during

the Spring sampling time.
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Figure 8. Lactic acid bacterial community composition on brewery surfaces, beers, and ingredients. LAB-TRFLP profiles of samples exhibiting high

Lactobacillales relative abundance by 16S rRNA gene sequencing.
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a baseline detection value of 10 fluorescence units. Peak filtration and clustering were performed

with R software using IBEST TRFLP tools (Abdo et al., 2006). OTUs were identified based on an

empirical TRFLP database (Bokulich and Mills, 2012a) and an in silico digest database generated

with MiCA (Shyu et al., 2007) of good-quality 16S rRNA gene sequences from RDP (Cole et al.,

2014), allowing up to three nucleotide mismatches within 15 bp of the 5′ terminus of the forward

primer.

Droplet digital PCR
In order to quantify hop-resistance gene abundance on brewery surfaces, droplet digital PCR (ddPCR)

was used to enumerate the genes horA, horB, horC, and hitA. ddPCR was performed using the QX100

Droplet Digital PCR setup and protocol (Bio-Rad). ddPCR was performed in 20-μl reactions containing
3 ng/μl of DNA template, 900 nmol of each primer, 250 nM of each probe, and 1× Bio-Rad Droplet

PCR Supermix. Primer and probe sequences, melting temperatures, 5′ fluorophore probe labels, and

amplicon lengths for each gene target are shown in Table 1. All probes contained a 3′ IowaBlack FQ

quencher paired with different 5′ fluorescent labels (Table 1). Each 20 μl reaction was then pipetted

into separate wells of a disposable eight channel droplet generation cartridge (Bio-Rad) and 70 μl of
droplet generation oil (Bio-Rad) loaded into the cartridge oil wells. The cartridge was then inserted

into the QX100 droplet generator (Bio-Rad) and each sample was portioned into droplet-sized water-

in-oil emulsions. Following droplet generation, emulsion samples were transferred to a 96-well PCR

plate (Eppendorf). The plate was then hot-sealed with foil cover and subjected to conventional PCR in

the CFX96 Touch Real-Time PCR (Bio-Rad). Thermal cycling conditions consisted of an activation

period for 10 min at 95˚C, followed by 40 cycles of a denaturation step for 30 s at 94˚C, and an

annealing-extension step for 60 s at the optimal annealing temperature (59–59.6˚C), using a ramp rate

of 2.5˚C/s for each step and a final inactivation step of 98˚C for 10 min. After PCR amplification, the

plate was loaded into the QX100 Droplet Digitial PCR (Bio-Rad) and analyzed for absolute signal

quantification of each fluorescence channel in each well. Signal detection and data processing were

performed using Quantasoft Software v.1.3.2 (Bio-Rad).

Figure 9. Hop-resistance gene frequency on brewery surfaces and beers. (A) ddPCR detection of hitA, horA, horB, and horC on surfaces (detected as

copies/cm2) and in beers (copies/ml). Bar height indicates cumulative log gene abundance; colors indicate relative gene frequencies superimposed on

these bars. Two barrel bung (stopper) samples are depicted on the left, one has no detection. (B) Pearson product-moment correlation matrix between

hop-resistance genes, Lactobacillales relative abundance by 16S rRNA gene sequencing, and relative abundance of the dominant lactic acid bacteria

detected by LAB-TRFLP. The color and shape of correlation ellipses (lower-left) indicate Pearson’s product-moment correlation coefficient (r) between

intersecting variables, as depicted in the key to the right. Correlations with larger positive r values are depicted as darker blue with increasingly narrow,

upward-pointing ellipses. Correlations with larger negative r values are depicted as darker red with increasingly narrow, downward-pointing ellipses.

Weaker correlations are depicted as wider, lighter colored ellipses. The corresponding p values for all correlation tests are provided in the reflected

intersection (top-right).
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Data availability
All raw marker-gene sequencing data are publicly deposited in QIITA (http://qiita.colorado.edu/)

under the accession number 10105 (http://qiita.colorado.edu/study/description/10105).
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Table 1. Hop-Resistance Gene Primers and Probes for ddPCR

Target Tm* 5′ Label Probe Forward primer Reverse primer bp†

horB 59 FAM TCGCGGCCAAGTGATACTTATCCTGA AGTCGACACAAAATCCTGAATCA AGCCTTGATCAATCGTCAGAC 88

hitA 59 HEX ACAGAATAACGGCAACCAGTGT
CGCAA

TCCTGTTGCTTCTGATGAAATTGG CCGCTAAGAATACTTCGTAGGTGA 105

horA 59.6 FAM CGCCGTTCCGCTCGTCTTGATCTGCC TGGACTGGCGGATGACTATC CTGTCTCGCTCTGGCAAC 104

horC 59.6 HEX ACCACGCCAATGCCACTAGAAG
CATGG

ACACGGTTAATGGCACAGC GTTCGCGCCATAAAATAAGAGAGG 87

*Tm = melt temperature (˚C).

†Nucleotide length (bp).
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Major datasets

The following datasets were generated:

Author(s) Year Dataset title
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accessibility information

Bokulich NA 2015 Bokulich_brewery_surfaces 10105; http://qiita.colorado.edu/
study/description/10105

Available on login at Qiita
(http://qiita.colorado.edu/).

The following previously published dataset was used:

Author(s) Year Dataset title
Dataset ID
and/or URL

Database, license, and
accessibility information

Bokulich NA 2013 bokulich_quality_dataset9 1689; http://qiita.colorado.edu/
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Available on login at Qiita
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