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Darwinian evolution is a dynamical princi­
ple that connects the past and the future. 
According to this principle, fitness differ­

ences between the individuals in a population are 
an important driving force of evolution. Biologists 
have long used fitness effects to explain observed 
evolutionary changes. For good reasons, how­
ever, they have been hesitant to make predictions 
about the future of a species. Given the bewilder­
ing complexity of what is possible in evolution, 
attempting to say what will happen in a specific 
instance may appear futile. Moreover, we cannot 
test any predictions, because we have not seen 
the evolutionary past and will not see the future.

Recently, however, evolutionary biology is gain­
ing predictive power in an increasing number of 
systems, which include viruses, bacteria and pop­
ulations of cancer cells. In these systems, high 
mutation rates make evolution happen in front 
of our eyes. Every year, for example, the human 
influenza virus replaces 2% of the amino acids in 
the protein domains that interact with the immune 
system of its host. Using modern genome sequenc­
ing, we can now monitor the genetic history of 
entire populations and reconstruct their genea­
logical trees. Such trees show how the individuals 

of today's populations are connected to their 
evolutionary ancestors. Now, in eLife, Richard 
Neher, Colin Russell and Boris Shraiman investi­
gate how much these trees can tell us about the 
future of a population (Neher et al., 2014).

Inferring evolutionary patterns from genea­
logical trees has a long history. Geneticists use 
probabilistic methods to map mutations onto 
specific tree branches (Figure 1A). Counting how 
often these mutations appear in different lin­
eages tells us which fitness effects are predomi­
nant in a population (McDonald and Kreitman, 
1991; Strelkowa and Lässig, 2012). From the 
statistics of the genealogical tree itself, epidemi­
ologists infer the growth rate of pathogen popula­
tions and use that information to predict the future 
course of an epidemic (Figure 1B, Stadler, 2010). 
Neher, Russell and Shraiman—who are at the Max 
Planck Institute for Developmental Biology, the 
University of Cambridge, and the University of 
California at Santa Barbara, respectively—extend 
this genealogy-based inference to genetic changes 
within a population (Figure 1C). This required 
developing new ways to extract information from 
genealogical trees: predictions must now be made 
for clades of genetically similar individuals, so we 
need a model that captures growth rate differ­
ences between different clades within one gene­
alogical tree.

To meet this challenge, Neher and colleagues 
build on a formalism that is rooted in statistical 
physics and has become a major new develop­
ment in population genetics (Tsimring et al., 
1996; Rouzine et al., 2003; Desai and Fisher, 
2007). The basic idea is simple. Given that fit­
ness differences within a population are carried 

 Copyright Lässig and Łuksza. This 

article is distributed under the terms of 

the Creative Commons Attribution 

License, which permits unrestricted use 

and redistribution provided that the 

original author and source are credited.

INSIGHT

ADAPTIVE EVOLUTION

Can we read the future from  
a tree?
A new method uses genealogies based on sequence data to predict 
short-term evolutionary patterns.

MICHAEL LÄSSIG AND MARTA ŁUKSZA

Related research article Neher RA,  

Russell CA, Shraiman BI. 2014. Predicting 

evolution from the shape of genealogical 

trees. eLife 3:e03568. doi: 10.7554/eLife.03568

Image In an adapting population, today's 

individuals descend from high-fitness 

ancestors

http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.05060
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.03568


Adaptive evolution | Can we read the future from a tree?

Lässig and Łuksza. eLife 2014;3:e05060. DOI: 10.7554/eLife.05060	 2 of 3

Insight

by genetic mutations, we can imagine splitting 
each mutation and its fitness effect into ever-
smaller pieces. This leads to a model in which the 
overall fitness variation of a population is made up 
of many small-effect mutations. By the law of large 
numbers, the fitness distribution then becomes 
bell-shaped. Such distributions are called trav­
elling fitness waves (Tsimring et al., 1996). In a 
given lineage, the accumulation of many small 
fitness effects follows a diffusive random walk. 
This picture applies to fast adaptive processes in 
asexual populations where the expansion of a 
successful clade is fuelled by multiple beneficial 
mutations—for example, when viruses evolve to 
escape their hosts' immune defences.

Neher and colleagues link their fitness wave 
model to simpler heuristic measures of growth, 
which can easily be used to analyse data from a 
large genealogical tree. Specifically, they look 
at the local tree ‘volume’ λ(τ), which sums all tree 
branches in the vicinity of a given node with a 
discounting scale τ. This quantity provides a (non­
linear) measure of how fast the number of indi­
viduals grows around that node. For example, in 
a subtree growing exponentially with rate r, the 

volume λ(τ) equals simply τ/(1–τr).  By interpreting 
this growth rate as fitness, Neher and colleagues 
obtain a measure of fitness differences between 
clades. A substantial fraction of the local tree 
volume is generated by small-effect mutations 
‘hitch-hiking’ in successful clades (for example 
synonymous mutations, which do not change a 
protein). This explains why the local tree volume is 
closely related to fitness measures used in previous 
prediction schemes (Łuksza and Lässig, 2014).

The key strength of this method is that it 
uses only the information contained in a genea­
logical tree. Thus, it can be applied in cases where 
we do not know which functions undergo adap­
tive evolution or where in the genome they are 
encoded. This feature is also important for inter­
preting the results: genealogy-based inference 
reveals growth rate differences within a popula­
tion sample, but it remains agnostic about their 
cause. In the fitness wave model, adaptive evolu­
tion is that cause, but the demographic structure 
of a population or variations in sampling density 
may generate a similar signal in tree data.

Neher and colleagues apply their method  
to predict the evolution of the human influenza 

Figure 1. Fitness inference from genealogical trees. Lineages in these trees connect the individuals in a population sample and their evolutionary 
ancestors, which are the nodes of the tree. Evolutionarily successful lineages have descendants in the far future and are marked by thick lines; all other 
lineages are lost in the evolutionary process. (A) The relative numbers of mutations in successful and in lost lineages measure the predominant fitness 
effects in a population (orange dots: amino acid changes, blue dots: synonymous mutations). (B) The global statistics of nodes and branches measures 
the absolute rate of exponential population growth (indicated by the shaded area). (C) The local statistics of nodes and branches measures growth rate 
differences between clades. Neher and colleagues use this information to predict clade evolution.
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virus A/H3N2. This is a challenging problem:  
one year in advance, we need to forecast the 
prevalent clades circulating in a given winter sea­
son. Despite the simplicity of their method, Neher 
and colleagues predict the ancestor sequence 
of next year's clades with remarkable accuracy 
for the majority of northern winters between 
1995 and 2013.

We do not yet know in detail how the genetic 
evolution of the influenza virus is related to its 
interactions with the human immune system. 
These ‘antigenic’ properties determine how effec­
tive influenza vaccines are. They depend on a 
smaller number of mutations, some of which have 
individually large effects (Koel et al., 2013). Thus, 
prediction schemes geared towards antigenic 
properties must go beyond examining the overall 
sequence genealogies and weigh mutations by 
their antigenic effect (Bedford et al., 2014; Łuksza 
and Lässig, 2014).

Altogether, as Neher and colleagues show, 
current predictions reach about halfway between 
random picks and optimal predictions. This poses 
big conceptual and practical questions: How much 
can future methods improve on that score? And 
where does the inherent unpredictability of evo­
lution start? Prediction is the ultimate test of any 
dynamical principle. Quantitative evolutionary 
science is being put to that test now.
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