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Social networks predict gut microbiome composition in wild baboons
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Abstract

Social relationships have profound effects on health in humans and other primates, but
the mechanisms that explain this relationship are not well understood. Using shotgun
metagenomic data from wild baboons, we found that social group membership and social
network relationships predicted both the taxonomic structure of the gut microbiome and the
structure of genes encoded by gut microbial species. Rates of interaction directly explained
variation in the gut microbiome, even after controlling for diet, kinship, and shared
environments. They therefore strongly implicate direct physical contact among social partners in
the transmission of gut microbial species. We identified 51 socially structured taxa, which were
significantly enriched for anaerobic and non-spore-forming lifestyles. Our results argue that
social interactions are an important determinant of gut microbiome composition in natural animal
populations—a relationship with important ramifications for understanding how social

relationships influence health, as well as the evolution of group living.
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Introduction

Vertebrate intestines are home to thousands of bacterial species that exert profound
effects on their hosts: they train the immune system, produce vitamins, help resist pathogens,
and contribute substantially to daily energy acquisition (Bergman 1990; Turnbaugh et al. 2006;
Hooper et al. 2012; Bengmark 2013; Morgan et al. 2013). In humans, inter-individual variation in
gut microbiome composition has repeatedly been linked to major health concerns, including
obesity, diabetes, cancer, heart disease, and autoimmune disorders (e.g. Turnbaugh et al.
2009; Hooper et al. 2012; Bengmark 2013; lida et al. 2013; Koeth et al. 2013; Viaud et al. 2013).

However, despite its importance, large gaps remain in our understanding of the forces
that shape gut microbiome composition. Among the least understood but potentially most
significant such forces are the effects of host social interactions. From an evolutionary
perspective, social effects on the gut microbiome may be an underappreciated consequence of
group living, associated with both fitness costs and benefits (Lombardo 2008; Archie & Theis
2011; Ezenwa et al. 2012; Montiel-Castro et al. 2013). For example, co-housing in lab mice
promotes the transmission of bacterial communities that contribute to inflammatory bowel
disease, implicating social relationships in microbiome-associated disease risk (Garrett et al.
2010). In bumblebees, socially transmitted gut bacteria protect against a widespread and
virulent gut parasite, suggesting that socially mediated microbial transmission can also confer
powerful benefits (Koch & Schmid-Hempel 2011). If social interactions predict gut microbiome
composition in free-living vertebrates as well, this link could help explain the strong association
between social interactions and health in highly social species (e.g. Berkman & Syme 1979;
House et al. 1988; Sapolsky 2004; Holt-Lunstad et al. 2010).

A handful of recent studies in humans and other primates provide circumstantial
evidence for social effects on the gut microbiome (Degnan et al. 2012; Kinross & Nicholson
2012; Yatsunenko et al. 2012; Song et al. 2013). For instance, in wild chimpanzees, social
group membership predicts the identity and abundance of gut microbes, while kinship, age, and
sex do not (Degnan et al. 2012). In humans, shared residence predicts gut microbiome similarity
(Kinross & Nicholson 2012; Yatsunenko et al. 2012; Song et al. 2013). To date, these effects
have largely been attributed to shared diets, as members of the same household or social group
tend to consume similar foods in similar proportions (Claesson et al. 2011; Kinross & Nicholson
2012; Yatsunenko et al. 2012). However, social relationships could also shape gut microbiomes
more directly, via transmission from shared environments (Lax et al. 2014) or during physical

contact.
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Differentiating between these mechanisms requires fine-grained data on social
interactions, shared environments, and diet. Such complementary data sets are rare, but are
frequently collected in long-term primate field studies. Here, we leveraged one such study, on
the intensively studied Amboseli baboons of Kenya (Alberts & Altmann 2012), to test whether
social group structure and social interactions within groups predict either the taxonomic or the
functional composition of the gut microbiome. Like humans, baboons are highly social, group-
living primates. Members of the same social group travel together, consume similar foods, and
drink from the same water sources. Within social groups, individuals selectively engage in
frequent affiliative grooming interactions, which solidify social bonds and have the potential to
mediate bacterial transmission. Within this context, we addressed three central questions. We
first asked (i) does social group membership predict gut microbiome composition, as shown for
humans and chimpanzees (Degnan et al. 2012; Kinross & Nicholson 2012; Yatsunenko et al.
2012; Song et al. 2013)? We then asked two novel questions that have not been addressed in
prior studies: (ii) within social groups, do rates of social interactions (captured here by grooming-
based social networks) predict gut microbiome similarity after accounting for dietary patterns,
shared environments, and kinship? And (iii) which bacterial species, with what lifestyle traits, are

most likely to be socially transmitted, both between and within social groups?

Results

We generated shotgun metagenomic data for the distal gut using fecal samples from 48
members of two baboon social groups (“Mica’s group” or “Viola’'s group”; one sample per
individual; Supplementary file 1). Together, these individuals represented almost complete
sampling (92%) of the adult members of both groups. Fecal samples were collected during a
single 1-month timespan to minimize developmental, temporal, and seasonal heterogeneity.
During this time, Mica’s group and Viola’s group exploited adjacent home ranges, with the
center of each range separated by just a few kilometers (Figure 1A).

Using the program MetaPhlAn 2.0 (Segata et al. 2012), we identified 925 bacterial and
archaeal taxa to the species level and quantified their relative abundance (364 + 150 s.d.
species per sample; Figure 1- figure supplement 1; Supplementary files 2, 3; see
Supplementary files 3, 4 for parallel results using a de novo assembly approach). We also
identified and quantified the relative abundance of 9,013 microbial-encoded enzyme orthologs
using the HUMANN pipeline (mean + SD = 2,746 + 560 KEGG orthologs per sample Abubucker
et al. 2012; Figure 1 - figure supplement 3; Supplementary file 5). The taxa we found comprised

a typical primate gut microbiota, dominated by the phyla Firmicutes (mean = SD = 42.2% +
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8.4%), Proteobacteria (13.0% + 2.8%), Actinobacteria (9.4% + 4.6%), and Bacteroidetes (7.3%
+ 2.4%) (Figure 1 - figure supplement 1, 5; Supplementary file 6). In some samples, especially
those in Viola's group, we also detected a large contribution from the phylum Spirochaetes,

consistent with findings from other primates, ancient humans, and modern-day human hunter-
gatherers (De Filippo et al. 2010; Tito et al. 2012; Schnorr et al. 2014).

Social group membership was the strongest single predictor of gut microbiome composition
Across all 48 individuals, social group membership explained 18.6% of global variation in
gut microbial species composition (as summarized by a Bray-Curtis dissimilarity matrix;
PERMANOVA for social group effects: p < 10™*; Figure 1C). Social group membership was also
the dominant source of variance in the abundance of enzyme gene orthologs encoded by gut
microbes, explaining 10.8% of global variance in a Bray-Curtis dissimilarity matrix
(PERMANOVA: p = 0.003; Figure 1D). In contrast, sex, age, and sequencing read depth made
comparatively minor or non-significant contributions to gut microbiome composition
(PERMANOVA: sex, age and read depth explained 3.6%, p = 0.026; 5.3%, p = 0.052; 6.0%, p =
0.024) of variance in taxonomic composition; no significant variation was explained by sex, age,
or read depth for enzyme gene orthologs). Furthermore, social group remained a strong and
significant predictor of taxonomic and enzyme gene ortholog composition even after controlling
for genetic relatedness between study subjects (partial Mantel test for taxonomic composition: r

= 0.378, p < 10°%; for enzyme gene orthologs: r = 0.140, p = 1.6 x 10°®).

Differences in gut microbiome composition between social groups were unlikely to be explained
by diet

Previous associations between social proximity and gut microbial composition in humans
and other primates have largely been attributed to diet (Degnan et al. 2012; Kinross & Nicholson
2012; Yatsunenko et al. 2012). However, the two social groups in our study inhabited a
relatively homogeneous savannah environment and exploited very similar resources. During the
sample collection period, half of each group’s diet was devoted to grass corms, and similar
proportions were devoted to other food types, including grass seed heads, Acacia fortilis seed
pods, leaves (primarily grass blades), and Acacia xanthophloea gum (Figure 1B; Supplementary
file 7). The only diet component that differed significantly between the two groups was the
proportion devoted to fruit (permutation test: p = 0.05). However, we found no differences
between the two groups in the abundance of two common fruit-associated bacterial enzymes,

pectinesterase (p-value for social group in a linear mixed effects model: p = 0.306) and pectate
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lyase (p-value for social group in a linear mixed effects model: p = 0.869). Furthermore, patterns
of differential taxonomic abundance between groups did not recapitulate differences associated
with differential consumption of fresh fruits and vegetables described in a human gut

microbiome data set (Davenport et al. 2014; see Materials and Methods).

Grooming networks predicted gut microbiome composition within groups

Despite few detectable differences in diet, unidentified environmental differences
between Mica’s group and Viola’s group could explain the differences in gut microbiome
composition we observed. To test whether social contacts per se predicted gut microbiome
composition, we turned to fine-grained data on within-group grooming interactions. Grooming is
by far the most common form of physical contact in baboons. Importantly, the strength of
grooming relationships between pairs of individuals in the same social group varies
considerably, despite the fact that all members of a social group travel together and use the
same resource base.

To test whether physical contact predicted gut microbiome composition, we constructed
grooming networks for each social group, using all grooming interactions observed in the year
prior to and during microbiome sampling (Figure 2A, B). We found that, in both groups, closer
grooming partners harbored more similar communities of gut bacteria (Mantel test between
Bray-Curtis microbiome dissimilarity matrices and social network matrices: Mica’s group r = -
0.257, p = 3.0 x 10™; Viola’s group r = -0.173, p = 8.0 x 10*; Figs. 2C and 2D). This pattern was
not driven by host genetic effects: although female relatives have stronger grooming bonds,
controlling for pairwise relatedness still produced strong support for a relationship between
grooming and taxonomic composition for Viola’s group (partial Mantel test controlling for kinship:

=-0.148, p = 2.0 x 10%), and a consistent trend in Mica’s group (partial Mantel test controlling
for kinship: r=-0.163, p = 0.060). Interestingly, extending this analysis to the level of enzyme
gene orthologs suggested that close grooming partners also have functionally more similar gut
microbiomes. Grooming networks predicted variation in within-group enzyme gene ortholog
abundance for Mica’s group (partial Mantel test controlling for kinship: r =-0.22, p = 0.014), but
not Viola’s group (partial Mantel test controlling for kinship: r = -0.051, p = 0.166).

Despite the relative homogeneity of diet within social groups, our results could still be
explained by a diet-related mechanism if close grooming partners consumed more similar diets.
Alternatively, close social partners might experience similar environmental exposures if they
used more similar microenvironments in the group's home range. We tested these possibilities

directly, focusing on adult females for whom diet composition and spatial proximity data were
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routinely collected (N = 11 females in Mica’s group and N = 20 females in Viola’'s group).
Grooming network proximity also predicted microbiota composition in this restricted data set
(Mantel tests: Mica’s group: r = -0.328, p = 9.0 x 10”>; Viola’s group: r = -0.228, p = 2.6 x 107),
and remained a significant predictor of microbiota composition after accounting for dietary
similarity (partial Mantel test controlling for dietary similarity: Mica’s group p = 0.020; Viola’s
group: p = 0.005) and spatial proximity (partial Mantel test controlling for spatial proximity for
Mica’s group p = 0.039; Viola’s group: p = 0.005). Additionally, we found no evidence that close
social partners consumed more similar diets (Mantel tests: Mica’s group: Mantel r = -0.200, p =
0.080; Viola’s group: Mantel r = 0.0942, p = 0.876).

Socially structured bacteria tended to be anaerobic and non-spore-forming

We next investigated which bacterial species were associated with the strong signature
of social structure in our data set. To identify these 'socially structured' species, we focused on
the 327 most prevalent species in our data set (i.e. those found in = 50% of samples). Using a
mixed effects model controlling for age, sex, read depth, and host genetic relatedness, we
identified 64 species (19.6%, using a 10% false discovery rate) that were significantly
differentially abundant in the two social groups. We performed a complementary analysis, using
a test of spatial autocorrelation, to investigate whether close grooming partners exhibited similar
bacterial abundances within social groups as well (due to the larger sample size, we performed
these tests in Viola’s group; see Materials and Methods). Among the same set of 327 prevalent
species, we found 51 species (15.6%, 10% false discovery rate) for which proximity within the
group’s grooming network significantly predicted abundance (Supplementary file 8).
Interestingly, 15 species were significantly socially structured both between groups and within
social networks—more species than expected by chance (hypergeometric test, p = 0.020).

We next conducted an enrichment analysis to test whether the set of significantly
socially structured species contained some taxonomic groups more often than by chance. We
found that socially structured species were phylogenetically non-random at both between-group
and within social network levels of analysis (Figures 3A, B). Moreover, at both levels of analysis,
similar taxonomic groups were significantly enriched for socially structured species (red
asterisks on Figure 3), including the phylum Actinobacteria; the families Bifidobacteriaceae,
Coriobacteriaceae, and Veillonellaceae; and the genus Bifidobacterium, a group of Gram-
negative bacteria that has been linked to beneficial health effects in humans (Servin 2004;
Gronlund et al. 2007; Turroni et al. 2008). The striking similarities between the two levels of

analysis suggest that common underlying mechanisms—mediated by direct social contact
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rather than diet or general physical proximity—account for both between-group differences and
grooming network effects within groups.

Finally, we extended our enrichment analysis to test whether the set of socially
structured species was enriched for particular bacterial lifestyles. We reasoned that, if socially
structured species depend on direct transmission between baboons, as our data suggest, they
should be less likely than other species to persist outside of a host. Thus, we predicted that
socially structured species would tend to be anaerobic and unable to produce spores. To test
these predictions, we turned to information about bacterial lifestyles available in the Genomes
OnLine Database (Pagani et al. 2012), using both species-level (n = 138) and genus-level (n =
299) traits (see Materials and Methods for trait assignment criteria). We found that socially
structured species were consistently enriched (relative to all species or genera tested) for an
anaerobic, non-spore forming lifestyle (Figure 3C; hypergeometric tests for socially structured
species between groups, species level traits: p = 0.017; socially structured species within group,
species level traits: p = 0.067; socially structured species between groups, genus level traits: p
= 0.036; socially structured species within group, genus level traits: p = 0.040). For instance,
17% of the species in this analysis differed significantly in abundance between social groups;
however 32% of anaerobic and non-spore forming species were significantly socially structured.
Notably, no species that were both aerobic and spore-forming were socially structured at the

level of social groups or social networks, except for one case in the genus-level analysis.

Discussion

Taken together, our results provide strong evidence that social interactions directly affect
the composition of the gut microbiome in wild baboons. To our knowledge, this study is the first
to test whether rates of interaction within cohabiting groups, as opposed to between groups or
households, explain variation in the gut microbiome. Specifically, we found that an individual’s
contacts in a grooming-based social network, as well as its membership in a given social group,
were highly predictive of its gut microbiome composition at both the species and genic levels.
Unlike prior studies, we were able to exclude kinship, shared diet, and shared environment as
the basis for our observations. Our results are thus unique among studies to date in the degree
to which they implicate direct, affiliative physical contact as a determinant of gut microbiome
composition in natural populations. Our data also provide the first evidence in vertebrates that
social effects on the microbiome extend to its functional composition. These findings lend
important support to the hypothesis that social interactions play a role in the health-related

consequences of variation in gut microbiome composition (e.g. Turnbaugh et al. 2009; Hooper
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et al. 2012; Bengmark 2013; lida et al. 2013; Koeth et al. 2013; Viaud et al. 2013), with
potentially important consequences for the evolution of sociality (Lombardo 2008; Archie &
Theis 2011; Ezenwa et al. 2012; Montiel-Castro et al. 2013).

Thus, our results highlight the importance of socially mediated transmission in shaping
gut microbiomes. However, unlike some prior studies in mice and bumblebees (Garrett et al.
2010; Koch & Schmid-Hempel 2011), baboons are not coprophagic, raising a question about
the mechanisms that facilitate gut microbial transfer between social partners. One possibility is
that the duration and intimacy of grooming bouts, which include frequent hand-to-mouth contact,
may be important in exposing baboons to the gut bacteria of their grooming partners.
Furthermore, some grooming bouts, especially those directed from adult males to estrous
females, concentrate heavily on the ano-genital region, increasing the probability of fecal-oral
transfer. Such close contact may be especially important in the transmission of anaerobic, non-
spore-forming species, as these bacteria are not thought to persist for long periods of time
outside of a host (Wilson 2008). However, some relatively hardy bacterial species may also be
transmitted via social contact (VanderWaal et al. 2013), and recent modeling efforts suggest
that fecal-oral transmission can be highly efficient in socially structured host populations, even
when transmission is indirectly mediated through the soil (Nunn et al. 2011).

Interestingly, our observations suggest that social partners not only share more similar
sets of gut microbes, but also similar abundances of individual microbial species. One
explanation for this pattern is that when bacteria from a host colonize a social partner, they
arrive pre-adapted to occupy the available gut microbial niches in their new host (Walter & Ley
2011). Specifically, because members of a single bacterial species can have markedly different
gene contents, a given member of a gut microbial species may perform different functions and
in different hosts (Walter & Ley 2011; Costello et al. 2012). However, if social partners transmit
bacteria with similar capabilities to each other, these bacteria may serve similar functions in
both hosts and thus be found in similar abundances. This hypothesis could be further tested by
assessing if bacterial species isolated from social partners tend to represent shared strains that
perform similar biological functions.

In humans, affiliative physical contact (e.g. hugging, kissing, holding hands) is common
and may provide a similar route through which close social partners transmit gut bacteria. In
addition, surfaces in human homes may act as reservoirs for household-specific bacterial
communities (Lax et al. 2014), possibly facilitating social transmission through intermediate
surfaces. Future work, in both humans and animals, will be important to establishing the relative

importance and generality of socially mediated transmission. In particular, population genetic
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studies have the potential to directly map the genetic structure of microbiome-associated
species onto the social structure of host populations to test whether close social partners tend to
share genetically more similar bacterial populations than non-partners (e.g. VanderWaal et al.
2013). Fine-grained studies of how gut microbial communities change in social species, before
and after perturbations to their social networks, will also be important for understanding the time
scales on which social transmission of microbes act. Such efforts would also contribute an
important longitudinal perspective. Our power to identify associations between social
relationships and microbiome composition in this study was probably facilitated by our sampling
scheme, which eliminated the contribution of temporal or seasonal effects. More comprehensive
long-term studies will be valuable for placing these effects in context, alongside concomitant
changes in season, diet, and resource use.

In humans, variation in the taxonomic and genic composition of the microbiome is
increasingly linked to health issues, such as obesity and autoimmune disorders (e.g. Turnbaugh
et al. 2009; Hooper et al. 2012; Bengmark 2013; Koeth et al. 2013). Health and survival in social
species (including humans and baboons) are also strongly associated with social relationships
(Berkman & Syme 1979; House et al. 1988; e.g. Sapolsky 2004; Silk et al. 2009; Holt-Lunstad et
al. 2010; Silk et al. 2010; Archie et al. 2014). However, few studies have connected these two
observations. By highlighting the strong relationship between microbiome composition and
social networks, our findings indicate the importance of further research in this area. One of the
most important unanswered questions is whether social network-mediated microbiome sharing
produces net fitness benefits or costs for hosts. Previous research on fecal-oral or social
network-mediated transmission has focused almost exclusively on pathogens or parasites.
Microbiome studies have the potential to broaden this perspective to include species with
beneficial effects. Indeed, while we found several socially structured taxa that have been
associated with pathogenic effects (e.g. Fusobacterium spp, Campylobacter ureolyticus), we
found several other bacteria thought to be beneficial to hosts. For example, members of the
phylum Actinobacteria, especially the genus Bifidobacterium, are commonly thought to have
probiotic effects in humans due to their role in complex carbohydrate digestion, pathogen
inhibition, and vitamin production (Servin 2004; Gronlund et al. 2007; Turroni et al. 2008).
Understanding the balance between social transmission of pathogenic versus commensal or
beneficial bacteria thus promises to provide valuable new insight into the link between disease

risk and the evolution of sociality.

Materials and Methods
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Study subjects, sample collection, DNA extraction, and metagenomic data generation

Study subjects were 48 wild, adult baboons living in the Amboseli ecosystem, a semi-
arid savannah in southern Kenya (Supplementary file 1). The baboons were studied as part of
the Amboseli Baboon Research Project (ABRP), which has been collecting continuous,
individual-based data on all the members of several baboon social groups since 1971 (Alberts
and Altmann, 2012). The specific subjects for this project represented near complete sampling
(92%) of all the adult members of two social groups, called "Mica's group" and "Viola's group".
The baboons are individually recognized by experienced observers, who visit each group

several times per week, year round, for 5-hour monitoring visits (Alberts and Altmann, 2012).

Distal gut microbiome composition was characterized using fecal samples collected
opportunistically from known individuals. All fecal samples were collected during a single 1-
month span in the dry season (7 July 2012 to 8 Aug 2012: Supplementary file 1). Samples were
collected within a few minutes of defecation, thoroughly mixed, and then preserved in 95%
ethanol (2:5 feces to ethanol). DNA was extracted from each sample using MO BIO's
PowerSoil® DNA Isolation kit, according to the manufacturer’s instructions (MO BIO
Laboratories, Inc., Carlsbad, CA). For each individual, 200 ng of extracted DNA were prepared
for metagenomic sequencing on an Illlumina HiSeq 2500 using the Kapa Biosystems Library
Prep kit (Kapa Biosystems, Wilmington, MA). Specifically, DNA samples were sheared to an
average size of 400 base pairs, ligated to barcoded adapters, and subjected to 100 base pair
paired end sequencing at the UCLA Neuroscience Genomics Core. In total, we generated 1.4
billion raw, paired-end lllumina sequences across all samples (mean + SD = 14.4 + 13.7 million
read pairs per sample). All raw reads are deposited in the National Center for Biotechnology
Information (NCBI) Short Read Archive (BioProject PRINA271618).

Assessment of microbiome taxonomic composition using MetaPhlAn 2.0

Species-level taxonomic abundances were inferred for all samples using MetaPhlAn 2.0
(Segata et al. 2012). MetaPhlAn 2.0 estimates the relative abundance of bacterial species by
mapping reads against a set of clade-specific marker sequences, which unequivocally identify
microbial clades at the species level or higher taxonomic levels. Based on 12,926 complete
bacterial genomes, MetaPhlAn 2.0 is able to provide clade-specific markers for a total of 3,848
bacterial species, 925 of which were detected in our data set (Supplementary files 2, 3).

Specifically, we mapped our sequence reads against the clade-specific markers using the "very-
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sensitive-local" alignment mode implemented in Bowtie 2 (Langmeade et al. 2009). This mode
produces alignments that can be trimmed at one or both extremes in order to optimize the
alignment score. Because spurious or poor-quality reads are unlikely to match any of the pre-
defined marker sequences, no preprocessing of the metagenomic DNA sequences was
performed, as recommended by the authors. However, we tested the robustness of these
estimates by re-running MetaPhlAn 2.0 on a subset of our data after trimming the reads to
eliminate adapter sequences and bases with a quality score <20. Correlations between the
bacterial abundance estimates obtained using unprocessed data and those obtained using the
trimmed data were always above 0.97, confirming that MetaPhlAn 2.0 is indeed highly robust to

potential sequence artifacts.

Assessment of enzyme gene family composition

To investigate variation in the genic composition of the gut microbiome, we combined
information from the Kyoto Encyclopedia of Genes and Genomes database (KEGG: Kanehisa
et al. 2014; Kanehisa and Goto, 2000) with the HMP Unified Metabolic Analysis Network
(HUMANN) v0.99 pipeline (Abubucker et al. 2012). We first filtered the forward reads for quality
using USEARCH v7.0 (Edgar 2010). Specifically, for each sample, we (i) trimmed reads to a
length of 99 bases, (ii) excluded reads shorter than 99 bases, and (iii) excluded reads with
expected error (a measure of read quality in USEARCH based on base call quality and read
length) >0.5.

An average of 87.9% of all reads passed quality filtering (Figure 1 — figure supplement
4). Remaining reads were translated in all three possible reading frames and aligned against a
reduced KEGG database (last free version, June 2011) using the ublast function of USEARCH
v7.0 and default parameters. The reduced KEGG database was generated by removing entries
for which no KEGG orthology (KO) assignments existed and subsequently clustering each KO
individually (uclust v1.5.579, using 85% sequence identity as the clustering cutoff) (Edgar, 2010;
Kanehisa and Goto, 2000; Kanehisa et al. 2014). This database was converted to a USEARCH-
compatible database file prior to running ublast. An average of 23.0% of the input reads across
all samples were assigned an identity from the KEGG database (Figure 1 — figure supplement
4). Finally, the ublast output was used as input for HUMANN. HUMANN was configured
to generate KO abundances from BLAST hits of enzymes as well as coverage and abundances

for KEGG pathways and modules.
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Social group membership and microbiome composition

To investigate the correlation between social group membership and the composition of
baboon gut microbiomes, we constructed separate summaries of the complete taxonomic
composition data set from MetaPhlAn 2.0 and the complete enzyme gene ortholog abundance
data set from HUMANN. Specifically, for each data set, we used the vegdist function in the R
package vegan (Okansen et a. 2013) to calculate a 48 x 48 Bray-Curtis dissimilarity matrix,
which describes the global dissimilarity in gut microbial composition between each pair of
individuals in the data set. To understand sources of variance in these matrices, we performed
PERMANOVA analyses (adonis function in vegan) with 10,000 permutations. In addition to
social group, predictor variables in this analysis were age, sex, and total read depth. Sex was
known from direct observation of the study subjects. Ages were known to within a few days’
error for 39 of the 48 individuals in the data set. The remaining 9 individuals immigrated into the
population after birth, and so their ages were estimated using well-defined metrics and
comparison to known-age animals (Alberts & Altmann 1995). Of these 9 individuals, 6 animals
had birth dates estimated to be accurate within 1 year, and 3 animals had birth dates estimated
to be accurate within 2 years. All study subjects were adults (i.e., all females had attained

menarche, and all males had attained adult dominance rank; Onyango et al. 2013).

To assess the possible confounding effects of kinship, we constructed a matrix of
pairwise genetic relatedness values from the extensive pedigree data available for the Amboseli
population (e.g., Buchan et al. 2003; Alberts, Buchan and Altmann, 2006; current pedigree
includes 1409 individuals, with 1298 known maternal links and 526 known paternal links) using
the R package pedantics (Morrissey and Wilson, 2010). We then used partial Mantel tests to
assess the correlation between a matrix describing group co-residency (cells took a value of 1 if
two individuals resided in different groups and a value of 0 if they were co-resident) and the
Bray-Curtis dissimilarity matrix for taxonomic composition, controlling for the pairwise genetic

relatedness matrix.

Differences in diet between social groups

To assess differences in diet between the two social groups, we used direct
observations of the food consumed by adult female baboons in each group during the month in

which samples were collected. Diet composition data were collected in the context of random-
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order focal animal sampling (Altmann, 1974). Specifically, ABRP observers spent 4 hours of
each group visit rotating through the group, conducting focal animal samples on adult females in
the order dictated by a randomized list. Each focal animal sample was 10 minutes long, during
which activity (feeding, walking, resting etc.) was recorded during point samples collected at 1-
minute intervals. When feeding was observed (353 point samples in Mica's group and 731 point
samples in Viola's group), the observers recorded the type of food consumed. Food types were
divided into 7 categories, including: (1) corms of all grass species, (2) seed heads of all grass
species, (3) pods from Acacia tortilis and A. xanthophloea (4) fruits, including those from Azima
tetracantha, Salvadora persica, Solanum dubium, Trianthema ceratosepala, and Tribulus
terrestris, (5) leaves from Lyceum sp. and all grass species, (6) gum from A. xanthophloea, and

(7) unknown/unidentified diet items (Supplementary file 7).

To calculate the contribution (including confidence intervals) of each of the seven major
food categories to each group’s diet, we conducted 1000 random subsamples of one foraging
point sample per focal animal sample. We took this approach to avoid autocorrelation between
point samples collected during the same 10-minute focal sample. To test for differences in diet
between groups, we repeated the same analysis after randomly permuting group membership
across the females in our data set. We calculated the proportion of cases in which between-
group differences in the proportion of a food consumed exceeded between-group differences in
the 1000 permuted data sets. This proportion is equivalent to the p-value for the null hypothesis

that the two groups did not differ in diet.

Because we detected a nominally significant difference (p = 0.05) in the amount of fruit
consumed by the members of Mica’s group (7.9%, 95% CI: 0.0 — 8.3%) and the members of
Viola’s group (2.2%, 95% CI: 1.0 — 7.3%) during the sampling period, we also compared our
results to a published data set of seasonal differences in gut microbiome composition in humans
(Davenport et al. 2014). These differences are believed to be the result of differences in
consumption of fresh fruits and vegetables. Only three genera were detected as both
significantly differentially abundant in the diet-related human data set (FDR = 10%) and
significantly enriched for differential abundance between social groups in our data set, at a
conservative (for comparative purposes) threshold of p < 0.05. Bifidobacterium was more
abundant in humans when they consumed less fresh fruit; Prevotella and Treponema were
more abundant when they consumed more fresh fruit. In our data set, however, Bifidobacterium

levels were more abundant in Mica’s group, which consumed more fruit, and Prevotella and
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Treponema species were more abundant in Viola’'s group, which consumed less fruit,

suggesting that the patterns we observed are due to other sources of variance.

Social interactions and microbiome composition within groups

To test whether grooming-based social networks predicted gut microbiome similarity, we
constructed grooming networks based on ad lib observations of grooming interactions collected
in the year prior to and including the period of microbiome sampling (8 August 2011 to 8 August
2012: 1,648 total interactions, with 667 in Mica's group and 981 in Viola's group). Ad lib
grooming interactions were collected throughout the monitoring visit while observers were
carrying out focal animal sampling. Ad /ib grooming data were used to calculate a count of
observed grooming interactions between all adult dyads present in each social group (range = 0
to 41 interactions per dyad). These data were used to construct a matrix of grooming
relationship strength by scoring the strongest dyadic grooming relationship in each group as a 1
and weighting all other dyadic relationships relative to this strongest bond. We then used Mantel
tests to investigate the strength of the correlation between group-specific grooming networks
and group-specific Bray-Curtis dissimilarity matrices, constructed as described above. We used
partial Mantel tests to assess whether grooming network-microbiome dissimilarity matrix
correlations were driven by kinship (represented using pedigree-based pairwise relatedness

estimates).

To investigate alternative explanations for social network effects on the microbiome, we
collated data on diet and spatial proximity for members of each social group, focusing on adult
females only (comparable data were not available for adult males). Parallel to the time span for
social network construction, we compiled data for the year prior to and including the month of
microbiome sampling. For diet, we extracted all foraging-related point samples from the females
in our microbiome data set (1,380 points in Mica’s group; 1,989 points in Viola’s group). We
subsampled each data set so that only one point sample was represented per focal sample,
which avoids autocorrelation between point samples collected during the same focal. We then
constructed a table of the proportion of foods consumed per female, for each group separately,
and used this table to calculate group-specific, diet-based Bray-Curtis dissimilarity matrices. For
spatial proximity, we calculated the percent of time all adult female dyads spent within 5 m of
each other during the same time period. Specifically, during each focal animal sample, the
nearest adult female neighbor within 5 m is recorded at each 1-minute point sample (893 points

in Mica's group; 1,637 points in Viola's group; range = 0 — 64 points per dyad). The proximity
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score between each pair of females (within groups) was calculated as the total number of point
samples in which they were each other’s nearest neighbors divided by the total number of point

samples collected for each member of the dyad.

Identification of socially structured taxa

To identify differentially abundant bacterial taxa by social group membership, we used
the linear mixed model approach implemented in the program GEMMA (Zhou and Stephens,
2012), which allowed us to account for potential kinship effects in our data set. This approach
assumes that the response variable (taxon abundance) is continuously distributed. To meet this
assumption, we used methods established for analyzing high-throughput functional genomic
data sets (Rapaport et al. 2013). Specifically, we first quantile normalized abundance values
across individuals, focusing only on the 327 most prevalent taxa (i.e. those found in at least
50% of hosts based on our MetaPhlAn 2.0 analysis, regardless of abundance), and then
transformed the distribution of values for each species to a standard normal. We then fit the
following linear mixed model to the data for each species:

y=u+xB,+af,+sps+rB.+u+eg
u~MVN(0, 02K),
e~MVN(0, 021

Here, y is the n by 1 vector of normalized taxon abundances for the n individuals in the
sample; y is the intercept; x is the n by 1 vector denoting social group membership; and B, is the
effect size of social group membership. For the other covariates, a is the n by 1 vector denoting
age and S, describes its effects on taxon abundance; s is the n by 1 vector denoting sex and s
its effect size; and ris the n by 1 vector denoting read depth and g, its effect size. The n by 1
vector of u is a random effects term to control for relatedness, and the n by n matrix K provides
pedigree-based estimates of relatedness. Residual errors are represented by &, an n by 1
vector, and MVN denotes the multivariate normal distribution. We interpreted significantly non-
zero B, values as support for differences in taxon abundance between social groups, using a
false discovery rate threshold of 10% (Storey and Tibshirani, 2003) after checking that an
empirically derived null distribution of p-values for this analysis was uniform (Figure 3 — figure

supplement 1).

To identify socially structured bacterial taxa within baboon social groups, we utilized a
test of spatial autocorrelation, Moran’s |, as implemented in the function Moran.l in the R

package ape (Paradis, Claude and Strimmer, 2004). This analysis tests whether individuals with
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closer social bonds (as measured by the pairwise matrix of grooming strengths) tend to have
more similar values for taxon abundance than those with weak or absent social bonds. Here, we
again investigated the 327 most prevalent species from the MetaPhlAn 2.0 analysis. For this
analysis, our power was constrained by the number of individuals in the social group. Thus,
while we identified a large number of socially structured species within Viola’s group (n = 51 of
327 species tested, at a false discovery rate of 10%), we did not observe strong evidence for
socially structured species within Mica’s group. Further investigation suggests this result is a
consequence of sample size, as subsampling Viola’s group (n = 29 individuals) to the size of
Mica’s group (n = 19 individuals) also resulted in little power to detect socially structured
species. More than half of the time (58% of 100 random subsamples), fewer than 5 such cases
were detected in Viola’s group after subsampling, and more than a third of the time (35%) no
cases could be detected with the smaller sample size. Hence, we focused on results from
Viola’s group. We again used a 10% FDR threshold to identify significant taxa in this analysis,

after ensuring that the empirical null distribution was uniform (Figure 3 — figure supplement 2).

For both between-group and within-group analyses, we investigated enrichment of
socially structured species in taxonomic units above the level of species (i.e., phylum, class,
order, family, and genus) using hypergeometric tests. We required that taxonomic units include
at least 4 species in our analysis to test for significant enrichment, and again employed an FDR
threshold of 10%.

Bacterial life style analysis

Descriptive data on bacteria were retrieved from the Genomes OnLine Database
(GOLD; Pagani et al. 2012). This information included records for 34,533 unique entries and
was downloaded from the GOLD website using a custom script on 02 June 2014 (available on

GitHub at https://github.com/jklynch/scrape). Each record included fields for oxygen

requirements and sporulation, as well as taxonomic classifications from the kingdom to species
levels. We retained only completely sequenced genomes, and filtered this set to the entry, for
any given species, associated with the most information about bacterial lifestyle and phenotype
(n = 3,818 unique species in 1,280 unique genera). To assign “genus-level” traits, we kept only
genera in which all species in our filtered database were associated with the same trait value, if
assigned (e.g., we assigned an anaerobic lifestyle to a genus only when all members of the

genus were consistently anaerobic).
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To investigate properties of significantly socially structured species, we merged the set
of 327 prevalent species with the set of species with known lifestyle information. 138 species
were represented in both sets; the comparable analysis at the genus level yielded n = 299
genera in both sets. We then applied hypergeometric tests to these data sets to ask whether
socially structured species or genera, either between or within groups, were enriched for
anaerobic, non-spore forming life-styles. Our results were broadly robust to whether anaerobes
are distinguished in contrast to aerobes or in contrast to both aerobes and facultatively oxygen
tolerant species (socially structured species between groups, species level traits: p = 0.025;
socially structured species within group, species level traits: p = 0.100; socially structured
species between groups, genus level traits: p = 0.056; socially structured species within group,

genus level traits: p = 0.050).

Alternative assessment of microbiome taxonomic composition using de novo assembled contigs

As an alternative to taxonomic profiling using MetaPhlAn 2.0, we also performed de
novo contig assembly using the complete set of 1.4 billion raw reads. This approach allowed us
to evaluate whether our results were robust to our methods for estimating species abundance.
Reads were assembled de novo using Ray Meta, a short read de Bruijn assembler specifically
devised for metagenome data, following the authors’ recommendations (Boisvert et al. 2012).
Bacterial proportions for each sample were then estimated using Ray Communities, utilizing all
bacterial genomes available in GenBank and the Greengenes taxonomy as a reference
(DeSantis et al. 2006). Summary statistics for alpha diversity and bacterial abundances
estimated for each sample from the de novo assemblies can be found in Supplementary files 3
and 4.

Across all 48 samples, we identified 1,465 taxa that could be identified to the species
level. Similar to our results using MetaPhlAn 2.0, we identified substantial representation of
phyla typically found in gut microbiomes, including Bacteroidetes, Firmicutes, Proteobacteria,
and Actinobacteria (Figure 1 — figure supplement 1). The de novo assembly, however, identified
a very large contribution of the phylum Spirochaetes in Viola’s group (mean = 23.7%), which
was primarily driven by the abundance of reads mapping to the bacteria Treponema
succinifaciens. Notably, we also identified T. succinifaciens as significantly more abundant in
Viola’s group members than in Mica’s group members using the MetaPhlAn approach (p = 2.46
x 10™'%). Thus, while our two approaches differed in the magnitude of this effect, the overall

pattern was highly consistent.
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The relationship between social group membership and gut microbiome composition
using the de novo assembly approach broadly recapitulated the results using MetaPhlAn-based
estimates (Figure 2 — figure supplement 1). Specifically, social group membership explained
32.8% of global variation in gut microbial taxonomic composition, as summarized by a pairwise
Bray-Curtis dissimilarity matrix (PERMANOVA: p < 1.0 x 10™). Kinship did not explain this
relationship (partial Mantel test relating group co-residency to taxonomic composition,
controlling for pedigree-based kinship: r = 0.434, p < 1.0 x 10°°). Additionally, the de novo
assembly approach again revealed that, within groups, closer grooming partners harbored more
similar gut microbes (Mica’s group: Mantel test r = -0.197, p = 0.016; Viola’s group: r=-0.147, p
= 1.9 x 10®). However, while this relationship survives correcting for kinship in Viola’s group (r =
-0.112, p = 0.017), it is not statistically detectable after controlling for kinship in Mica’s group (r =
-0.091, p = 0.20). This pattern recapitulates our observations in the MetaPhlAn analysis, in
which within group structuring of the microbiome tended to be weaker in Mica’s group as well.

We next restricted the within-group grooming network analysis to adult females only, in
order to test for alternative explanations for the grooming-microbiome composition effect.
Grooming interactions remained a significant predictor of microbiome composition after
accounting for both within-group patterns of dietary similarity (partial Mantel controlling for
dietary similarity: Mica’'s group p = 0.038; Viola’s: p = 0.006) and spatial proximity in Viola’'s
group (partial Mantel controlling for proximity: Viola’s: p = 0.009). In Mica’s group, controlling for
proximity produced a consistent trend with our main analyses, but eliminated the strong
statistical signal of grooming on microbiome composition (Mica’'s group p = 0.124). We surmise
that patterns of proximity, kinship, and grooming may be too closely correlated in Mica’s group
to disentangle in the de novo assembly-based data set, which may produce noisier estimates of

taxonomic abundance.
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Figure titles and legends

Figure 1. Social group membership predicts microbiome composition. (A) Group home
ranges in the year prior to and during sample collection. (B) Diet composition during sample
collection. Only the proportion of fruit consumed significantly differed between groups (p = 0.05;
Supplementary file 7). Principal coordinates plots of Bray-Curtis dissimilarity matrices for (C)
taxonomic (Supplementary file 2) and (D) KEGG enzyme ortholog composition of individual gut
microbiomes (Supplementary file 5). Social group membership explained significant variation in
gut microbial composition (PERMANOVA: # = 0.186, p < 10™*) as well as gut microbial enzyme
ortholog composition (* = 0.108, p = 0.003). Relative abundances of common bacterial phyla
and KEGG enzyme orthologs are shown in Figure 1 — figure supplement 1, 2. A rarefaction
analysis of species-level sampling is shown in Figure 1 — figure supplement 3. The results if the
HUMAnNN pipeline are shown in Figure 1 — figure supplement 4. A comparison between baboon
and human microbiome composition across body sites is shown in Figure 1 — figure supplement
5.

Figure 2. Grooming-based social networks predict microbiome composition. Social
networks based on grooming interactions in the year prior to and including the month of
microbiome sampling in (A) Mica's and (B) Viola's social groups. Each circle represents an
individual (with the individual’s ID listed within the circle). Lines represent grooming interactions
between individuals, and heavier lines reflect stronger grooming relationships. (C, D) Violin plots
depicting the relationships between pairwise grooming bond strength versus pairwise Bray-
Curtis dissimilarity in taxonomic composition in Mica's and Viola's groups, respectively. White
dots represent median values and grey rectangles represent the 1%' and 3™ quartiles of the data.
Rotated kernel density plots representing the underlying data are shown on each side. Stronger
bonds predict more similar gut microbiotas in both groups (Mica’s group: Mantel test r = -0.257,
p = 3.0 x 10™; Viola’s group: r=-0.173, p = 8.0 x 10™). Parallel results based on de novo

assembly are shown in Figure 2 — figure supplement 1.

Figure 3. Socially structured species are taxonomically and phenotypically nonrandom.
Bacterial taxonomic groups significantly enriched (10% FDR) for socially structured species (A)
between social groups and (B) within the grooming network for Viola’s group (Supplementary
file 8). Vertical dashed lines depict a fold enrichment of 1, representing the background level of

taxon abundance in the data set. Red asterisks denote taxonomic groups identified at both
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levels of analysis. (C) Significant enrichment of anaerobic, non-spore-forming bacterial taxa,
both between and within groups, at both species and genus levels (socially structured species
between groups, species level traits: p = 0.017; socially structured species within group, species
level traits: p = 0.067; socially structured species between groups, genus level traits: p = 0.036;
socially structured species within group, genus level traits: p = 0.040). See Figure 3 — figure
supplements 1 and 2 for a comparison of the enrichment of p-values in our data set versus an

empirical null distribution.
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ADDITIONAL FILE TYPES
Figure supplements and legends

Figure 1 — figure supplement 1. Proportional representation of common phyla in each
sample. The OTU table generated using MetaPhlAn 2.0 was collapsed to the level of the
phylum for each sample. Phyla that were not represented at 2 1% in at least one of sample are
summed and presented as “rare phyla.” Samples from Mica’s group are clustered on the left

and those from Viola’s group on the right.

Figure 1 — figure supplement 2. Proportional representation of common KEGG orthologs
in each sample, summarized as pathways. The KEGG pathway abundances generated using
HUMAnNN were filtered to only include those represented at = 1% in at least one sample and are
presented as stacked bar plots. Samples from Mica’s group are clustered on the left and those

from Viola’s group on the right.

Figure 1 — figure supplement 3. Rarefaction analyzes of shotgun metagenomic data. Plot
(A) shows the number of species found in each sample as a function of the number of paired-
end reads down-sampled from the full data set. The number of species reported in each data
point corresponds to the average number of species over 10 randomly resampled data sets
(restricted to species detected at an abundance >0.01% in the sample, based on the logic that
very rare species are more likely to represent assignment errors). In each random re-sampling,
we down-sampled the number of reads and re-ran the subsampled sequences through the
MetaPhIAn 2.0 pipeline to obtain a count of the number of species represented in each down-
sampled data set. Plot (B) depicts a parallel analysis to (A), but limited to the 327 most

prevalent species in our data set.

Figure 1 — figure supplement 4. HUMANN pipeline results. (A) Percentage of reads retained
following quality filtering in usearch, per sample. (B) Percentage of pass-filter reads aligned

against an entry in the reduced KEGG database, per sample.
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Figure 1 — figure supplement 5. PCA projection of baboon gut microbiome data and
Human Microbiome Project data collected from different body sites. Gut microbiome data
from baboons most closely resembles gut microbiome data from humans. The first principal
component of the microbiome data separates out data from different body sites; the second

principal component separates baboon gut microbiome data from human gut microbiome data.

Figure 2 — figure supplement 1. Evidence for social structuring of the gut microbiome
based on de novo assembly. Estimating gut microbiome taxonomic composition by
comparison to de novo bacterial genome assemblies also produces congruent evidence for
social structuring. (A) Proportional representation of common phyla in each sample, grouping
phyla not present at >1% in at least one sample together are “rare phyla.” (B) Principal
coordinates projection for individuals from Mica’s group and Viola’'s group separates samples by
social group along the first axis. (C) Strength of pairwise grooming relationships, and thus within
group social structure, explains levels of similarity and dissimilarity in gut microbiome taxonomic

composition. Data are shown for Mica’s group.

Figure 3 — figure supplement 1. Enrichment of low p-values in the data versus an
empirical null: between group analyses. To confirm that our modeling approach (quantile
normalization of species relative abundances, followed by mixed effects modeling in GEMMA)
did not bias us towards detecting false positives, we compared the signal in our true data set
against an empirically derived null. The histogram distribution of p-values for the true data (gold)
is plotted against the distribution of p-values from 10 permutations (blue). In each permutation,
group membership was scrambled across the data set while keeping the modeling approach,
kinship structure, and all other covariates constant. The inset shows a quantile-quantile plot of
the same data, with clear enrichment of differentially abundant species in the actual data versus
the empirical null. No differentially abundant species are detected at a 10% FDR in the

permuted data sets, while 64 are discovered in the true data set.

Figure 3 — figure supplement 2. Enrichment of low p-values in the data versus an
empirical null: within group network analysis. To confirm that our modeling approach
(Moran’s | statistic within Viola’s group) did not bias us towards detecting false positives, we
compared the signal in our true data set against an empirically derived null. The histogram
distribution of p-values for the true data (gold) is plotted against the distribution of p-values from
10 permutations (blue). In each permutation, species abundance was scrambled across group

members while keeping the modeling approach and social network structure constant. The inset
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shows a quantile-quantile plot of the same data, with clear enrichment of socially structured
species in the actual data versus the empirical null. No socially structured species are detected

at a 10% FDR in the permuted data sets, while 51 are discovered in the true data set.

Supplementary Files
Supplementary file 1. Table listing all subject and sample characteristics.

Supplementary file 2. Table listing the relative abundance of microbial species in each

sample inferred via MetaPhlAn 2.0.

Supplementary file 3. Table listing species richness and alpha diversity for each

sample based on taxonomic profiling using MetaPhlAn 2.0 and de novo contig assembly.

Supplementary file 4. Table listing species proportional abundance for each sample

based on de novo contig assembly.

Supplementary file 5. Table listing the relative abundance of enzyme gene orthologs in

each sample.

Supplementary file 6. Table listing the proportional representation of common phyla in
each sample. Taxonomic abundances were inferred for all samples using MetaPhlAn
2.0.

Supplementary file 7. Table listing the dietary composition during the microbiome

sample collection period.

Supplementary file 8. Table listing statistical evidence for social structuring for the 327
most common bacterial species (prevalence > 50% across 48 samples). Between group
analyses were based on the linear mixed modeling approach implemented in the
program GEMMA,; g-values reflect a false discovery rate of 10%. Within-network
analyses were based on Moran’s |, as implemented in the function Moran.l in the R

package ape; g-values reflect a false discovery rate of 10%.
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