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RIPOSTE: a framework for
improving the design and
analysis of laboratory-based
research
Abstract Lack of reproducibility is an ongoing problem in some areas of the biomedical sciences.

Poor experimental design and a failure to engage with experienced statisticians at key stages in the

design and analysis of experiments are two factors that contribute to this problem. The RIPOSTE

(Reducing IrreProducibility in labOratory STudiEs) framework has been developed to support early

and regular discussions between scientists and statisticians in order to improve the design, conduct

and analysis of laboratory studies and, therefore, to reduce irreproducibility. This framework is

intended for use during the early stages of a research project, when specific questions or hypotheses

are proposed. The essential points within the framework are explained and illustrated using three

examples (a medical equipment test, a macrophage study and a gene expression study). Sound study

design minimises the possibility of bias being introduced into experiments and leads to higher

quality research with more reproducible results.
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Introduction
Laboratory-based studies play a central role in

preclinical biomedical research, encompassing

a diverse range of techniques and spanning

a broad range of fields across the biomedical

sciences. For example, investigations of the

biological pathways underpinning drug response

or microbial pathogenesis, the assessment of

safety and efficacy of interventions, and the

discovery of biomarkers all rely on laboratory-

based methods for at least some stages of

observation, measurement and/or processing.

Despite this key role, approaches to the design,

analysis and reporting of laboratory studies can

be highly varied. Moreover, the frequently

dynamic nature of laboratory based research

can mean that studies are often complex and

may consist of various exploratory components,

which may not be fully documented when results

are published. This can lead to a lack of trans-

parency about the research methodology, and

may prevent any results and findings from being

successfully reproduced.

Lack of reproducibility (or ‘irreproducibility’) is

an acknowledged problem within biomedicine

that has recently been gaining increased atten-

tion (Begley and Ellis, 2012; Begley, 2013; The

Economist, 2013; Macleod et al., 2014).

Attempts to independently confirm or follow-up

on spurious research findings waste time, money

(which may have public or charitable origins) and

resources, and also raises ethical concerns.
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Initiatives aiming to address irreproducibility in

the biomedical sciences are therefore underway

(Errington et al., 2014; Morrison, 2014). Initial

efforts have largely focussed on improving

reporting standards from research publications.

For example, both Science and Nature have

recently introduced new reporting guidelines

that aim to improve the transparency of research

disseminated in their journals (Nature, 2013;

McNutt, 2014). Attempts to harmonise and

improve reporting standards across particular

types of study have also been made. The

Minimum Information About a Microarray Exper-

iment (MIAME) (Brazma, 2009) initiative targets

experimental protocols in microarray experi-

ments and other ‘omics’ studies, while the

REMARK guidelines (Altman et al., 2012) focus

on the appropriate and transparent use of

statistical methods in tumour marker prognostic

studies. A recent report from the Institute of

Medicine in the US also focuses on ‘omics’

studies (Institute of Medicine, 2012). Several

other relevant guidelines for reporting health

related research can be found through the

EQUATOR network (equator-network.org). A

common theme in these guidelines is the

appropriate and transparent reporting of statis-

tical methods.

Whilst the above initiatives aim to improve

transparency in published laboratory based re-

search, a focus only on the reporting of studies

does not address other key factors that may also

contribute to irreproducibility. For instance, a re-

cent retraction of a MIAME compliant study

(Sebastiani et al., 2011) demonstrates that

targeting reporting standards alone cannot pre-

vent irreproducibility. A large number of other

retractions have also been highlighted (www.

retractionwatch.com), increasing the focus on

what contributes to the problem and how to

tackle it (Irizarry et al., 2005; Baggerly and

Coombes, 2009; Prinz et al., 2011; Sebastiani

et al., 2011; Begley and Ellis, 2012; Lambert

and Black, 2012; Parker and Leek, 2012;

Freedman and Inglese, 2014).

Several factors may lead to irreproducibility in

laboratory studies. As highlighted above, poor

reporting can limit the ability to accurately

reproduce results. Although general methodol-

ogy and procedures are usually reported, key

details needed to guarantee that an entire

analysis pipeline can be reproduced are often

missing, such as information about a study’s

methods and/or analysis. This may include in-

formation about the modality of data handling

and manipulation, version of software and/or

libraries used, and implementation of the statis-

tical methods.

Issues relating to the generation of data,

including study design and methods to minimise

the introduction of bias, may also contribute to

irreproducibility. Any bias introduced into a study

often cannot be removed and may impact on the

results in ways that may be difficult to quantify

(Bogardus et al., 1999). These issues may stem

from practices within the laboratory itself; for

example, unwanted variation posed by batch

effects or other confounding variables can sys-

tematically and irreversibly distort the measure-

ments taken within a study unless appropriately

accounted for at the design stage. Technical

issues relating to the analysis may also lead to

errors; for instance, incorrectly distinguishing

between repeated and independent measure-

ments can increase the likelihood of obtaining

false positive or false negative results.

A lack of formal guidance on the process of

laboratory study design may also give rise to

irreproducibility. Although in some respects

laboratory-based research is highly regulated,

such regulation largely relates to materials, pro-

cesses and ethics rather than focussing on

aspects of study design or improving methodo-

logical rigor. For example, procedures and

protocols must be approved by the Control of

Substances Hazardous to Health Regulations

(COSHH), while pre-clinical pharmaceutical and

medical device research is governed very strictly

by Good Laboratory Practice (GLP) regulations.

Clinical studies using human samples are subject

to ethical review, research governance and the

International Committee on Harmonisation of

Good Clinical Practice (ICH GCP) and may also

be subject to the Human Tissue Act (2004).

Certain laboratory work is also conducted under

accreditation from UKAS and CPA or to ISO/BSI

standards. In contrast to other methods of

experimental research such as clinical trials,

however, none of these regulations specifically

addresses study design and there is often no

formal requirement to produce a study-specific

protocol or analysis plan in advance of data

collection.

The existing culture where novel research is

rewarded over and above attempts to replicate

findings may also contribute to irreproducibility.

Those who attempt to replicate results currently

face expenses in terms of time and resources,

and can find it hard to publish their findings

whether they confirm or not (Ioannidis, 2005,

2006). This may contribute to the well-known

phenomenon of ‘publication bias’, where positive
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but potentially one-off or chance novel results

disproportionately enter the literature at the

expense of negative findings. Failing to ade-

quately document negative findings can also lead

to publication bias, and may lead to others

unnecessarily repeating the work in future. Bias

towards publication of statistically significant

results has been shown to be substantively

greater for observational and laboratory-based

studies than for randomised clinical trials (East-

erbrook et al., 1991).

It is now generally accepted that poor study

design is a major problem in laboratory based

research (Collins and Tabak, 2014). While most

scientists will have received training in experi-

mental design in an abstract form, it may be

difficult to put it into practice, especially when

some experiments can be conducted by a single

researcher. Currently this poor design is being

picked up at the reporting stage as was the case

in clinical research some 30 years ago. For

instance, in the 1980s weaknesses in the report-

ing of clinical studies led to a number of

initiatives to improve statistical awareness and

understanding. As a result, reporting guidelines

were developed (Moher et al., 2001; Schulz

et al., 2010) to promote the reporting of key

methodological components and results that

enable study bias to be assessed and to support

evidence synthesis. This recognition of the key

role of statistical principles in study design and

analysis has resulted in integrated and critical

involvement by statisticians in all aspects of

clinical trials. Ethical concerns have led regulatory

bodies to impose strict standards concerning all

aspects of the design, analysis and reporting of

clinical trials, which ensure that they are properly

planned and implemented.

A clinical trial can be considered the equiva-

lent of a single experiment to test a specific

hypothesis. These single experiment trials require

their own funding and generally result in at least

two publications; the protocol and the results on

completion. By contrast in basic science it is very

unusual for the results of a single experiment to

be published in isolation. It is more common to

find a series of experiments presented, linked

with inductive and deductive reasoning. This

tendency to present a broad range of linked

experiments and results in a single publication

has been a barrier to the development of

appropriate reporting guidelines. Some journals

are now actively promoting the submission of

short follow-on reports (the Research Advance in

eLife) or breakthrough articles where simple but

important questions are addressed (Corey et al.,

2014). Although the methods employed in

laboratory studies are diverse and experiments

can be completed within very short time frames,

much can be learnt from the standards upheld in

trials. Trials are designed and managed by

regular consultation within full, multidisciplinary

teams. Such teams can involve health-

economists, computer scientists and statisticians,

as well as clinicians, scientists and/or qualitative

researchers. Input from the full interdisciplinary

team at all stages of a study helps to ensure that

trials are optimally designed, making efficient use

of resources and avoiding potential difficulties at

the analysis stage. Trials are long term projects

where protocols are first established, participants

are recruited and then endpoints are measured.

By contrast, in laboratory research many experi-

ments may be conducted in parallel at many

levels within a research group, and the rigid

clinical trial design structure would not allow the

flexibility required for new research to emerge.

We assert that greater consideration of the

principles of good experimental design coupled

with early and regular discussion amongst all the

members of the research team will help improve

the design, analysis and reporting of laboratory

based studies. This, in turn, should lead to higher

quality data and reproducible research. Such

improvements will require a gear change from

all involved in the field especially from research

funders.

To support the implementation of such an

integrated approach we have developed the

RIPOSTE framework, which draws together key

elements of laboratory study design and analysis

that may contribute to reproducibility. The

framework is accompanied by three hypothetical

case-studies to demonstrate the discussion that

may follow the consideration of each prompt

point. The overall aim of the framework is to

support discussion within a multidisciplinary re-

search team (including the statistician), to ensure

that potential sources of bias and/or variability

have been considered and, where possible,

eliminated at the design stage. We are aware

that scientific advances can be made through

a mix of inductive and deductive reasoning. This

framework is focussed to support more discus-

sion in the deductive stages when hypotheses

and specific questions are proposed.

The framework was developed in two stages.

The NIHR Statistics Group held a laboratory

research studies day, during which the initial

project was conceived and major elements for

the framework identified. A prompt-list using

items commonly encountered in reporting
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guidelines was then constructed and revised to

be relevant for laboratory experiments at the

design stage. For the second stage we invited 12

statisticians and 12 laboratory scientists to a one-

day workshop where the framework was piloted

as a means to facilitate discussion on aspects of

study design and analysis. The framework was

trialled in small groups: two scientists and two

statisticians worked in each group and the

framework was tested using examples supplied

by the scientists. At the end of the workshop

feedback was obtained and suggested modifica-

tions to the framework were collated. Modifica-

tions were made and further feedback was

obtained from the RIPOSTE consortium via an

online survey. In the survey delegates were asked

to score the inclusion of items on a 0–10 scale

(high score to retain item). Items receiving

a median score less than 8 were removed, and

any which had been scored 0 by at least one

respondent, irrespective of the median score,

were revised if necessary in line with the respond-

ents’ comments. Suggestions on the structure

and presentation were also incorporated.

We present here a framework to support early

discussions within a multidisciplinary research

team, which should consist of both scientists

and statisticians. The framework contains a com-

prehensive list of the details that facilitate re-

production of research and is intended to

promote discussion about key aspects of the

design, conduct and analysis of a planned labo-

ratory study. The framework offers a series of

prompts that raise pertinent questions to facili-

tate shared understanding of the research and

the environment in which it is being undertaken.

The catch-all term ‘laboratory studies’ covers

a wide range of study types (Box 4), and some

aspects of the framework will not always be

applicable in all studies. Similarly, some aspects of

the framework will not always be relevant for

discussion with statisticians, but nevertheless

concern issues that still require careful consider-

ation within the research team. We see this

framework as a useful toolbox in the hands of

the scientist, which takes and builds upon many

points raised in recent journal and topic specific

publication guidelines. Our workshop confirmed

that it can take a long time for a statistician to fully

understand the basic designs of a series of

experiments when first presented. This is often

due to lack of familiarity with the field of

application. We felt that using some carefully

selected case-studies to demonstrate how the

prompts in the framework can be used would

help both statisticians and scientists in its

implementation. We have, therefore, included

three hypothetical case studies as examples which

have been selected to cover a broad spectrum of

biomedical laboratory settings. The first (Box 1) is

a study of combinations of components of

automated medical dosing equipment, where

the motivation is to look for equivalent perfor-

mance. The second study (Box 2) examines

macrophage activity when cells are infected with

bacteria and treated with a drug. This experiment

illustrates replicate measurement, treatment and

infection control contrasts and plate or batch

effects. The third (Box 3) is a gene expression

study in patients with hypertension (cases) and

without hypertension (controls), where the aim is

to identify genes that are differentially expressed.

This example allows us to illustrate multiple

hypothesis testing and a variety of sources of

batch effects from tissue processing through to

RNA analysis. The framework is presented in

Table 1; this sets out the major prompts for topics

to be considered and gives some brief notes for

each. The following sections follow the headings

in Table 1 and provide a more detailed break-

down and discussion of items from the frame-

work, clarifying our recommendations.

Research aims and objectives,
specific outcomes and hypotheses
Aims and objectives

The first stage of any study design should involve

clarifying key details such as the aims and

objectives, and the outcome(s) that will be

measured. Early specification of the primary and

any secondary objectives helps to ensure that the

key goals can be appropriately addressed within

a study by steering the necessary planning and

resources towards tackling these issues. Often,

multiple relevant and related objectives exist, but

it may not be possible or desirable to adequately

address them all within a single study. Resources,

therefore, may need to be allocated according to

the priority of each objective, and if any

objectives cannot be adequately addressed it

may be desirable to narrow down the focus of the

study or to initiate further studies/collaborations

to address the open issues. Note that decisions

about which objectives should be prioritised over

others may fundamentally impact on the best

study design to use. The objectives need to be

agreed upon at the outset to ensure the best and

most efficient use of available resources.

Example(s): In the elastomer pump study in

Box 1, the researchers ideally want to assess

whether the new equipment performs as well as
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Box 1. Example: Elastomer pump
study

A study is planned to assess a new type of disposable

elastomer pump and catheter for use in delivering

anaesthetic directly to wounds following major surgery.

The study aims to assess whether the new pump and

catheter—or combinations of the new pump and catheter

with an existing pump and catheter—achieve an accept-

able flow rate over time (i.e., where an ‘acceptable’ flow

rate is defined as within 15% of the set rate). The

researchers also wish to assess whether the performance

of the equipment declines after with reuse.

Methods and materials: The experimental set-up is

presented in Box 1 Figure 1. In order to mimic clinical

practice, the flow rate will be set to 4 ml/hr, and each

experiment will run over a period of 48 hr. Automated

weight measurements of the pump will be taken every 2 hr

via a laptop, and concurrent measurements of the room

temperature will also be made as temperature may impact

upon the flow. Each type of pump (P = existing pump; p =
new pump) is to be tested with each type of catheter (C =
existing catheter; c = new catheter). Four experiments will

be run simultaneously over four units, with each experi-

ment repeated three times before changing equipment

(i.e., each experiment will be run in triplicate). Due to

limited study resources, only four pumps and four

catheters of each type are available for use.

Design: Box 1 Table 1 illustrates two possible arrange-

ments of the pump/catheter combinations over the 4

units. Design A runs a particular combination over all 4

units at the same time before switching to the next

combination, while Design B tests the four different

combinations of pumps and catheters simultaneously

before alternating the order of the combinations over the

units after each set of triplicate experiments.

DOI: 10.7554/eLife.05519.003

Box 1 Figure 1. Equipment set-up for elastomer pump experiment.

DOI: 10.7554/eLife.05519.005
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the existing equipment, and whether the perfor-

mance of the equipment degrades over time.

The amount of equipment available for use in the

study is limited, however, so it may be sensible to

prioritise one objective over the other unless

both can be satisfactorily addressed with suffi-

cient statistical power.

Outcomes interventions and predictors of
interest

The outcomes being measured should clearly

relate to a study’s objectives, and need to be

chosen and prioritised accordingly. Primary out-

comes are defined when undertaking hypothesis

testing when the aim is to detect a specified

effect. Secondary outcomes can also be tested,

but the results from such tests will be interpreted

as hypothesis generating rather than confirma-

tory. Any sample size calculation will be based on

the primary outcome. If there are multiple primary

outcomes a correction for multiple testing will be

required, which will increase the required sample

size for the study. Outcomes therefore need to be

decided upon upfront, to ensure that an informed

sample size calculation can be made.

Example(s): In the macrophage study in Box 2,

the researchers want to assess the cumulative level

of production for each of 10 cytokines over a 24 hr

period. This study has 10 primary outcomes, and

any sample size calculation would need to assume

that (at least) 10 tests will be performed. The

researchers also wish to compare levels between

specific cytokines by measuring their ratios; these

ratios may be viewed as secondary outcomes. If

the estimated power for the study is too low (or,

to paraphrase, the estimated sample size required

is too large), the number of outcomes being

assessed may have to be limited or reprioritised. A

distinction should be drawn between the primary

and secondary outcomes when reporting the

findings from the study, with an acknowledgement

that the assessment of the secondary outcomes

may not be sufficiently powered.

Research questions/hypotheses

Study hypotheses indicate how specific objec-

tives will be addressed in a study, by spelling out

the specific propositions and/or tests that will be

assessed and how. The criteria used to address

the objectives can have a major impact on all

aspects of a study, from its design through to the

interpretation of its results. Specifying the hy-

potheses upfront therefore ensures that these

key details are decided upon at an early stage,

and helps focus aspects of the study planning

and design on tackling these questions.

Once at the reporting stage of a study, stating

the hypotheses also plays an important role in

preserving transparency about the full set of

questions and/or tests addressed. All relevant

hypotheses that were assessed should be

reported regardless of whether the results

obtained were positive or negative (or ‘null’). A

distinction should also be made between the

initially planned tests and any additional findings

Box 1 Table 1. Two potential study designs in which either (a) four pumps and four catheters of the same type are tested

simultaneously or (b) pump and catheter types are balanced during each 48 hr period of data collection, assuming only four

pump-catheter units can be used concurrently and each is tested for 48 hr, three times in succession

Arrangement Duration Bench 1 Bench 2 Bench 3 Bench 4

Suboptimal design with potential for confounding

1 48 hrs × 3 P C P C P C P C

2 48 hrs × 3 P c P c P c P c

3 48 hrs × 3 p C p C p C p C

4 48 hrs × 3 p c p c p c p c

Optimal, balanced design

1 48 hrs × 3 P C P c p C p c

2 48 hrs × 3 P c P C p c p C

3 48 hrs × 3 p c p C P c P C

4 48 hrs × 3 p C p c P C P c

There are four benches of equipment being tested, each with one of each type of pump and one of each type of catheter (P = existing pump;

p = new pump, C = existing catheter; c = new catheter).

DOI: 10.7554/eLife.05519.004
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Box 2. Example: Macrophage
Study

A series of experiments are planned to characterise

macrophage activity (cytokine production and apoptosis)

when cells which are infected with bacteria are treated

with a drug. Blood will be taken from multiple volunteer

donors to obtain peripheral blood mononuclear cells from

which differentiated macrophages are produced. The

macrophages will be infected with a specific dose of

bacteria and treated with a drug. The cytokine production

and apoptosis will be measured at intervals over 24 hr.

The panel of 10 cytokines will be measured by a multiplex

bead system. Each donor will be processed with internal

controls so the four combinations of infection status

(infected/mock infected) and treatment (drug treatment/

control) will be measured.

Research Question: Does treatment with a specific drug to

cells infected with bacteria affect macrophage immune

function measured by cytokine production and apoptosis?

The basic experimental design will include:
1. The assessment of baseline cytokine production in

infected and mock infected macrophages.
2. The time course of cytokine production following the

infection point, captured by measuring levels every 2 hr.
3. The matched design ensures that cells from each

donor can be studied for response to both infection
and treatment. Exactly half of the infected and half of
the mock infected macrophages are treated with the
drug and this is balanced over all donors.

4. The four combinations of treatment and infection will
be processed in parallel on the samples.

Box 2 Figure 2 illustrates two possible ways that macro-

phages from just two donors might be arranged, for

incubation in a single experiment on two eight well

sections of a plate. Each subject has macrophages grown

in eight wells, four of these will be infected with the same

bacteria, and four will be mock infection controls. Two of

the infected and two of the mock infected will be treated

with the drug. Hence for each donor the measurement of

variables under each condition is done twice (i.e., in

duplicate). Arrangements A and B show a total of four

possible plate arrangements. Some arrangements have

conditions or donors clustered or organised into rows or

columns. The two plates for ‘A’ make it easy for the

infectious agent to be dosed out in one block, whereas ‘B’

has all the wells to be treated with the drug in a single

column. In three of the plates, wells from different donors

are never direct neighbours; however, the infection is

done in blocks or pairs of neighbours. The diagram shown

here shows only a part of a larger plate. Plate sizes of 24 or

96 well plates are available for use here; therefore multiple

plates need to be used. The bead system for measuring

cytokine levels uses assays which are automated, however,

the assessment of apoptosis involves visual inspection and

counting of cells. The colour of the medium indicates

exactly which samples are infected and which are treated,

which means the measurements cannot be taken ‘blind’ to

the treatment.

DOI: 10.7554/eLife.05519.006

Box 2 Figure 1. Production of differentiated macrophages from donor samples.

DOI: 10.7554/eLife.05519.007
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that were not part of the original test hypotheses.

Exploratory and/or post-hoc analyses can play an

important role in generating hypotheses for

further study, but results based on these should

generally be regarded with caution pending

further validation. Alternatively a two-stage de-

sign could be used where exploratory findings

can be investigated in new experiments within

the same proposal. This approach is commonly

encountered in ‘omics’ studies where a large

number of variables are considered in the

discovery stage and the ‘best’ of these carried

forward for replication in new samples or

validation in new experiments using a different

method of measurement.

Note that some studies may not be designed

to test a specific hypothesis; for example, pilot or

feasibility studies aiming to establish and/or

assess a novel assay. These studies, nevertheless,

still have their own specific objectives, and these

objectives need to be defined upfront (e.g., by

clarifying what outcomes will be measured and

defining any success/failure criteria).

Example(s): In the elastomer pump study in

Box 1, the researchers aim to assess whether the

new pump and catheter achieve acceptable flow

rates over time. There are potentially numerous

ways to define ‘acceptable’, such as a requirement

that all flow rate measurements have to lie within 4

ml/hr ± 15% (i.e., 0.6 ml/hr), or allowing some

measurements to lie outside these bounds so long

as the mean flow rate lies within them. Alterna-

tively, the researchers may prefer to test whether

the new pump and/or catheter (or any combina-

tion involving the new pump or catheter) performs

equivalently to the existing pump and/or catheter.

In this latter scenario, an ‘equivalence test’ might

be performed. Equivalence tests usually assess an

alternative hypothesis that a new and an existing

intervention are equivalent (versus a null that they

are not) by measuring whether the difference in

means between the two interventions (and its

confidence interval) lies within pre-specified par-

ticular limits. In this study, the hypotheses may

therefore be laid out as follows:

H0A: The 95% confidence interval for the differ-

ence in mean flow rates between new and existing

pumps does not lie within 0 ml/hr ± 0.6 ml/hr.

H1A: The 95% confidence interval for the

difference in mean flow rates between new and

existing pumps lies within 0 ml/hr ± 0.6 ml/hr.

H0B: The 95% confidence interval for the

difference in mean flow rates between new and

existing catheters does not lie within 0 ml/hr ±
0.6 ml/hr.

H1B: The 95% confidence interval for the

difference in mean flow rates between new and

existing catheters lies within 0 ml/hr ± 0.6 ml/hr.

H0C: The 95% confidence interval for the

difference in mean flow rates between any

Box 2 Figure 2. Infection and treatment of donor macrophages.

DOI: 10.7554/eLife.05519.008
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combination of new pump and/or catheter and

the existing pump and catheter does not lie

within 0 ml/hr ± 0.6 ml/hr.

H1C: The 95% confidence interval for the

difference in mean flow rates between any

combination of new pump and/or catheter and

the existing pump and catheter lies within 0 ml/hr

± 0.6 ml/hr.

These hypotheses confirm the key (primary)

questions of interest that will be tackled within

Box 3. Example: Gene expression
study using RNA-seq

A study is designed to examine differences in gene

expression in kidney tissue taken from human subjects

who exhibit a hypertensive phenotype and those who do

not. Gene expression will be assessed using RNA

sequencing (RNA-seq), which quantifies the expression of

both genes and the RNA transcripts produced by genes.

Each gene can have multiple transcripts—in humans there

are approximately 213,000 known transcripts produced by

∼62,000 genes.

Aims of the study: To identify genes that are differentially

expressed in hypertensive patients compared to normo-

tensive controls. This study will function as a discovery

stage to pick up differentially expressed genes to take

forward for evaluation in a larger sample.

Research Question/Hypotheses: The aim will be to

identify transcripts and genes that differ in expression

between cases and controls. A hypothesis will be tested

for each transcript to assess whether or not it associates

with the disease status. A transcript would be declared as

differentially expressed if the log2 fold difference between

cases and controls is statistically significant after ac-

counting for multiple testing using the false-discovery

rate.

Outcomes of interest: The primary outcome is the

expression level for each transcript or gene; there will be

multiple of these (10,000 s). The measurement of the

outcome will involve three stages. First the kidney tissue

samples are collected and the RNA extracted and

assessed for quality using the RNA Integrity Number (RIN),

secondly samples are then to be sent to a bioscience

company for sequencing. Finally the sequence data is

received from the company and a toolkit such as Tuxedo

will be used for data processing. There is the potential to

report on the use of standard protocols in each of these

steps.

Materials and Techniques: There are SOPs for the RNA

extraction and the methods employed within the bio-

science company. The material will need to be run in

batches, so a mix (random or balanced) of cases and

controls will be sent in each batch and each batch will

contain at least one common sample to assist in the

control of batch effects. The quality of the RNA (as it

arrives at the company) will be a predictor of the quality of

the sequencing. The sample processing and source of the

samples (i.e., the preparation before sending for se-

quencing) may mean that there are systematic (batch)

differences between cases and controls.

Software: Specialist software exists for each stage of this

planned analysis. The Tuxedo suite is designed to process

the raw data output from the sequencing. PEER has been

developed to identify and correct for sources of variation.

The statistical analysis will be done using R Bioconductor.

A workflow diagram to indicate how the options for each

program were set at each stage of the data processing

and analysis will be constructed during the study and will

be used at the analysis and reporting stage.

Constraints: The main constraint is the cost of the

sequencing, hence the preference is to opt for fewer

subject samples so sequencing can be done at a higher

coverage. The maximum number of samples to be

processed is around 40.

Randomisation and Blinding: There is no treatment to be

applied. However cases and controls will be randomly

mixed in batches for shipping to the sequencing

company. The bioscience company will be blind to the

case control status.

Statistical Analysis: There are two groups, cases and

controls, all analyses will adjust for the confounders age,

sex and body mass index. The Limma package in R

Bioconductor fits linear models to each gene/transcript,

then ‘normalises’ across genes and estimates p-values

using an empirical Bayes estimator. The multiple testing

will be accounted for with the FDR correction. The

correction will be for the full number of transcripts

analysed (i.e., post all ‘Quality control’ (QC) criteria).

Sequencing uncertainty is reflected in low expression

values so genes with uncertain reads are likely to not meet

the threshold. The QC requirements are that a transcript

must be expressed in a minimum number of samples to

be included for further analysis.

Validation: To ensure the results are not due to a technical

artefact the most significant results will be validated using

a different technology (the same samples run through

a different technique).

DOI: 10.7554/eLife.05519.009
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the study, illustrate how the interventions will be

assessed, and define the criteria by which to

discriminate between positive and null results.

Study planning
Logistical considerations

This section of the framework addresses aspects

of the study which might impact on the extent of

statistical support required. In some cases,

scientists may have limited access to a statistician,

and whilst we would argue that statisticians

should play an integral role in the research team,

we accept there may be some instances in which

the opportunities for them to provide advice and

input are rare. Therefore it is useful to consider

early on whether statistical support might be

required during the planning and conduct of the

study. If there is limited statistical support then

this may limit the complexity of the analytical

approach that can be recommended.

Giving early thought to the means by which

data will be collected and managed during the

study can be vital to reproducibility, whilst also

impacting on the resources required. Construct-

ing a well-designed, fully validated database

should ensure good quality data are collected

and may reduce delays in detecting errors.

Collecting additional data regarding data quality

(sometimes referred to as ‘meta-data’) can be

helpful to the statistician at the analysis stage.

For instance, it is a good idea to indicate the

reason why a data value is missing.

Example: In the study in Box 3, it would be

a good idea to collect meta-data regarding the

batch numbers and date(s) on which the samples

were processed.

Materials and techniques

The design of a study clearly depends on the

materials and equipment available for use. All

studies have resource constraints and, as described

in section A, these need to be discussed in order to

ensure that the key hypotheses can be appropri-

ately addressed. Other restrictions concerning the

materials and equipment can also impact on study

design.

Laboratory equipment and methods
Financial constraints are the most commonly

encountered limiting factor, which in turn may

lead to limited access to facilities. However,

particular equipment may also be limited in

terms of the number of units that can be

processed within the available timeframe and/or

in a particular batch. If the equipment or

resources available for use are heavily con-

strained and not sufficient to provide an ade-

quate sample size for the primary research

question identified in section A it may be

preferable to revisit and redefine the study’s

objectives, hypotheses and/or outcomes to be

measured in some other way, rather than carrying

out an underpowered study.

Example: Box 1 presents a study where

the number of units of equipment available to

test is strictly limited. The experimenters could

consider redefining how they assess an ‘accept-

able’ flow rate (e.g., specifying a minimum

number of measurements that must fall within

set boundaries, rather than testing for equiva-

lence or statistically significant differences).

Alternatively, the researchers may decide to go

ahead with the study as originally planned, with

the acceptance that it will be unlikely to deliver

a conclusive answer to the primary research

questions. In this scenario, the study could serve

to generate pilot-data to assist the planning of

a future follow-up study, and/or to contribute

a wider meta-analysis of other, sufficiently similar

studies.

Configuration and standardisation of
materials and methods
Processing samples in different batches or across

different pieces of equipment frequently

Box 4. Examples of laboratory
studies

What do we mean by ‘laboratory study’?
c A study in which any aspect of the procedure or analysis
is carried out in a research facility/lab.

c May be in vivo (e.g., imaging) or in vitro (e.g., cell
culture).

c Includes both experimental and observational studies,
but excludes interventional trials*.

c May involve estimation, hypothesis generation or
hypothesis testing/confirmation.

c Can be small (e.g., within a single lab) or large scale
(e.g., multi-centre genome-wide association studies).

*Specific guidance is available for interventional trials,

however many of the RIPOSTE recommendations will be

relevant

DOI: 10.7554/eLife.05519.010
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Table 1. RIPOSTE discussion framework

Item Prompt/Consideration

Details (relevance of question will depend

on study type)

Research aims, objectives, specific outcomes and hypotheses

Aims and objectives Define the key aims of the study What does the study ultimately aim to show?

What are the primary and any secondary
objectives?

Outcomes, interventions and
predictors of interest

Identify the variables and quantities/
qualities of interest that will be
measured (these may be different for
each hypothesis)

What is the primary outcome/response variable?

Are there any secondary outcomes you also wish to
measure and/or assess?

What are the key interventions/groups/predictors
you will be testing?

Research questions/Hypotheses List the research question(s) that will be
addressed and/or any hypotheses that
you would like to test

The research question(s) should be defined in such
a way that they

- relate directly to the study objectives

- relate to a specific outcome (or set of
outcomes) and specific comparisons/
predictors

Each hypothesis should

- be clearly testable

- indicate what signifies a positive result for
example, what is the minimum effect you
would deem important?

Study planning

Logistical considerations Ethical approval Will ethical approval be required for the study?

- Will statistical support be required for the
ethics application?

Statistical support What level of ongoing statistical support is
available for this study?

Data collection and management How will the data be recorded and stored—will this
require construction of a database?

What steps will be taken to validate the data
entered against what was collected?

Who will be responsible for data entry and
validation?

Will any additional information (‘meta data’) be
recorded to indicate data quality?

Materials and techniques Laboratory equipment and methods What specialist equipment and/or techniques will
be used?

Are there any aspects of these that may impact or
limit the design of the study?

Configuration and standardisation of
materials and methods

Is there an accepted or validated way to measure
the outcomes for this specific study or preliminary
work be required to determine this?

What are the possible sources of variation or
systematic bias between samples/batches/
observers/laboratories/centres?

Are any aspects susceptible to systematic variation
and/or bias? What steps will be taken to minimise
measurement bias and variation with consideration
to:

- Technical factors—such as sample collection,
processing, storage and analysis?

Table 1. Continued on next page
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Table 1. Continued

Item Prompt/Consideration

Details (relevance of question will depend

on study type)

- Biological factors—which may include the
effects of comorbidities, diet, medications,
stress, biological rhythms etc, on the
measurement variable?

Possible steps to consider in addressing these
sources of variation might be the use of existing
standards for sample processing or analysis (e.g.,
BRISQ, ISO, ASTM or CLSI), equipment calibration
and maintenance, user training, randomisation of
interventions.

Software What software (if any) will be used during data
processing/collection/storage?

What software will be used during data
analysis—will specialist software be required?

Does the software conform to any quality
assurance standards, if applicable?

Is the software up-to-date?

What constraints/limits are there to the
available resources?

What constraints are there? For example, due to
cost and/or time

- Are there any limits in terms of the available
equipment (e.g., number of plates/chips) or
materials (e.g., binding agents/gels)?

- What would be the maximum number of
samples that could be used/processed given
the available resources and time?

Study design

Design Units of measurement What are the sampling units in the study (e.g.,
blood samples from individuals)?

Will the units be organised according to any
structure (e.g., onto plates, chips, and/or into
batches) or clustered/correlated in any way (e.g.,
samples from different centres), or within families,
matched or paired samples/measurements?

Will any repeated or replicate samples be taken?
For example, any measurements over time; any
biological replicates; any technical replicates.

Are there any inclusion/exclusion criteria?

Randomisation Will any interventions or conditions be allocated at
random to the units?

- If so, how? (e.g., method of random allocation
and process of generating random numbers)

- If not, why not?

Are there any other possible confounders (e.g.,
batches or plates) to which the units may need to
be randomly allocated?

Blinding (masking) Will blinding be used? If not, why not?

Who will be blinded and how?

How will allocation be concealed and how will
masking be maintained?

Under what circumstances will the data be
unblinded?

Groups, treatments, and other
predictors of interest

What are the primary groups or treatments of
interest?

Table 1. Continued on next page

Materials and techniques
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Configuration and standardisation of materials and
methods (Continued)
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Table 1. Continued

Item Prompt/Consideration

Details (relevance of question will depend

on study type)

What is your control or comparison group?

Are there multiple independent variables to assess
simultaneously (for example, treatment and time)?
If so, will a factorial design be used (involving
testing all levels of each variable with all levels of
each other)?

Are there any interactions of interest (which may,
for example, lead to factorial designs)?

Use of analytical controls What analytical controls will be used? For example,
qualitative (positive/negative) and/or quantitative
quality controls (QCs); comparative/normalisation
controls

How will the controls be used/for what purpose?

Other potential biases, confounders and
sources of variability

Will you take any steps to minimise any
background noise/variation?

Will you measure and take into account any
potential confounding variables? For example, the
age and sex of any participants; batch/plate/chip
effects; etc.

Sample size considerations Sample size will depend on the primary objective
of the study, whether the aim is to test hypotheses,
estimate a quantity with specified precision or
assess feasibility

Hypothesis testing:

- Is there a single pre-specified primary
hypothesis? Is a correction for multiple testing
required?

- What signifies a positive result (e.g., the
minimum effect size, margin of agreement)?

- What existing data are available to base the
sample size calculation on? (e.g., SD of
outcome)

- What power and overall level of significance will
be used? Will one or two tailed tests be used?

Feasibility, pilot and proof of concept:

- Understanding sources of variation (e.g.,
standard deviation of the outcome)

▪ The sample size needs to be large enough to
give an accurate estimates of any
components of variation

- Estimating with precision (e.g., proportion of
samples that pass QC)

▪ What is the acceptable precision (e.g., width
of confidence interval) required?

- Preliminary proof of effect (e.g., superiority of
a new cell extraction technique)

▪ What probability needs to be set to observe
the correct ordering of your outcomes?

▪ What level of significance would provide
enough evidence to progress to fully
powered study?

Planned analysis

Data assessment and preparation QC criteria What pre-specified criteria will be used to assess
data from quantitative analytical QCs?

Table 1. Continued on next page

Design (Continued) Groups, treatments, and other predictors of interest
(Continued)
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Table 1. Continued

Item Prompt/Consideration

Details (relevance of question will depend

on study type)

What pre-specified criteria will be used to assure
the reproducibility of results?

- Will any thresholds be set to screen or
benchmark data quality (e.g., setting
a maximum coefficient of variation that would
be deemed acceptable)?

Data verification Have you allowed time for data validation and
correction to be completed prior to analysis?

Data normalisation/correction Will the data be normalised or transformed in any
way? If so, how?

Outliers What methods and criteria will be used to identify
any outlying data?

Statistical methods Describe the different analyses to be
performed

Which models or tests will be used (e.g., t-tests;
ANOVA; mixed effects models etc)?

- Do these methods appropriately handle any
repeated or correlated measurements?

What assumptions do the statistical methods rely
upon? How will these be assessed? Do the data
require any transformation?

Which comparisons will be made? For example,
will all pairs of treatments be compared, or will
each treatment just be compared to a control?

What covariates will be adjusted for?

If applicable, what model terms will be fitted, for
example, which main effects and interactions,
which fixed and/or random effects?

Will sensitivity analyses be performed to assess the
validity of the findings?

Missing data What might be the reasons for missing data?

How will missing data be handled, for example, will
missing data points be excluded or imputed?

Multiple testing Will a correction for multiple testing be required? If
so, how many tests will be accounted for?

Which adjustment for multiplicity will be used, for
example, Tukey, Bonferroni, false-discovery rate

Interim analysis Will interim analyses be performed (before the full
number of samples dictated by the sample size
calculation has been collected)? If so, for what
purpose (e.g., to update the required sample size)?

Have any necessary adjustments to the sample size
been made to account for the interim analysis?

Replication and/or validation Is there an intention to replicate the results (e.g., in
an independent set of samples)?

In there an intention to validate the results (e.g.,
using a different technique or method of analysis)?

Reporting results

Guidelines/standards Identify relevant reporting standards What are the most appropriate reporting
guidelines or standards that apply to the study
design (e.g., BRISQ, MIFlowCyt and see www.
equator-network.org). Identifying reporting
standards at the planning stage helps to ensure
that the information required to be reported is
collected during the study and/or produced during
the analysis of the data.

This framework is intended to support discussion within the research team as a whole, including the statistician.

DOI: 10.7554/eLife.05519.002
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introduces technical variability into a study, yet is

often unavoidable. These potential sources of

variability need to be anticipated and even

studied in advance, and steps taken at the design

stage to avoid confounding technical variation

with any particular groups or comparisons of

interest (see later sections on ‘Other potential

biases, confounders and sources of variability’

and ‘Randomisation’).

Equipment and/or experimental methods and

procedures may need prior validation before use

within a study. Appropriate configuration of

methods and equipment can help to minimise

unwanted variation between different experiments

and units and, hence, ensure that measurements

generated in a study are sufficiently accurate and

reproducible. Other factors such as appropriate

maintenance of equipment or training of staff to

use specialised equipment may also impact.

There are a number of organisations that

provide information to help researchers identify

appropriate means of performing quantitative

and qualitative quality assurance. In particular the

World Health Organisation laboratory quality

management system training toolkit is a compre-

hensive and freely available online resource

(http://www.who.int/ihr/training/laboratory_quality/

doc/en/). Guidelines and standards are also avail-

able from the Clinical and Laboratory Standards

Institute (http://clsi.org/standards/) and the US

Food and Drug Administration (http://www.fda.

gov/downloads/Drugs/Guidances/ucm070107.pdf).

These guidelines are routinely used in accredited

industry and medical laboratories and provide

valuable information about many ‘gold standard’

laboratory practices.

Example: In the macrophage example in Box 2,

the bead arrays require prior validation; to do this,

external information about typical standards for

the equipment (such as acceptable coefficients of

variation) may need to be sought and/or de-

termined. As the configuration of equipment often

affects the variability of measurements recorded

within a study, any validation steps may also

impact on sample size and power calculations.

Study design

Units of measurement
Experimental units are the entities that receive

a given ‘treatment’; it should be possible for two

different experimental units to receive two

different treatments of study conditions. Sam-

pling units are the entities upon which measure-

ments will be made. The experimental units can

usually be considered to be independent of one

another, so increasing the number of

experimental units measured in a study usually

increases the amount of independent information

sampled. In contrast, any repeat or replicated

measurements taken on the units do not contrib-

ute additional independent information, but can

nevertheless help to gauge measurement un-

certainty and/or stabilise estimates of inherently

variable measurements. Repeated measurements

may also be used to answer additional questions

of interest. An important consideration concern-

ing the experimental units is the definition of any

inclusion or exclusion criteria.

Example(s): In Box 1, each combination of

a specific pump and a specific catheter on a single

equipment bench makes up an experimental unit

(see Box 1 Figure 1). There are four benches of

measuring equipment on each of which four

different combinations of new/old pump and

new/old are tested, to produce 16 experimental

units. Each unit is tested three times to give three

replicate experiments. During each replicate

experiment, measurements will be taken on the

units at 2 hr intervals over 48 hr periods; each

individual measurement made during each ex-

periment can be considered a sampling unit. The

sampling units will help to provide precise

estimates of the mean flow rate in a given

experiment, and may also contribute information

about whether the equipment degrades in

performance over time. However, since they are

all collected from the same experimental unit,

they cannot be considered independent of each

other; failure to correct for this in the analysis

would artificially inflate the power of the test and

potentially give misleading results (we expand on

this issue below under ‘Statistical methods’:

Describing the different analyses to be

performed).

In the study in Box 3, the sampling units refer

to samples taken from individual volunteer

donors. A single sample is taken from each

donor, so in this case the sampling units are

independent of each other and the sample size

for the analysis is the total number of sampling

units. The aim is to compare gene expression

between hypertensive and normotensive individ-

uals; therefore, both hypertensive and normo-

tensive must be defined along with any

other restrictions on co-morbidity or age and

gender.

Randomisation
Randomisation plays a crucial role in protecting

studies from known and unknown sources of

variation, bias and confounding. Moreover,

implementation of an appropriate randomisation
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strategy can also begin to produce evidence of

causality in experiments. Randomisation is al-

ready widely used in clinical trials during the

allocation of treatments to units, but it serves the

same fundamental purposes in laboratory set-

tings involving the direct manipulation of any

experimental treatments or conditions. Although

implementing a randomisation scheme can be

cumbersome to employ and may involve added

complexity within a study, the potential benefits

it provides offer researchers protection against

future claims of unconscious bias and should

directly lead to enhanced reproducibility. A

randomisation plan should therefore be devised

wherever possible.

While randomisation is a simple concept in

principle, in practice it may need to be employed

as a joint component of the design implementa-

tion. In the simplest case where there are no

groupings or balancing factors to consider,

a simple randomisation procedure can be

employed. If the experiment needs to be

conducted in batches then randomisation should

be employed within each batch with a balanced

number randomly selected to each treatment

group in each batch. The same consideration

needs to take place in a study using case control

samples with a random selection of cases and

controls to each batch. More complicated

designs with two factors (e.g., treatment group

and time) such as the Latin square, use random

permutations of rows and columns to maintain

the balance.

Note that randomisation can also play an

important role even in studies that do not involve

any direct manipulation of experimental condi-

tions or interventions. For example, in observa-

tional studies the effects of potentially

confounding factors such as batch effects can

be alleviated via careful use of randomisation.

Example(s): The study in Box 3 aims to analyse

kidney tissue samples from hypertensive and

normotensive patients using RNA sequencing.

RNA-sequencing may be susceptible to batch

effects, however, so care should be taken to

randomise both case and control samples to each

batch to avoid confounding any potential differ-

ences in gene expression between cases and

controls with any differences between batches.

The way that macrophage differentiation is

shown in Box 2 Figure 1 would suggest that

conditions may vary if donors are processed in

a series rather than in parallel. However, this

experimental design does control for between

batch variation as each donor’s differentiated

macrophages are infected and treated

concurrently.

In the study in Box 1, there are multiple

‘treatments’ (i.e., combinations of new/existing

pump with new/existing catheter) to test on each

of the four equipment benches. This is an

example of a study where it may be desirable

to manually control the order in which units

receiving each treatment are tested rather than

using a fully randomised design. For instance,

Box 1 Figure 1 shows one potential, manually

allocated design, in which every combination of

pump and catheter is tested across the four

benches at any one time, and where the order of

running the combinations is different on each

bench. This design avoids biasing measurements

on any particular combination due to any

potential time-dependent effects/drift (i.e., as

all combinations are always tested at the same

time); in addition, it allows each combination to

be tested with both the unused and used version

of each pump, and both the unused and used

version of each catheter. Note that although this

arrangement is not strictly random, a random

process may be used to select which components

are used together at the starting point. Alterna-

tive arrangements, such as completely random-

ising the combinations over the benches, or

manually arranging the combinations without

regard to potential confounders (e.g., at the

convenience of the experimenters), would be

unlikely to balance the combinations over all

potentially confounding factors in this relatively

small scale study, and may be inferior to

a carefully planned, manually allocated design.

Blinding
Blinding (or ‘masking’) aims to guard against

potential bias within a study by concealing

information about the allocation of treatments

or interventions from the individuals invol-

ved—such as patients, experimenters and/or

analysts. Awareness of the true allocation of

treatments may consciously or unconsciously

influence the behaviour of those involved,

thereby biasing evidence in favour or one

treatment over another. Blinding is especially

important if qualitative judgement makes up any

part of the measurement process.

Example(s): In example study 1, blinding may

be implemented by concealing the pump and

catheter types, if possible, from the experimenter

involved in setting up the equipment. Any study

analysts may also be blinded, for example, by

using codes to reflect intervention types in the

resulting datasets. Note that it may not be
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possible to fully blind everyone involved in this

study, particularly if the two types of pumps and/

or catheters in Box 1 have obviously different

appearances. In this scenario, one potential way

of maintaining the blinding would be to conceal

which of the pumps and catheters are the new

and existing models (and, therefore, which are

the experimental treatments and which are the

controls). Nevertheless, even if the experiment-

ers cannot be blinded in this study, plans should

be put into place to blind any analysts involved.

In the study in Box 2, the experimenter should

ideally be blinded to the infection status of the

cells and to the treatment type.

Groups, treatments and other pre-
dictors of interest
Most studies involve making at least one form of

comparison between groups or interventions of

interest. Comparator groups—usually called ‘con-

trol’ groups—may be positive or negative in

nature (i.e., active or inactive respectively),

depending on the aims of the study. For instance,

a negative control group may be included to

assess whether an experimental treatment has

a greater effect than a placebo, while a positive

control group might be used to assess whether

the experimental treatment is superior to an

existing treatment. These controls, data from

which contribute to statistical assessment of the

research question, are distinct from analytical

controls used during data collection to check that

laboratory processes are running as expected (see

section on ‘Use of analytical controls’, below).

Often, it may be of interest to compare

experimental groups under different conditions

or alongside one or more additional factor of

interest. Where studies contain more than one

factor of interest (including the main experimental

groups), they may be considered to have a ‘facto-

rial’ design if all combinations of the levels of each

factor are tested. Factorial studies provide an

efficient means of examining the effects of

multiple factors within a study, because each

experimental unit contributes information towards

all factors of interest. In addition, they also enable

the potential effects of interactions to be in-

vestigated, which allow the effects of one variable

to differ depending on the value of another.

Example: The Box 2 example may also be

considered a factorial experiment, because it

assesses the effects of both bacterial infection

and drug treatment on macrophage activity

simultaneously. Here, the factorial nature of the

study allows the researchers to assess whether

the effect of the drug differs depending on

whether the cells are infected with bacteria

(i.e., whether there is an interaction between

drug treatment and bacterial infection). In this

study, each factor of interest (‘bacterial infection’

and ‘drug treatment’) is to be validated against

a negative control (‘mock infected cells’ and ‘no

treatment’ respectively). The controls here serve

to enable claims to be made about any poten-

tially causal effects of the factors of interest. For

instance, if the drug treatment was compared to

a pre-treatment or baseline measure instead of

a control, no information about what could or

would have happened in absence of treatment

would be available (for example, perhaps mac-

rophage activity could have changed naturally

between the two time-points).

Use of analytical controls
Analytical controls tend to be used to validate

practices within an experimental assay, helping

to ensure that measurements are accurate and

may be interpreted correctly. Analytical controls

may be required for each variable or condition in

the experiment, for quality control (QC) purposes

and/or to gauge and adjust for background

variation that may systematically influence certain

sets of measurements (see Table 2 and the ‘QC’

section for further details).

Example: In the elastomer pump study in Box 1,

temperature measurements made during data

collection can be used as a form of normalisation

control to obtain temperature-adjusted esti-

mates of flow rate.

Other potential biases, confounders
and sources of variability
Potential sources of bias and variability need to

be anticipated upfront—at the design stage of

a study—in order to avoid or account for their

effects. Systematic sources of variation can often

be tackled via careful study design; for example,

by balancing and/or randomising treatment arms

over potentially confounding variables (such as

plates or batches, or having multiple observers/

experimenters involved in data collection). Sim-

ilarly, potential biases may be avoided by

ensuring experimental runs are conducted under

homogeneous conditions wherever possible

(such as under a fixed temperature), and that

measurements are consistently made (e.g., by

using properly calibrated equipment). If any

unwanted sources of variation cannot be con-

trolled, it may be possible to adjust for their

effects during analysis if the key variables are

measured during the study (Stegle et al., 2012).

Note that, as suggested above, an additional
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source of variation may occur where multiple

researchers are involved in conducting an exper-

iment or in any aspect of the measurement. This

is often seen as a negative aspect of an

experiment where the goal is to reduce error as

far as possible. However, one positive aspect of

this is that results can give an indication of how

robust the experiment is in a wider context.

Ultimately, some level of variation should be

anticipated to occur amongst operators or sites

and this needs to be reported and accounted for

(Barnhart et al., 2007; Maecker et al., 2011).

Example(s): In the Box 1 example, temperature

cannot be controlled between experiments or

time points, but plans have been made to measure

it concurrently with the flow rates. As such, any

confounding effects of temperature can be con-

trolled at the analysis stage by including temper-

ature as a covariate. As this study has a hierarchical

design (i.e., where measurements will be taken on

units across multiple experiments and over se-

quential time-points within an experiment), there

will also be multiple sources of variation that need

to be accounted for during analysis (such as

‘between time-points within an experiment’ and

‘between experiments on the same unit’).

Sample size considerations
Sample size calculations aim to establish the

minimum sample size that a study requires in

order to be in a strong position to answer the

primary research question. The primary research

question may take the form of a statistical

hypothesis test, an estimate with specified pre-

cision, or to obtain evidence for proof of concept

(POC). With a statistical hypothesis test the aim is

to control for two forms of error; type 1 in which

the null hypothesis is rejected when it is true

(false positive), and the type 2 error in which the

null hypothesis is not rejected when the alterna-

tive is true (false negative). The most common

error levels to adhere to are 5% for a type 1 error

and 10% or 20% for a type 2. When the type 2

error is 20% we have an 80% chance (or power) of

rejecting the null when the stated alternative is

true. In the precision context, the aim is to

estimate a population parameter of interest such

as the standard deviation of an outcome, or an

event or prevalence rate. In this form of study,

the aim is to control the expected standard error

of the estimate derived from the sample. POC

studies are typically conducted to obtain some

preliminary evidence that a treatment/

intervention works. One approach is to calculate

the sample size that will give a sufficiently high

probability (90–95%) to observe the correct

ordering of the primary outcome of the

treatment/intervention and control group. If the

estimate for the primary outcome is favourable

for the treatment/intervention group then this

Table 2. Commonly encountered examples of analytical controls

Control type Purpose

QCs Qualitative QCs typically indicate whether specific aspects of the
experimental and/or analytical procedure work in the intended ways,
and are often included in the same analytical run used to collect study
data. For example, a negative control may be a sample or unit that is
known to be negative for the outcome and, hence, should assign
a negative measurement in the assay. In contrast, a positive control
would be expected to assign a positive result.

Quantitative QCs are used to monitor the performance of a quantitative
measurement system and ensure that it is performing within acceptable
limits. Typically quantitative QC samples are run at two or more
concentrations across the range of the assay and interpreted using
graphical and statistical techniques, such as Levy-Jennings plots and
Westgard rules. QC materials are generally not used for calibration in
the same process in which they are used as controls.

In instances where any QC checks fail, certain aspects of the
experimental procedure may have to be altered in order to remedy the
problem or one or more units associated with the violation may have to
be reprocessed until satisfactory checks are achieved.

Comparative/normalisation controls These can be alternative physical or biochemical parameters measured
alongside the analyte of interest usually within the same sample, for the
purposes of normalisation and/or correction. For example, in RT-PCR
housekeeping genes are usually amplified as well as targets of interest,
with the final output expressed as a ratio between the target and the
housekeeping gene.

DOI: 10.7554/eLife.05519.011
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would support a decision to continue with a larger

hypothesis testing study (Piantadosi, 2005).

Sample size calculations rely on various con-

ditions and assumptions. We need to state which

assumptions we have made and justify why it is

fair to make them. In a hypothesis testing

framework, once we have identified the form of

the primary outcome (e.g., binary, continuous, or

time to event) and how we propose to compare

the groups (e.g., a relative risk; difference

between group means; hazard ratio, etc) we

can discuss what the minimum important effect

size might be. Deciding upon the magnitude of

effect size to use in a sample size calculation can

be difficult. The most common strategy involves

attempting to define the minimum meaningful

difference. This approach does not require prior

knowledge as the investigator should choose the

smallest effect size they would be willing to miss

(if there was a true difference). This can be an

inherently subjective task, and an effective

strategy may involve estimating the required

sample sizes over a range of possible effect sizes.

For common and well-studied clinical out-

comes such as blood pressure or body mass

index, the variability of the outcome in the

population being studied (as well using the

planned means of measurement) are usually well

established. If researchers do not have data on

the outcome of interest then it may sometimes

be possible to obtain estimates of variability from

similar published studies. Using the literature to

inform a sample size calculation can be more

convenient than performing a pilot study and, if

multiple suitable estimates are available, this will

provide a range for the expected level of

variability. Nevertheless, external estimates of

the variability may not necessarily be directly

comparable to the potential level of variability in

a new and independent study—especially where

there are differences in procedure and/or meth-

ods of measurement.

Studies that involve any repeated and/or

replicated measurements on each unit are influ-

enced by multiple sources of variation. For

instance, measurements taken across experimen-

tal units over time are influenced by ‘between

time’ and ‘between unit’ components of varia-

tion. Any sample size calculation for a study

involving repeated or replicate measurements

therefore requires estimates of each variance

component in order to accurately predict the

required sample size. In complex study designs

involving multiple sources of variation, it is

unlikely that estimates of all applicable variance

components will be available from the literature.

A pilot study of interim analysis of the data may

therefore be required in order to provide

a meaningful estimate of the required sample

size (see ‘Interim analysis’ section). Sample size

calculations for these studies, by definition, may

also be more complex, often requiring a compu-

tationally intensive method such as estimation by

Monte Carlo simulation.

Example(s): The study in Box 1 plans to take

repeated measurements on each experimental

unit over time, and to test each combination of

components in triplicate. Each additional mea-

surement of the flow rate adds information to

the study and will, up to a certain point, help to

increase the statistical power of the study. An

estimate of each source of variance would be

required to accurately estimate the power (or

required sample size) for this study, which may

not be readily available in previous publications.

As such, a pilot phase might be built into this

study in order to inform a sample size calcula-

tion (see ‘Interim analysis’ section later). In

addition to estimates of the applicable ‘variance

components’, any sample size calculation would

also require a definition of the desired type I and

type II error rates. Furthermore, the ‘minimum

meaningful difference’ would also need to be

defined. As this study may be conducted as an

equivalence test, the minimum difference might

be taken as the ‘equivalence limits’ in which the

95% confidence interval for the difference in

flow rates must lie (i.e., previously defined as ±
0.6 ml/hr).

Planned analysis
Data assessment and preparation

QC criteria
QC procedures aim to assess the validity of any

data collected in a study, and to detect any errors

that may have occurred, thereby helping to avoid

the potential effects of any biases or unwanted

variation that may arise. Often, QC procedures

involve analysing control samples included in the

design of the study (see ‘Use of analytical controls’

section). Plans for handling data from any analyt-

ical controls therefore need to be defined upfront

so that any experiments or samples that fail QC

can be repeated or reanalysed if required.

Criteria may be set to verify that any measure-

ments taken within a study are sufficiently accu-

rate. Westgard’s rules (Westgard et al., 1981) are

an example of multi-rule criteria used to de-

termine whether an analytical run is out of control.

Another reason to set criteria is, to check

whether data from calibrators, analytical controls
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or study samples are reproducible. Thresholds

for any such criteria must be set a priori using

benchmarks from any preliminary or published

work, on the premise that if an experiment or set

of measurements does not satisfy these criteria,

components of the study may have to be

repeated or certain data points excluded.

Example(s): In the macrophage study data are

collected at multiple time points. Results may fail

QC at any one of the measurement time points

and in any assay batch. The cause of this failure

may be due to a whole plate being contaminated

before the assay, or due to a technical fault of the

measurement system. The impact of a failed plate

when longitudinal measurements are made may

be larger as this prevents further measurements

being made and calls into question prior measure-

ments before the contamination was detected. So

a full or partial repeat of the whole experiment

may be necessary. The failure of a single assay

batch may be more recoverable depending on the

proportion of missing data in measurements

needed at that time point. In the described design

there are two replicates so a sensitivity analysis

could be employed in which extreme values (e.g.,

single measurements more than 3 SD away from

the batch specific mean) are coded as missing.

Data verification
Where necessary data in the database for analysis

should be checked against its source to identify

data entry errors prior to analysis. This important

step can take time and should be incorporated

into the analysis plan.

Data normalisation/correction
Other aspects of data preparation may involve

attempting to correct for potential problems such

as known (or unknown) biases or confounding

effects. Normalisation methods are often used to

align data to an expected distribution, with the

aim of ensuring that the groups being tested are

comparable. This can involve taking into account

information on the structure of the study design

such as batch or centre numbers or by using data

from appropriate analytical controls. The planned

normalisation or correction procedure may have

implications for the subsequent analysis of the

data and should be specified in advance.

Example(s): The study in Box 3 involves several

stages of sample and/or data processing, each of

which may require implementation of specific QC

procedures. For instance, RNA quality and the

possible impact of DNA contamination need to be

assessed, with criteria potentially set to exclude

bad samples (e.g., using the RNA integrity number

score). The processes involved in quantifying the

transcriptome (e.g., using the Tuxedo suite of

software) may also be subject to data quality

issues and need to be assessed accordingly. As

RNA-sequencing can be inherently susceptible to

batch effects and/or other unwanted sources of

variation, data correction techniques such as PEER

(Stegle et al., 2012) may also be employed to

normalise data profiles across samples.

Outliers
Having performed appropriate checks that the

data are accurate and reproducible, it is good

practice to use a combination of descriptive and

graphical methods to assess the distributions of

your study variables to check for outliers. It is not

good practice to routinely discard such outliers

from analysis; however, having performed the

primary analysis on the full dataset, one can

perform sensitivity analyses that exclude outliers,

to show how they might be influencing the

conclusions. Where possible the criteria for

identifying potential outliers should be specified

in advance of obtaining the results.

Statistical methods

Early consideration of the statistical methods helps

to ensure that a study’s objectives will be reliably

addressed. It allows study design to be optimised

by enabling an appropriate sample size calculation

to be made, and ensures that the resulting data

will be suitable for the most appropriate statistical

analysis. Specifying firm details about the antici-

pated statistical methods upfront, including the

analytical strategy for any secondary research

questions or potential subgroup analyses, can also

help to avoid biases at the analysis and reporting

stages. In particular, it helps guard against the

selective reporting (or ‘cherry picking’) of favour-

able results, and provides full transparency about

the initial analysis plan. A further advantage of

clarifying details about the planned statistical

analyses upfront is that, where applications for

funding will be submitted, it may provide an

opportunity to cost in time for any necessary

statistical support that will be required, such as for

regular integrated discussions with a statistician or

for the dedicated statistical analysis. This section

of the checklist details the key analytical consid-

erations that should be decided upon upfront

during study planning.

Describe the different analyses to be
performed
The methods that will be used can fundamentally

impact on the types of inferences that can be
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drawn from a study. As such, these should be

decided upon upfront, along with related details

such as any model terms or covariates that will be

considered and the specific tests or comparisons

that will be performed. If data require a trans-

formation prior to the analyses then all such

transformations need to be documented and

clearly justified. These aspects of the statistical

methodology all have implications for the sample

size calculation, and can influence the scope and

the validity of the findings. As different statistical

methodologies rely on different assumptions, plans

to assess the validity of these assumptions should

also be made. If any of the assumptions do not hold

then the results of the analysis may be misleading.

For such situations it may be that a simple data

transformation will suffice, if not alternative meth-

ods may be required for which additional statistical

support may need to be sought. Sensitivity analyses

can provide a means of assessing the dependency

of research findings upon the assumptions, and can

help to strengthen any conclusions being made.

Example(s): The study in Box 1 measures flow

rates over time on each pump-catheter combi-

nation, and plans to replicate each experiment

three times on a particular experimental unit. As

such, the measurements collected in this study

are not independent; flow rates recorded close

together in time may be more similar than those

recorded at different times, whereas the meas-

urements gained in a particular experiment or

unit may be more similar than those measured

across experiments or units. Many conventional

statistical methods assume that all observations

are independent and, hence, may produce mis-

leading results if applied in this study and pseudo

or false replication occurs when there is such

a mismatch between the experimental design

and the statistical analysis method (Hurlbert,

1984). An appropriate method for handling

repeated measurements would instead be re-

quired, such as a mixed-effects model. Mixed-

effects models handle non-independent meas-

urements (sometimes referred to as ‘pseudo-

replicates’) by including ‘random effect’ terms.

Any parameters or factors of interest that need

to be tested—such as the pump and catheter

effects—would be included as ‘fixed effects’.

After fitting such a model, planned comparisons

can be made to assess the key hypotheses; for

example, to quantify: (1) the difference between

new and existing pumps; (2) the difference

between new and existing catheters; and (3) the

difference between each combination involving

a new pump and/or catheter and the combina-

tion of existing pump and existing catheter.

Missing data
Planning to handle any missing data that may

arise upfront can help to avoid potential prob-

lems and bias at the analysis stage. Missing data

may arise for any number of reasons, but any

obvious problems that could occur should be

anticipated in advance and plans made to deal

with their possible effects. Depending on the

study design, it may be possible to guard

against missing or inaccurate data by monitor-

ing data quality as it accrues; pilot studies are

a good way of identifying potential issues

before the full study begins.

Example: In the elastomer pump example,

measurements were to be made automatically

over a period of 48 hr. If for any reason the

equipment were to fail during this period,

longitudinal data would be missing from the

point of failure onwards. In this example, use of

a mixed-effects model would allow for the

inclusion of incomplete longitudinal datasets; in

contrast, if an alternative method such as

repeated-measures ANOVA were used, sets with

missing data would have to be excluded, re-

ducing power, or the missing values would need

to be imputed, possibly introducing bias depend-

ing on the methods used.

Multiple testing
Running multiple tests within a study usually

requires some form of correction for the number

of tests being made (often referred to as

accounting for ‘multiplicity’). This guards against

the increased chance of obtaining positive

results just by chance as you increase the

number of tests or observations being made

on the same data. A type 1 error rate of 5%, that

is, testing at p < 0.05, suggests that 1 in every

20 tests will be significant simply by chance. The

two most commonly used forms of adjustment

involve controlling either the ‘family-wise error

rate’ or the ‘false-discovery rate’ (FDR). The

family-wise error rate assumes a given probabil-

ity of obtaining one or more false-positive

results within a set (or ‘family’) of tests. Often,

a 5% family-wise error rate is used—meaning

that, on average, only 5 out of 100 repetitions of

the complete set of tests would contain at least

one false-positive result. In contrast, the FDR

assumes—usually less stringently—that a given

proportion of a particular set of positive results

are false-positive. Deciding upon the means of

adjusting for multiplicity—including defining the

number of tests to adjust for and/or what

constitutes a single family of tests, can be

a contentious issue.
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Example(s): In the study in Box 2, 10 cytokines

will be tested, and multiple comparisons of

treatments will be made for each cytokine. A

suitable adjustment for multiplicity would there-

fore account for the number of comparisons of

treatments made for each cytokine, and the

number of cytokines tested.

In the Box 3 example, a large number of

transcripts will be tested for association with

hypertensive status, creating a multiple testing

issue. Many of the transcripts are expected to be

highly correlated with one another, however,

while most adjustments for multiplicity assume

that all tests being corrected for are indepen-

dent. In this scenario, adjusting for the full

number of transcripts tested would be conserva-

tive, and could—arguably—unfairly reduce the

statistical power of the study. As such, it may be

reasonable to use a less conservative adjustment

in this study, or to seek a more sophisticated

approach that can better account for the number

of independent tests being made.

Interim analysis
Properly planned interim analyses can

strengthen the quality of the data and/or

reduce costs, because they potentially allow

for the sample size calculation to be updated

with more accurate information, or for data

collection to be stopped early. However, they

must be planned in advance; ad hoc analysis of

data before the final sample size is reached

risks falsely rejecting the null hypothesis,

due to multiple testing or to obtaining a biased

estimate of the effect size in too small

a sample.

Having discussed the study design with

reference to the framework, there may be

elements that cannot be addressed immediately

with confidence. For example, data underpinning

the sample size calculation may be of uncertain

quality/applicability, or suggested adjustments

to the methods may need to be trialled for

feasibility. An interim analysis after a certain

proportion of the data had been collected would

allow adjustments to the sample size to be made,

or potentially would allow data collection to stop

altogether. Under some circumstances interim

analysis would require breaking of a blind, or

inflation of the final sample size required. For this

reason interim analyses should be planned fully in

advance, with consideration given to the practical

implications of performing the analysis, and rules

should be defined which determine the circum-

stances under which data collection should

continue.

Example(s): The study in Box 1 has not been

subject to a formal sample size calculation due to

a lack of available data on the magnitude of the

various components of variation planned into the

design (e.g., the variation in flow rates between

time-points in a particular experiment on a particular

unit, the variation between experiments, and the

variation between units). As such, it would be

desirable to plan for an interim analysis of the data

during the study in order to estimate the sample size

required to run any equivalence tests with sufficient

power. If the interim analysis solely involved esti-

mating variance components, it would not be

necessary to break the blinding of the interventions

or add to any multiple testing burden. However, if

the experimenters wished to assess for equivalence

at an interim stage of the study, the planned sample

size would need to be increased further in order to

properly allow for this. Note that, contrary to these

plans, this entire study may instead be considered to

be a pilot for a larger future study. In this scenario, it

may not be worth conducting any interim analyses;

the resources planned for the current study may

already be fixed, with no scope for increasing the

sample size if required.

Replication and/or validation
Validation and/or replication of the results

provides valuable support to research findings.

Validation usually involves using a different

method and/or technique to confirm data that

has been obtained—it thereby helps to guard

against any biases or confounding associated

with measurement and/or processing. In con-

trast, replication usually refers to reproducing

results in an independent dataset (such as an

additional set of samples that were not included

in the original analysis). Replication can help

guard against confounding associated with the

experimental/sampling units, and also protects

against statistical issues such as ‘overfitting’ and

‘The Winner’s Curse’.

Example(s): The study in Box 3 may be

considered a ‘hypothesis generating’ study

whereby it aims to identify genes and biological

pathways that may be associated with hyperten-

sion. Findings from hypothesis generating studies,

by definition, require subsequent confirmatory

work in order to reaffirm any findings. Confirma-

tion of findings may be achieved by replicating

any positive results in an independent study or an

independent set of patients. Validation of the data

may also be desirable, particularly if any QC

checks highlight any potential problems with the

data such as batch effects. This may be achieved,

for example, by reanalysing any interesting
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genetic variants using another technology such as

a genotyping array.

Reporting results
Once a well-designed laboratory study has been

completed, it will need to be reported to a high

standard to enable future reproduction of the

results. There are a wide range of publications

available which give detailed instructions on how

best to report the results of different types of

studies. Many journals now require authors to refer

to specific guidelines for certain research designs.

It is not our intention to give an exhaustive list

here, as new or updated guidelines are released

with regularity. However, authors should search

for relevant guidelines when preparing for

publication; the Enhancing QUAlity and Trans-

parency Of health Research (EQUATOR) network

website is an excellent place to start, featuring

a searchable library which aims to include all

reporting guidelines published since 1996 (www.

equator-network.org).

Example(s): If the elastomer pump study in

Box 1 was treated as an equivalence study then

many of the recommendations in the CONSORT

extension for equivalence clinical trials would be

relevant.

Summary
The RIPOSTE framework aims to reduce irrepro-

ducibility in laboratory based research by en-

couraging early discussion of study design and

analysis within a multidisciplinary team including

statisticians. We seek to steer discussions within

research teams towards addressing key aspects

of experimental design and analysis at the

earliest stages of a study, and believe that this

increased focus on planning will lead to more

rigorous research and ultimately reduced wast-

age in preclinical research.

Lack of reproducibility is not the sole reason

for wastage within laboratory studies. In January

2014 the Lancet printed a special issue focussing

on how to increase value and reduce waste in

medical research (Macleod et al., 2014). It has

been claimed that much of the waste is due to

incomplete and unusable results (Chalmers and

Glasziou, 2009). The problem of poor research

practice and documentation is widespread and

entrenched in the scientific culture (Collins and

Tabak, 2014). Currently scientific rewards are

disproportionately high for being the first to

publish, and this pressure has played a major part

in generating the problems with reproducibility

that are now being highlighted (Begley, 2013;

Ioannidis, 2014).

A number of recent initiatives have drawn

further attention to these critical issues and pro-

posed strategies to address and change the

scientific culture. The common themes emerging

from these initiatives are to improve training on

experimental design and analysis, to involve

experienced statisticians at all stages of design

and analysis, to raise awareness at grant review

stage of aspects of design such as randomisation

and blinding, and to reward good quality, well

designed research. Ioannidis et al. (2014) make

three broad recommendations to improve study

design, conduct and analysis. The first of these is

to make study protocols publicly available in-

cluding the raw data and analytical algorithms. The

second promotes raising the profile of defensible

research proposals within well-trained research

teams. The third is to reward reproducible

practices through funding and academic recogni-

tion. In the same special issue of the Lancet,

Glasziou et al. (2014) recommend that funders

should support and encourage their research

institutions to share research protocols and study

materials and ultimately to promote high quality

complete reporting. At publication the emphasis

must move towards reporting results in which they

have confidence (these will often be negative) in

detail, rather than selectively reporting the details

of the positive results which, if spurious, will serve

to misguide the research community. Several

recent incentives to promote direct replication

research are beginning to make an impact with the

publication of registered reports (Nosek and

Lakens, 2014). In this framework journals agree

to accept a future publication based on accep-

tance of pre-registered proposals and prior to any

data generation.

In addition to the above initiatives, there has

also been a recent push for greater publication of

raw data. The PLoS journals, for example, imple-

mented a new data policy earlier this year

stipulating that authors must, wherever legally

and ethically possible, share all data, metadata

and methods that underlie any research findings

offered for publication (Bloom et al., 2014). Data

must be deposited in a public repository, uploaded

online in supporting files to accompany a manu-

script, or made available upon request; any failure

to ensure that sufficient provisions to share have

been made can be grounds for rejection. In the US,

the NIH also intends to promote greater access to

raw data, requesting that funding applications

include a Data Discovery Index to enable any

unpublished data to be more easily located,

accessed and referenced by other researchers in

any future work (Collins and Tabak, 2014).
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This NIH initiative has been supported by recent

calls to prospectively register laboratory studies

(Hooft and Bossuyt, 2011; Altman, 2014). Regis-

tering studies upfront would necessitate that any

deviations from protocols are both documented

and justified, and would ensure that protocols are

well thought out at an early stage (i.e., prior to

registration). It would likely also significantly im-

prove the transparency of research, as was seen

following the implementation of a similar initiative

in 2005, which sought to introduce a requirement

to prospectively register certain types of trials

(Hooft and Bossuyt, 2011). Registering studies

and reducing bias against publication of negative

results will also help to ensure that replication

studies with negative findings receive the appro-

priate attention amongst the scientific community.

These initiatives suggest the need for a major

culture change within preclinical research; tack-

ling these issues will require effort on multiple

levels. The shift to making statisticians an

integral part of the research team rather than

to be consulted in isolation will be challenging.

Statisticians’ knowledge and experience of

experimental data and the laboratory environ-

ment are highly variable. Scientists may be

reluctant to work with statisticians in this way

due to variable experiences in the past. The

RIPOSTE framework has been designed to

support this shift and help scientists and

statisticians alike form a deeper understanding

of the issues surrounding the reproducibility of

laboratory research. This should ensure that the

considerations relevant to a particular study can

be addressed efficiently with greater confidence

on both sides. To allow for a greater involve-

ment of statisticians in the study design process,

additional funds will be needed and this will

require commitment from funding bodies. We

recommend that statisticians be considered an

integral part of the research team wherever

possible, and that they should be involved at the

planning stages of studies. We encourage use of

our framework for all laboratory research

studies and not just those seeking funding. In

conjunction with other initiatives (Collins and Tabak,

2014) the RIPOSTE framework can be a useful tool

in combating irreproducibility of preclinical study

results, offering a powerful riposte to the criticisms

regarding wastage in laboratory research.
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