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Abstract 40 For decisions made under time pressure, effective decision making based on 41 uncertain or ambiguous evidence requires efficient accumulation of evidence 42 over time, as well as appropriately balancing speed and accuracy, known as the 43 speed/accuracy trade-off. For simple unimodal stimuli, previous studies have 44 shown that human subjects set their speed/accuracy trade-off to maximize 45 reward rate. We extend this analysis to situations in which information is 46 provided by multiple sensory modalities. Analyzing previously collected data (J. 47 Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget, 2014), we show that human 48 subjects adjust their speed/accuracy trade-off to produce near-optimal reward 49 rates. This trade-off can change rapidly across trials according to the sensory 50 modalities involved, suggesting that it is represented by neural population codes 51 rather than implemented by slow neuronal mechanisms such as gradual changes 52 in synaptic weights. Furthermore, we show that deviations from the optimal 53 speed/accuracy trade-off can be explained by assuming an incomplete gradient-54 based learning of these trade-offs. 55  56 
Introduction 57 In the uncertain and ambiguous world we inhabit, effective decision making not 58 only requires efficient processing of sensory information, but also evaluating 59 when enough information has been accumulated to commit to a decision. One 60 can make fast, but uninformed and thus inaccurate, decisions or one can elect to 61 make slower, but well-informed, choices. Choosing this so-called speed-accuracy 62 trade-off (SAT) becomes even more complex if several sensory modalities 63 provide decision-related information. For example, the strategy for crossing a 64 busy street will be very different in bright daylight, when one can rely on both 65 eyes and ears to detect oncoming vehicles, as compared to complete darkness, in 66 which case the ears will prove to be the more reliable source of information. 67  The SAT has been extensively studied for perceptual decisions based on 68 information provided by a single sensory modality. For the most commonly 69 studied visual modality, it has been shown that animals accumulate evidence 70 near-optimally over time (Kiani & Shadlen, 2009). In this context, the efficiency 71 
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of the chosen SAT is assessed in comparison to diffusion models, a family of 72 models that trigger decisions as soon as a drifting and diffusing particle reaches 73 one of two bounds (Ratcliff, 1978). In these models, which describe the SAT 74 surprisingly well despite their simplicity (Palmer, Huk, & Shadlen, 2005; Ratcliff, 75 1978; Ratcliff & McKoon, 2008), the drift represents the available sensory 76 information, and the diffusion causes variability in decision times and choices. 77 The level of the bound controls the SAT, with a higher bound leading to slower, 78 more accurate choices. Instructed changes to the SAT have been shown to be 79 well captured by changes to only the bound in a diffusion model (Palmer et al., 80 2005; Reddi, Asrress, & Carpenter, 2003; Reddi & Carpenter, 2000). Without 81 being explicitly instructed to make either fast or accurate decisions, well-trained 82 human subjects are known to adjust their SAT to maximize their reward rate 83 (Balci et al., 2011; Simen et al., 2009), or a combination of reward rate and choice 84 accuracy (Bogacz, Hu, Holmes, & Cohen, 2010). These SAT adjustments are also 85 well captured by tuning the corresponding diffusion model bounds. Thus, we can 86 define the SAT directly in terms of these bounds: a constant SAT refers to 87 behavior predicted by diffusion models with constant bounds, and a SAT that 88 changes across trials requires a diffusion model with bounds that vary on the 89 same time-scale. 90  Here, we extend the analysis of how human decision-makers adjust their 91 SAT to situations in which they receive information from multiple sensory 92 modalities. We have previously shown that, even in the case of multiple 93 modalities and time-varying evidence reliability, humans are able to accumulate 94 evidence across time and modalities in a statistically near-optimal fashion (J. 95 Drugowitsch et al., 2014). This analysis was based on a variant of diffusion 96 models that retains optimal evidence accumulation even for multiple sources of 97 evidence whose reliability varies differentially over time. As we focused on 98 evidence accumulation in that study, we were agnostic as to how the SAT varied 99 across stimulus conditions; thus, we left the model bounds, which controlled the 100 SAT, as free parameters that were adjusted to best explain the subjects’ behavior. 101 In this follow-up study, we use the previously devised model to analyze 102 whether and how effectively human subjects adjust their SAT if they have 103 evidence from multiple modalities at their disposal. Specifically, we find that 104 
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subjects adjust their SAT on a trial by trial basis, depending on whether the 105 stimuli are unisensory or multisensory. Moreover, the changes in SAT result in 106 reward rates that are close to those achievable by the best-tuned model, a 107 finding that is robust to changes in assumptions about how the reward rate is 108 computed. Finally, we demonstrate that small deviations from the optimal SAT 109 seem to stem from an incomplete reward rate maximization process. Overall, our 110 findings hint at decision-making strategies that are more flexible than previously 111 assumed, with SATs that are efficiently changed on a trial-by-trial basis. 112  113 
Results and Discussion 114 Our analysis is based on previously reported behavioral data from human 115 subjects performing a reaction-time version of a heading discrimination task 116 based on optic flow (visual condition), inertial motion (vestibular condition), or a 117 combination of both cues (combined condition) (J. Drugowitsch et al., 2014). 118 Reliability of the visual cue was varied randomly across trials by changing the 119 motion coherence of the optic flow. Subjects experienced forward translation 120 with a small leftward or rightward deviation, and were instructed to report as 121 quickly and as accurately as possible whether they moved leftward or rightward 122 relative to straight ahead. 123  First, we ask whether subjects can adjust their SAT from trial to trial. 124 Having related changes in the SAT to changes in diffusion model bounds, this is 125 akin to asking if their behavior could arise from a diffusion model with a bound 126 that changes on a trial-by-trial basis. Our diffusion model necessitates the use of 127 a scaled bound, which is the constant actual bound per modality divided by the 128 diffusion standard deviation that depends on optic flow coherence. The use of 129 such a scaled bound prohibits us from fitting actual bound levels, but rather 130 scaled versions thereof. For the same reason, we cannot unambiguously predict 131 the behavior that would emerge from a model with actual bounds matched 132 across modalities (i.e., a constant SAT). Therefore, we instead rely on a 133 qualitative argument about how such matched bounds would be reflected in the 134 relation between decision speed and accuracy across modalities.  135 
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As Figure. 1a illustrates for subject B2, increasing the coherence of the 136 optic flow caused subjects to make faster, more accurate choices. This pattern 137 was similar if only the visual modality (solid blue lines, Figure. 1a) or both 138 modalities were present (solid red lines, Figure. 1a). This result is qualitatively 139 compatible with the idea that subjects used a single SAT within conditions in 140 which the same modality (visual/vestibular) or modality combination 141 (combined) provided information about heading. Within the framework of 142 diffusion models with fixed actual bounds on the diffusing particle1, such a single 143 SAT predicts that, once the amount of evidence per unit time (in our case 144 controlled by the coherence) increases, choices ought to be on average either 145 faster, more accurate, or both in combination, but never slower or less accurate. 146 However, our data violate this prediction, thus showing that the SAT changes 147 across conditions. Consider, for example, the choice accuracy and reaction times 148 of subject B2 in both the visual-only (top blue circle, Figure. 1a) and combined 149 condition (top red square, Figure. 1a) trials at 70% motion coherence. Although 150 the combined condition provides more evidence per unit time due to the 151 additional presence of the vestibular modality, responses in the combined 152 condition are less accurate than in the visual-only condition, violating the idea of 153 a single SAT (that is, a fixed diffusion model bound) across conditions. The same 154 pattern emerged across all subjects, whose choices in the combined condition 155 were on average significantly less accurate than in the visual condition (for 70% 156 coherence; one-tailed Wilcoxon signed-rank W=54, p<0.002). As these stimulus 157 conditions were interleaved across trials, our results clearly indicate that 158 subjects were able to change their SAT on a trial-by-trial basis. 159 Next, we explore whether these adjustments in the SAT serve to maximize 160 subjects’ reward rate. Even though subjects did not receive an explicit reward for 161 correct trials, we assumed that correct decisions evoke an internal reward of 162 magnitude one. Therefore, we computed reward rate as the fraction of correct 163                                                         1 A less common alternative to bounding the diffusing particle in diffusion models is to bound the posterior belief. In case of the latter, changing the amount of evidence per unit time only affects the response time but not its accuracy, which remains unchanged. In rare cases, a bound on the diffusing particle equals a bound on the posterior belief (Jan Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012), but this is not the case in our context. 
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decisions across all trials, divided by the average time between the onset of 164 consecutive trials. We proceed in two steps: first, we ask whether subjects have a 165 higher reward rate across trials of the multisensory condition compared to both 166 unimodal conditions. This is an important question because we have found 167 previously that subjects accumulate evidence optimally across modalities (J. 168 Drugowitsch et al., 2014), which implies that, with proper setting of the SAT, 169 they should be able to obtain higher reward rates in the multisensory condition 170 compared to the unimodal conditions. As shown in Figure 1b, reward rate is 171 indeed greater, for all subjects, when both sensory modalities are presented than 172 for either modality alone (both unimodal vs. combined: Wilcoxon signed-ranks 173 
W=0, p<0.002). This confirms that subjects combined evidence across modalities 174 to improve their choices. 175 We now turn to the question of whether subjects tune their SATs to 176 maximize the reward rate. For this purpose, we focus on the reward rate across 177 all trials rather than for specific stimulus conditions, as subjects might, for 178 example, trade off decision accuracy in unimodal conditions with decision speed 179 in the combined condition. To determine how close subjects were to maximizing 180 their reward rate, we needed to compute the best achievable reward rate. To do 181 this, we tuned the bounds of our modified diffusion model to maximize its 182 reward rate, while keeping all other model parameters, including the non-183 decision times and choice biases, fixed to those resulting from fits to the 184 behavior of individual subjects. As a starting point, we allowed bounds to vary 185 freely for each stimulus modality and each motion coherence, to provide the 186 greatest degrees of freedom for the maximization. As described further below, 187 we also performed the same analysis with more restrictive assumptions. We call 188 the reward rate resulting from this procedure the optimal reward rate. This 189 reward rate was subject-dependent, and was used as a baseline against which 190 the empirical reward rates were compared. 191  Figure 2a shows the outcome of this comparison. As can be seen, all but 192 one subject featured a reward rate that was greater than 90% of the optimum, 193 with two subjects over 95%. As a comparison, the best performance when 194 completely ignoring the stimulus and randomly choosing one option at trial 195 onset (i.e. all actual bounds set to zero) causes a significant 25% to 30% drop in 196 
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reward rate (subjects vs. random: Wilcoxon signed-rank W=55, p<0.002). Thus, 197 subjects featured near-optimal reward rates that were significantly better than 198 those resulting from rapid, uninformed choices. 199  Our analysis of the subjects’ reward rate relative to the optimum is fairly 200 robust to assumptions we make about how this reward rate and its optimum are 201 defined. Thus far, we have assumed implicit, constant rewards for correct 202 decisions and the absence of any losses for the passage of time or incorrect 203 choices. However, accumulating evidence is effortful, and this effort might offset 204 the eventual gains resulting from correct choices. In fact, previous work suggests 205 that human decision makers incur such a cost, possibly related to mental effort, 206 in the range of 0.1-0.2 units of reward per second for accumulating evidence (Jan 207 Drugowitsch et al., 2012). Importantly, this cost modulates both the subjects’ and 208 the optimal reward rate, causing the median reward rate across subjects to 209 actually rise slightly to 95.4% and 95.1% (costs of 0.1 and 0.2) of the optimum 210 value (Figure 2b, second and third columns), compared to the cost-free median 211 of 93.7%.  212  The optimal reward rates so far were obtained from a model in which we 213 allowed independent bounds for each stimulus modality and each motion 214 coherence, which implies that subjects can rapidly and accurately estimate 215 coherence. Using instead the more realistic assumption (J. Drugowitsch et al., 216 2014) that bounds only vary across modalities while coherence modulates 217 diffusion variance but not bound height, we reduce the number of parameters 218 and thus degrees of freedom for reward rate maximization. As a result, subjects’ 219 reward rates relative to the optimum rise slightly (median 94.5%), where the 220 optimal model is now restricted to use the same bound across all coherences 221 (Figure 2b, fourth column). Furthermore, we have assumed the model to feature 222 the same choice biases as the subjects. These biases reduce the probability of 223 performing correct choices, and thus the reward rate, such that removing them 224 from our model boosts the model’s optimal reward rate. As a consequence, 225 removing these biases causes a consistent drop in subjects’ relative reward rate 226 (Figure 2b, last two columns). Even then, reward rates are still around 90% of 227 the optimum (median 87.8% and 88.7% for free and parametric bounds, 228 respectively). If instead of featuring the observed behavior, subjects were to 229 
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ignore the stimulus and randomly choose one option at trial onset, they would 230 incur a significant drop in reward rate for all of the different assumptions about 231 how we define this optimum (e.g. with/without accumulation cost, …) as 232 outlined above (subject vs. random, blue vs. red in Figure. 2b: Wilcoxon signed-233 rank W=55, p<0.002, except cost 0.2: W=54, p<0.004). 234 Despite exhibiting near-optimal reward rates, all subjects feature small 235 deviations from optimality. These deviations may result from incomplete 236 learning of the optimal SAT. We only provided feedback about the correctness of 237 choices in early stages of the experiment, until performance stabilized, and 238 subjects did not receive feedback during the main experiment. Nevertheless, 239 subjects’ speed/accuracy trade-off remained rather stable after removing 240 feedback, which includes all trials we analyzed. Thus, incomplete learning in the 241 initial training period should be reflected equally in all of these trials. To test the 242 incomplete-learning hypothesis, we assumed that subjects adjusted their 243 strategy in small steps by using gradient-based information about how the 244 reward rate changed in the local neighborhood of the currently chosen bounds. 245 For our argument, it does not matter if the gradient-based strategy was realized 246 through stochastic trial-and-error or more refined approaches involving analytic 247 estimates of the gradient, as long as it involved an unbiased estimate of the 248 gradient. What is important, however, is that such an approach would lead to 249 faster learning along directions of steeper gradients (Figure. 3a). As a result, 250 incomplete learning should lead to near-optimal bounds along directions having 251 a steep gradient, but large deviations from the optimal bound settings along 252 directions having shallow gradients.  253 To measure the steepness of the gradient for different near-optimal 254 bounds, we used the reward rate’s curvature (that is, its second derivative) with 255 respect to each of these bounds. If these bounds were set by incomplete gradient 256 ascent, we would expect bounds associated with a strong curvature to be near-257 optimal (red dimension in Figure. 3a; large curvature, close to optimal bound in 258 inset) and bounds in directions of shallow curvature to be far away from their 259 optimum (blue dimension in Figure. 3a; small curvature, distant from optimal 260 bound in inset). In contrast, strongly mis-tuned bounds associated with a large 261 curvature (points far away from either axis in Figure. 3b) would violate this 262 



 9

hypothesis. If we plot reward rate curvature against the distance between 263 estimated and optimal bounds, the data clearly show the predicted relationship 264 (Figure. 3b). Specifically, reward rate curvature is generally moderate to strong 265 in the vestibular-only and combined conditions, and most of these bounds are 266 found to be near-optimal. In contrast, curvature is rather low for the visual 267 condition, and many of the associated bounds are far from their optimal settings. 268 This is exactly the pattern one would expect to observe if deviations from 269 optimality result from a prematurely terminated gradient-based learning 270 strategy. This analysis rests on the assumption that the manner in which reward 271 rate varies with changes in the bounds is well approximated by a quadratic 272 function. If this were the case, then the estimated loss in reward rate featured by 273 the subjects when compared to the tuned model should also be well 274 approximated by this quadratic function. These two losses are indeed close to 275 each other for most subjects (Figure. 3c), thus validating the assumption. 276 Previous studies have suggested that deviations from optimal bound 277 settings may arise if subjects are uncertain about the inter-trial interval (Bogacz 278 et al., 2010; Zacksenhouse, Bogacz, & Holmes, 2010). With such uncertainty, 279 subjects should set their bound above that deemed to be optimal when the inter-280 trial interval is perfectly known. A similar above-optimal bound would arise if 281 subjects are either uncertain about the optimal bound, or have difficulty in 282 maintaining their bounds at the same level across trials. This is because the 283 reward rate drops off more quickly below than above the optimal bounds 284 (Figure. 4a). Thus, if the subject’s bounds fluctuate across trials, or the subjects 285 are uncertain about the optimal bounds, they should aim at setting their bounds 286 above rather than below this optimum. Indeed, this would minimize the 287 probability that the bound would fluctuate well below the optimal value, which 288 would result in a very sharp drop in reward rate.  However, our data indicate 289 that, in contrast to previous findings from single-modality tasks (Bogacz et al., 290 2010; Simen et al., 2009), subjects consistently set their bounds below the 291 optimum level (Figure 4b). In other words, they make faster and less accurate 292 decisions than predicted by either of the above considerations. Figure 1a (data 293 vs. tuned) illustrates an extreme case for subject B2, in which the best reward 294 rate is achieved in some conditions by waiting until stimulus offset. While not 295 
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always as extreme as shown for this subject, a distinct discrepancy between 296 observed and reward rate-maximizing behavior exists for all subjects, and is a 297 reflection of the fact that near-optimal reward rates can be achieved with 298 remarkably different joint tunings of reaction times and choice accuracy.    299 What are the potential neural correlates of the highly flexible decision 300 bounds and associated SATs that are reflected in the subjects’ behavior? One 301 possibility is the observed bound on neural activity (Churchland, Kiani, & 302 Shadlen, 2008; Kiani, Hanks, & Shadlen, 2008; Roitman & Shadlen, 2002; Schall, 303 2003) in the lateral intraparietal cortex in monkeys, an area that seems to reflect 304 the accumulation of noisy and ambiguous evidence (Yang & Shadlen, 2007). It 305 still needs to be clarified if similar mechanisms are involved in our experimental 306 setup, in which we observed modality-dependent trial-by-trial changes in the 307 SAT. In contrast to suggestions from neuroimaging studies (Green, Biele, & 308 Heekeren, 2012), such trial-by-trial changes are unlikely to emerge from slow 309 changes in connectivity. A more likely alternative, that is compatible with 310 neurophysiological findings, is a neuronal “urgency signal” that modulates this 311 trade-off by how quickly it drives decision-related neuronal activity to a common 312 decision threshold (Hanks, Kiani, & Shadlen, 2014). Although only observed for 313 blocked designs, a similar modality-dependent urgency signal could account for 314 the trial-by-trial SAT changes of our experiment, and qualitatively mimic a 315 change in diffusion model bounds. Currently, our model can only predict changes 316 in scaled decision boundaries, which conflate actual boundary levels with the 317 diffusion standard deviation. It does not predict how the actual bound level 318 changes, which is the quantity that relates to the magnitude of such an urgency 319 signal. In general, quantitatively relating diffusion model parameters to neural 320 activity strongly depends on how specific neural populations encode 321 accumulated evidence, which has only been investigated for cases that are 322 substantially simpler (e.g., Kira, Yang, & Shadlen, 2015) than the ones we 323 consider here. 324 Further qualitative evidence for neural mechanisms that support trial-by-325 trial changes in the SAT comes from monkeys performing a visual search task 326 with different, visually cued, response deadlines (Heitz & Schall, 2012). Even 327 though the different deadline conditions were blocked, analysis of FEF neural 328 
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activity revealed a change in baseline activity that emerged already in the first 329 trial of each consecutive block, hinting at flexible mechanisms that pre-emptively 330 govern changes in SAT. In general, such changes in SAT are likely to emerge 331 through orchestrated changes in multiple neural mechanisms, such as changes in 332 baseline, visual gain, duration of perceptual processing, and the other effects 333 observed by Heitz and Schall (2012), or through combined changes to perceptual 334 processing and motor preparation, as suggested by Salinas, Scerra, Hauser, 335 Costello, and Stanford (2014). 336 The observed SATs support the hypothesis that gradient-based 337 information is used by subjects during the initial training trials to try to learn the 338 optimal bound settings. We do not make strong assumptions about exactly how 339 this training information is used, and even a very simple strategy of occasional 340 bound adjustments in the light of positive or negative feedback is, in fact, 341 gradient-based (albeit not very efficient) (e.g., Myung & Busemeyer, 1989). The 342 clearest example of a strategy that is not gradient-based is one that does not at 343 all adjust the SAT, or one that does so randomly, without regard to the error 344 feedback that was given to subjects during the initial training period. Such 345 strategies are not guaranteed to lead to the consistent curvature/bound distance 346 relationship observed in Figure. 3b. For a single speed/accuracy trade-off, 347 adjusting this trade-off has already been thoroughly investigated, albeit with 348 conflicting results (Balci et al., 2011; Myung & Busemeyer, 1989; Simen, Cohen, & 349 Holmes, 2006; Simen et al., 2009). Greater insight into the dynamics of learning 350 this trade-off will require further experiments that keep the task stable 351 throughout acquisition of the strategy, and reduce the number of conditions and 352 potential confounds to explain the observed changes in behavior. 353 In summary, we have shown that subjects performing a multisensory 354 reaction-time task tune their SAT to achieve reward rates close to those 355 achievable by the best-tuned model. This near-optimal performance is invariant 356 under various assumptions about how the reward rate is computed, and is, even 357 under the most conservative assumptions, in the range of 90% of the optimal 358 reward rate. Deviations from optimality are unlikely to have emerged from a 359 strategy of setting bounds to make them robust to perturbations. Instead, our 360 data support the idea that decision bounds have been tuned by a gradient-based 361 
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strategy. Such tuning is also in line with the observation of near-optimal reward 362 rates, which are unlikely to result from a random bound-setting strategy. Overall, 363 our study provides novel insights into the flexibility with which human decision 364 makers choose between speed and accuracy of their choices. 365  366 
Materials and Methods 367 Seven subjects (3 male) aged 23-38 years participated in a reaction-time version 368 of a heading discrimination task with three different coherence levels of the 369 visual stimulus. Of these subjects, three (subjects B, D, F; 1 male) participated in 370 a follow-up experiment with six coherence levels. The six-coherence version of 371 their data is referred to as B2, D2, and F2. More details about the subjects and 372 the task can be found in J. Drugowitsch et al. (2014). Not discussed in this 373 reference is the inter-trial interval, which is the time from decision to stimulus 374 onset in the next trial. This interval is required to compute the reward rate, and 375 was 6s on average across trials. 376 Unless otherwise noted, we used a variant of the modified diffusion model 377 described in J. Drugowitsch et al. (2014) to fit the subjects’ behavior, and we 378 tuned its parameters to maximize reward rates. Rather than using a constant 379 decision bound for each modality and parameterizing how the diffusion variance 380 depends on the coherence of visual motion (as in J. Drugowitsch et al., 2014), the 381 model variant used here allowed for a separate bound/variance combination per 382 modality and coherence. Thus, it featured 7 bound parameters for the 3-383 coherence experiments, and 13 bound parameters for the 6-coherence 384 experiments. This variant was chosen to increase the model’s flexibility when 385 maximizing its reward rate. The original model variant with constant bounds 386 and a changing variance led to qualitatively comparable results (Figure. 1a, 387 “tuned”, and Figure. 2b, “parametric bounds”). 388  For each subject, we adjusted the model’s parameters to fit the subject’s 389 behavior as in J. Drugowitsch et al. (2014), through a combination of posterior 390 sampling and gradient ascent. Based on these maximum-likelihood parameters, 391 we then found the model parameters that maximized reward rate by adjusting 392 the bound/variance parameters using gradient ascent on the reward rate, while 393 
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keeping all other model parameters fixed. To avoid getting trapped in local 394 maxima, we performed this maximization 50 times with random re-starts, and 395 chose the parameters that led to the overall highest reward rate. When 396 performing the maximization, we only modified the parameters controlling the 397 bounds, while keeping all other parameters fixed to the maximum-likelihood 398 values. The latter differed across subjects, such that this maximization led to 399 different maximum reward rates for different subjects. For the “no bias” variant 400 in Figure. 2b, we set the choice biases to zero before performing the reward rate 401 maximization. 402 In all cases, the reward rate was computed as the fraction of correct 403 choices across trials, divided by the average trial time, which is the time between 404 the onsets of consecutive trials. Any non-zero evidence accumulation cost 405 (Figures. 2 and 4) was first multiplied with the average decision time (that is, 406 reaction time minus estimated non-decision time) across all trials, and then 407 subtracted from the numerator. 408  Our argument about the speed of convergence of steepest gradient ascent 409 is based on the assumption that bounds are updated according to ࣂ௡ = ௡ିଵࣂ  ෡ estimated for individual subjects. This rate of change, called the 418ࣂ is the step size. The speed of this procedure (i.e. the 413 bound change between consecutive steps) depends for each bound on the size of 414 the corresponding element in the reward rate gradient. For optimal bounds, this 415 gradient is zero, which makes the gradient itself unsuitable as a measure of 416 gradient ascent speed. Instead, we use the rate of change of this gradient close to 417 the bounds ߙ and ,ࣂ ሻ are the reward rate and its 412 gradient for boundsࣂሻ and ∇݂ሺࣂ௡ are the bound vectors before and during the nth 411 steepest gradient ascent step, ݂ሺࣂ ௡ିଵ andࣂ ௡ିଵሻ, whereࣂሺ݂∇ߙ 410+
curvature, is proportional to the gradient close to ࣂ෡, and therefore also 419 proportional to the speed at which ࣂ෡ is approached. Close-to and at the optimal 420 reward rate, which is a maximum, this curvature is negative. As we were more 421 interested in its size than its sign, Figure. 3 shows the absolute value of this 422 curvature. We estimated this curvature at ࣂ෡ by computing the Hessian of ݂൫ࣂ෡൯ by 423 finite differences [D’Errico, John (2006). Adaptive Robust Numerical 424 Differentiation. MATLAB Central File Exchange. Retrieved July 3, 2014], where 425 we used the model that allowed for a different bound level per modality and 426 



 14

coherence (7 and 13 bound parameters/dimensions for 3 and 6 coherence 427 experiment, respectively). Before computing the distance between estimated and 428 reward rate-maximizing bounds, we projected bound parameter vectors into the 429 eigenspace of this Hessian, corresponding to the orientations of decreasing 430 curvature strength. The absolute bound difference was then computed for each 431 dimension (i.e. modality and coherence) of this eigenspace separately, with the 432 corresponding curvature given by the associated eigenvalue (Figure. 3b).  433 In Figure. 3b, each bound dimension (i.e. modality and coherence, see 434 figure legend) is associated with a different color. As described in the previous 435 paragraph, this figure shows bound differences and curvatures not in the space 436 of original bound levels, but rather in a projected space. To illustrate this bound 437 coordinate transformation in the figure colors, we performed the same 438 coordinate transform on the RGB values associated with each dimension, to find 439 the colors associated with the dimensions of the projected space. The projected 440 colors (filled cirles in Figure. 3b plot) closely match the original ones (Figure. 3b 441 legend), which reveals that the curvature eigenspace is well aligned to that of the 442 bound parameters. This indicates that the reward rate curvatures associated 443 with each of the bound parameters, that is, each modality/coherence 444 combination, are fairly independent. Due to the close match between projected 445 and original colors, we do not mention the color transformation in the legend of 446 Figure. 3. 447 Our analysis is also valid if subjects do not follow the reward rate gradient 448 explicitly. They could, for example, approximate this gradient stochastically on a 449 step-by-step basis. As long as the stochastic approximation is unbiased, our 450 argument still holds. One such stochastic approximation would be to test if a 451 change in a single bound (corresponding to a single trial) improves the noisy 452 estimate of the reward rate, that is, if ݂ሺࣂ௡ሻ > ݂ሺࣂ௡ିଵሻ +  is zero-mean 454 symmetric random noise. In this case, larger changes, which are more likely to 455 occur in directions of larger gradient, are more likely accepted. As a result, faster 456 progress is made along steeper directions, which is the basic premise upon 457 which our analysis is based. 458 ߝ ௡, andࣂ ௡ିଵ andࣂ where only a single 453 element (i.e. bound) is changed between ,ߝ
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 To illustrate how the reward rate changed with bound height (Figure. 4), 459 we assumed that all (7 or 13) bound parameters varied along a straight line 460 drawn from the origin to the reward rate-maximizing parameter settings. To 461 project the maximum-likelihood bound parameters from the subject fits onto 462 this line (dots in Figure. 4a&b), we followed the iso-reward rate contour from 463 these parameters until they intersected with the line. We also tried an 464 alternative approach by projecting these parameters onto the line by vector 465 projection, which resulted in a change of the reward rate, but otherwise led to 466 qualitatively similar results as those shown in Figure. 4b. In both cases, the 467 subjects’ bound parameters were well below those found to maximize the 468 reward rate. 469  470 
Figure Legends 471 
Figure 1. The SAT and reward rate for unimodal vs. combined conditions. 472 (a) Fraction of correct choices is plotted as a function of mean reaction time for 473 subject B2. Blue/cyan: visual condition; green/lime: vestibular condition; 474 red/orange: combined condition. Solid: data; dashed: model with parametric 475 bound tuned to maximize reward rate. Motion coherence varies across data 476 points in the red/orange and blue/cyan curves. The tuned model generally 477 predicts slower and more accurate choices in the visual condition, leading to the 478 longest-possible reaction time (2s stimulus time + non-decision time) for all but 479 the highest stimulus coherence. (b) Reward rate for trials of the combined 480 condition is plotted against reward rate for trials of the visual condition (open 481 blue symbols), the vestibular condition (open green symbols) and both unimodal 482 conditions in combination (gray filled symbols). Reward rates are computed as 483 number of correct decisions per unit time for the respective trial subgroups, and 484 are shown for each subject separately, with bootstrapped 95% confidence 485 intervals. 486  487 
Figure 2. Reward rates of subjects relative to the optimal reward rate. The 488 optimal reward rate is the best reward rate achievable by a model with tuned 489 decision bounds. (a) Each subject’s reward rate is shown as a fraction of the 490 
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optimal reward rate (blue bars).  In addition, the expected reward rate is shown 491 for immediate random decisions (red bars). (b) Box-plots show relative reward 492 rates for different assumptions regarding how reward rate is computed. ‘no cost’ 493 corresponds to the case shown in panel a. ‘cost 0.1’ and ‘cost 0.2’ assume a cost 494 per second for accumulating evidence over time. ‘parametric bounds’ uses the 495 original bounds from J. Drugowitsch et al. (2014), rather than a separate bound 496 parameter for each modality and coherence. The last two bars (‘unbiased’) 497 remove the subjects’ decision biases before computing the optimal reward rate. 498 All box-plots show the maximum/minimum relative reward rates (whiskers), the 499 25% and 75% percentiles (central bar), and the median (central line) value 500 across subjects. Data are shown for the subjects’ reward rates (blue) and for 501 immediate random choices (red). 502  503 
Figure 3. Evidence for bound mistuning due to incomplete gradient-based 504 
learning. (a) The effects of incomplete gradient ascent on the relation between 505 projected bound distance and local curvature (that is, second derivative of the 506 reward rate at estimated bound) are illustrated for a fictional maximization 507 problem with only two bounds. The grey trajectory shows a sequence of gradient 508 ascent steps on the reward rate function, whose shape is illustrated by two iso-509 reward rate contours (black) around its maximum (cross). Stopping this gradient 510 ascent procedure (large grey filled circle) before it reaches the optimum causes 511 this stopping point to be close to the optimal bound in directions of large 512 curvature (red), and farther away from the optimum in directions of shallow 513 curvature (blue). (b) Curvature at the estimated bound location is plotted against 514 the distance between the estimated and optimal bound (see text for details).  515 This plot includes 7 (3 coherence condition) or 13 (6 coherence condition) data 516 points per subject, one for each modality/coherence combination. Data for the 517 visual, vestibular and combined conditions are shown in shades of blue/cyan, 518 green, and red/yellow, respectively, and motion coherence is indicated by color 519 saturation. (c) The reward rate loss (i.e., optimal model reward rate minus 520 subject’s reward rate) as estimated from the model (abscissa) is plotted against 521 the loss predicted by the quadratic approximation used in the analysis in (a)-(b), 522 for each subject (ordinate). If the reward rate has a quadratic dependence on the 523 
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bounds, then all the data points would lie along the diagonal. Small deviations 524 from the diagonal indicate that the reward rate is indeed close-to-quadratic in 525 these bounds. 526 
 527 
Figure 4. Subjects’ bound settings relative to the optimal bound. (a) The 528 curves show how the reward rate changes with a simultaneous, linear change of 529 all bounds. From left to right, bound levels increase from zero to the (reward-530 rate maximizing) optimal bound levels (unity values on the abscissa), and 531 continue to bound levels well above this optimum. Different colors correspond to 532 different assumptions about the cost for accumulating evidence over time. The 533 optimal bound levels (unity values on the abscissa) that maximize the reward 534 rate depend on these costs, and thus differ between the three curves. The 535 empirical bound level estimates for individual subjects do not lie on the straight 536 line that is defined by the simultaneous, linear change of all optimal bounds. To 537 evaluate where these empirical bounds lie with respect to the optimal bounds, 538 we found the closest point (along contours of equal reward rate) on this line for 539 the empirical bounds. These points are shown for subject A for different costs by 540 the filled circles. (b) The closest points are illustrated for all subjects, for 541 different accumulation costs. As can be seen, for any assumption for this cost, the 542 subjects’ bounds are well below the optimal settings. 543  544 
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