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Abstract Despite extensive research on the role of the rodent medial and lateral entorhinal cortex

(MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain

elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel

data-driven and model-based analyses to identify corresponding subregions in humans based on the

well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial

information. We provide evidence for a functional division primarily along the anteroposterior axis.

Localising the human homologue of the rodent MEC and LEC has important implications for

translating studies on the hippocampo-entorhinal memory system from rodents to humans.

DOI: 10.7554/eLife.06738.001

Introduction
The entorhinal cortex (EC)—defining the interface between the hippocampus and the neocortex

(Munoz and Insausti, 2005)—plays a pivotal role in the integration of different sensory inputs

into higher order mnemonic representations (Eichenbaum et al., 2007; Moser and Moser, 2013).

In rodents—and on the basis of cytoarchitectonics—the EC is typically (Kerr et al., 2007; Canto

et al., 2008; Van Strien et al., 2009) subdivided into two major subregions, the medial- and the

lateral entorhinal cortex (MEC and LEC, respectively). The MEC receives inputs about spatial

information from parahippocampal cortex (PHC) and the LEC receives item-related information

from perirhinal cortex (PRC) (Van Strien et al., 2009; Deshmukh and Knierim, 2011; Ranganath

and Ritchey, 2012; Knierim et al., 2013). Similar functional roles of the PHC and PRC have been

described in humans (Epstein and Kanwisher, 1998; Davachi et al., 2003; Eichenbaum et al.,

2007; Ekstrom and Bookheimer, 2007; Litman et al., 2009; Duarte et al., 2011; Staresina et al.,

2011; Martin et al., 2013; Vilberg and Davachi, 2013) and relate to distinct visual processing

streams (Kravitz et al., 2011). The differential input pattern into the rodent LEC and MEC also

dovetails with a cell-type specific functional specialisation (Eichenbaum and Lipton, 2008).

The MEC contains a high proportion of head-direction and grid cells, whose activity is modulated by

running direction and spatial location, respectively (Hafting et al., 2005; Sargolini et al., 2006).

In contrast, cells in the LEC respond to individual objects in the environment rather than to specific

locations (Deshmukh and Knierim, 2011; Tsao et al., 2013; Knierim et al., 2013).

Despite a wealth of data and marked differences in structure and function of the rodent MEC

and LEC evidence for their human homologue remains elusive. This hampers translational studies,

which is particularly relevant in the case of Alzheimer’s disease (AD) with AD pathology starting in

the EC (Braak and Braak, 1992). Within the EC, the vulnerability to AD-related pathology is not

homogeneously distributed and differs between medial and lateral strips in humans, which has

been related to similar findings in the rodent MEC and LEC, respectively (Khan et al., 2014).
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et al. This article is distributed

under the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.
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However, the localization of the human homologue of the rodent MEC and LEC remains unclear.

A source of considerable confusion is the fact that ‘MEC’ and ‘LEC’ are referring to cytoarchitectonically

defined areas and not to anatomical locations. Hence, they do not circumscribe strips of medial and

lateral EC. Rather, the MEC is located medially in the septal (posterior) part of the EC and the LEC is

located laterally in the temporal (anterior) part of the EC in rodents (Van Strien et al., 2009).

Furthermore, tracing studies on PHC and PRC pathways in non-human primates suggest a dominant

anterior-posterior division (Suzuki and Amaral, 1994; Insausti and Amaral, 2008), as do single-unit

recordings that show activity consistent with the rodent LEC in the anterior EC in primates (Killian

et al., 2012). In contrast, neuroimaging studies on memory in healthy participants (Schultz et al.,

2012; Reagh and Yassa, 2014) and participants with preclinical AD (Khan et al., 2014) suggest that

the rodent MEC and LEC map on medial and lateral strips of EC in humans.

To resolve this discrepancy in the literature, one needs to investigate the relatively small EC

(25–30 mm2 in humans) (Krimer et al., 1997) with high anatomical precision. An earlier study

investigated entorhinal connectivity with high-resolution functional magnetic resonance imaging

(fMRI), but averaged signal changes over the entire region (Lacy and Stark, 2012). To achieve

higher resolution imaging, here we leveraged high-field, sub-millimetre fMRI at 7 T and sought to

identify the human homologue of the rodent MEC and LEC by informing our analysis by well-known

functional and structural properties of the EC. Specifically, it has been shown that MEC and LEC

eLife digest In the early 1950s, an American named Henry Molaison underwent an experimental

type of brain surgery to treat his severe epilepsy. The surgeon removed a region of the brain known

as the temporal lobe from both sides of his brain. After the surgery, Molaison’s epilepsy was greatly

improved, but he was also left with a profound amnesia, unable to form new memories of recent

events.

Subsequent experiments, including many with Molaison himself as a subject, have attempted to

identify the roles of the various structures within the temporal lobes. The hippocampus—which is

involved in memory and spatial navigation—has received the most attention, but in recent years

a region called the entorhinal cortex has also come to the fore. Known as the gateway to the

hippocampus, the entorhinal cortex relays sensory information from the outer cortex of the brain to

the hippocampus.

In rats and mice the entorhinal cortex can be divided into two subregions that have distinct

connections to other parts of the temporal lobe and to the rest of the brain. These are the medial

entorhinal cortex, which is the subregion nearest the centre of the brain, and the lateral entorhinal

cortex, which is to the left or right of the centre.

For many years researchers had assumed that human entorhinal subregions were located simply

to the center or to the sides of the brain. However, it was difficult to check this as the entorhinal

cortex measures less than 1 cm across, which placed it beyond the reach of most brain-imaging

techniques. Now, two independent groups of researchers have used a technique called functional

magnetic resonance imaging to show a different picture. The fMRI data—which were collected in

a magnetic field of 7 Tesla, rather than the 1.5 Tesla used in previous experiments—reveal that the

entorhinal cortex is predominantly divided from front-to-back in humans.

One of the groups—Navarro Schröder, Haak et al.—used three different sets of functional MRI

data to show that the human entorhinal cortex has anterior-lateral and posterior-medial subregions.

In one of these experiments, functional MRI was used to measure activity across the whole brain as

subjects performed a virtual reality task: this task included some components that involved spatial

navigation and other components that did not. The other group—Maass, Berron et al.—used the

imaging data to show that the pattern of connections between the anterior-lateral subregion and the

hippocampus was different to that between the posterior-medial subregion and the hippocampus.

The discovery of these networks in the temporal lobe in humans will help to bridge the gap

between studies of memory in rodents and in humans. Given that the lateral entorhinal cortex is one

of the first regions to be affected in Alzheimer’s disease, identifying the specific properties and roles

of these networks could also provide insights into disease mechanisms.

DOI: 10.7554/eLife.06738.002
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exhibit differential connectivity with cortical regions (Witter and Groenewegen, 1989; Kerr et al., 2007;

Van Strien et al., 2009). The differential fingerprints of anatomical connectivity should lead to differences

in functional connectivity identifiable with fMRI (Johansen-Berg et al., 2004; Buckner et al., 2013;

Wang et al., 2014). To test patterns of functional connectivity, we measured whole-brain activity while

participants performed a virtual reality task with spatial and non-spatial components and validated the

results in publicly available resting-state data from the WU-Minn Human Connectome Project (Van

Essen et al., 2013; Smith et al., 2013) (HCP—www.humanconnectome.org). In addition, differential

sensitivity to spatial and non-spatial stimuli could provide converging evidence to identify the human

homologue of the rodent MEC and LEC, which we tested in a third, independent dataset. A

complementary approach to the global network perspective presented here is given by Maass et al.

(Maass et al., 2015) who scrutinized the fine-grained connectivity pattern of medial temporal lobe

regions with the EC.

Results
A recent model on cortical memory networks (Ranganath and Ritchey, 2012) posits that an

anterior-temporal (AT) system converges on the PRC and a posterior-medial (PM) system on the

PHC. Based on studies in rodents, the two networks are hypothesised to connect to either the LEC

or the MEC, respectively (Witter and Groenewegen, 1989; Kerr et al., 2007; Van Strien et al., 2009).

Studies in non-human primates predict that the entorhinal projections of the two systems show a strong

anteroposterior division (Suzuki and Amaral, 1994). In order to test this prediction and to elucidate the

role of the EC, we first applied a model-based approach on fMRI data acquired while participants were

performing a virtual-reality navigation task to directly mimic studies in rodents (see ‘Materials and

methods’ for details). This task targeted all entorhinal systems, because it involved both navigation-

related spatial components and processing of non-spatial stimuli.

We created spherical regions-of-interest (ROIs) with 4 mm radius around coordinates pertaining

to either of the networks (Libby et al., 2012; Ranganath and Ritchey, 2012) (see Table 1), as well

as ROIs for both the medial and lateral half, and anterior and posterior half of the EC to ensure

comparable number of voxels per parcel and therefore comparable signal-to-noise ratio (SNR)

properties. Then we computed seed-based connectivity from the two neocortical networks to either

sets of EC ROIs, see Figure 1. We found a main effect of network on entorhinal connectivity (repeated-

measures ANOVA: F(1,21) = 10.0, p = 0.005). Post-hoc t-tests revealed that the lateral parts of EC

connected stronger to the AT compared to the PM network (T(21) = 2.6, p = 0.015; medial parts of EC:

T(21) = −0.2 p = 0.83). However, in contrast to previous suggestions, we additionally observed

a connectivity difference along the anteroposterior axis (repeated-measures ANOVA: main effect of

network, F(1,21) = 13.2, p = 0.001) and post-hoc t-tests showed that the anterior parts of EC connected

more with the AT compared to the PM network (T(21) = 2.7: p = 0.01; posterior EC: T(21) = −0.49,
p = 0.63).

In a second step, we wanted to overcome potential limitations of the seed-based analysis.

For example, the selected volume and location of neocortical seed regions could introduce

biases (e.g., spatial proximity of the seeds) and imperfect normalisation procedures could affect

the results particularly in the frontal lobes where projections from both the rodent LEC and MEC

are neighbouring (Kerr et al., 2007). In addition, manual subdivision of the EC along cardinal

axes likely misrepresents cytoarchitectonic boundaries. Therefore, we adopted a complementary

approach to trace the dominant modes of functional connectivity change within the EC in a fully

data-driven manner (Haak et al., 2014) (see ‘Materials and methods’). In brief, for every voxel in

the EC, we determined its functional connectivity fingerprint with respect to the rest of cortex

and used these fingerprints to compute the pair-wise similarities among all voxels within the ROI.

The ensuing (voxels-by-voxels) similarity matrix was then fed to the Laplacian Eigenmaps (LE)

algorithm (Belkin and Niyogi, 2003), which has previously also been successfully applied to trace

changes in white-matter tractography (Johansen-Berg et al., 2004; Cerliani et al., 2012) and

resting-state fMRI connectivity (Haak et al., 2014). The LE algorithm projects the high-dimensional,

voxel-wise connectivity data onto a series of one-dimensional vectors, with the requirement that the

similarities among the connectivity fingerprints are maximally preserved (in the vein of e.g.,

multidimensional scaling). These vectors represent multiple, spatially overlapping maps (as revealed

by colour-coding the EC voxels according to the vectors’ values) and are sorted according to how

well they preserve the similarities among the original, high-dimensional connectivity fingerprints.
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Thus, the first vector represents the dominant mode of connectivity change in the EC, the second

represents the second-dominant mode, and so on.

Applied to the fMRI data acquired while subjects performed the virtual-reality task, we observed

that the dominant mode of functional connectivity change extended along the long-axis of the EC,

approximately from the posterior to the anterior end (Figure 2 and Figure 2—figure supplement 1),

while the orientation of the second was largely perpendicular (Figure 3 and Figure 3—figure

supplement 1). Both modes of connectivity change could also be reliably detected using an

independent resting-state fMRI dataset (60 subjects of the WU-Minn Human Connectome Project; see

‘Materials and methods’), suggesting that the organization of EC functional connectivity is largely

task-independent (Figure 4). Both the first and second-dominant modes of functional connectivity

change were highly reproducible across resting-state sessions (Pearson’s R = 0.99, p < 0.001 and

Pearson’s R = 0.98, p < 0.001, for the dominant and second-dominant modes, respectively).

Furthermore, in order to identify the potential human homologues of the rodent LEC and MEC,

we clustered the vectors representing the dominant and second-dominant modes of functional

connectivity change (separately) through a median-split approach (see ‘Materials and methods’).

Hence, each cluster comprises 50% of voxels in the EC. 3D-rendering of the two clusters derived from the

dominant mode of connectivity change revealed a consistent topology across hemispheres (Figure 2B,

Video 1). One division contained the posterior EC (Figure 2—figure supplement 1—displayed in blue).

The other division included most of the anterior EC (Figure 2—figure supplement 1—displayed in red).

In addition to the dominant anterior-posterior distinction, the posterior cluster was located more

Table 1. Selection of regions associated with the posterior-medial (PM) and the anterior-temporal (AT)

system (Libby et al., 2012).The coordinates of the PM system reflect peak voxel coordinates of a seed-

based connectivity contrast of right parahippocampal cortex > right perirhinal cortex connectivity

reported by Libby et al. (Libby et al., 2012). The coordinates of the AT system reflect peak voxel

coordinates of a seed-based connectivity contrast of right perirhinal cortex > right parahippocampal

cortex connectivity. Coordinates are in MNI space.

Left hemisphere Left hemisphere

x y z x y z

PM System

Medial posterior occipital cortex (BA 18) – – – 14 −72 8

Occipital pole (BA 17) −16 −96 22 – – –

Parahippocampal cortex −12 −42 −8 22 −32 −8

Posterior cingulate cortex (BA 29) −4 −46 4 10 −44 10

Posterior hippocampus −20 −30 −2 18 −36 0

Posterior thalamus −20 −34 0 22 −30 6

Retrosplenial cortex (BA 30) −16 −52 −4 22 −46 0

AT System

Dorsolateral prefrontal cortex (BA 9) −24 60 24 18 58 24

Dorsomedial prefrontal cortex (BA 8) −2 −60 34 – – –

Frontal polar cortex (BA 10) – – – 40 60 −2

Lateral precentral gyrus (BA 6) – – – 54 4 10

Medial prefrontal cortex (BA 8) −2 −60 34 – – –

Orbitofrontal cortex (BA 11/47) −6 16 −22 8 22 −20

Postcentral gyrus (BA 4) – – – 62 −10 16

Posterior superior temporal gyrus (BA 22) −62 −34 14 – – –

Rostrolateral prefrontal cortex (BA 10) – – – 38 60 −12

Temporal polar cortex (BA 38) – – – 34 22 −36

Ventrolateral prefrontal cortex
(BA 44/45)

−56 6 18 – – –

DOI: 10.7554/eLife.06738.003
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medially (and to some extent more dorsally) and the anterior cluster was located more laterally

(and to some extent more ventrally). Hereafter, we refer to the clusters as posterior-medial EC

(‘pmEC’) and anterior-lateral EC (‘alEC’), respectively, consistent with Maass et al. (Maass et al.,

2015). Clusters derived from the second-dominant mode were less consistent across hemi-

spheres, but showed an approximately orthogonal orientation relative to the first (Figure 3 and

Figure 3—figure supplement 1).

Figure 1. Subdivisions of entorhinal cortex (EC) and connectivity to anterior-temporal (AT) and posterior-medial

(PM) cortical networks. (A) Schematic of the AT and PM system. Spherical regions-of-interest (ROIs) were centred on

MNI coordinates associated with either of the two systems (Libby et al., 2012), normalised to the group-specific

template of the navigation study and then masked to include only gray matter voxels. The AT system included

medial-prefrontal and orbitofrontal regions, whereas the PM system included occipital and posterior-parietal

regions, see Table 1 for all selected regions. (B) Right parasagittal slice showing voxel-wise seed-based connectivity

of the PM system restricted to the EC. Note the PM peak. (C) Right parasagittal slice showing voxel-wise seed-based

connectivity of the AT system restricted to the EC. Note a peak in the anterior-lateral EC. (D) ROI-based connectivity

estimates. Left panel: Connectivity strength (partial correlation coefficient) of anterior (left) and posterior EC (right) is

plotted separately for the AT system (red) and the PM system (blue). The systems differ in their entorhinal

connectivity: the anterior EC connects stronger to the AT compared to the PM network. Right panel: Connectivity

strength with lateral (left) and posterior EC (right) is plotted separately for the AT system (red) and the PM system

(blue). Lateral EC connected stronger to the AT compared to the PM network. Error bars show S.E.M. over subjects.

See Figure 1—figure supplement 1 for additional slices.

DOI: 10.7554/eLife.06738.004

The following figure supplement is available for figure 1:

Figure supplement 1. Results of the model-based connectivity analyses (additional slices).

DOI: 10.7554/eLife.06738.005
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Figure 2. Dominant mode of functional connectivity change within EC and sensitivity to spatial and non-spatial

information. (A) Dominant mode of functional connectivity change at the group-level (Spearman’s R = 0.53).

Similar colours indicate similar connectivity with the rest of the brain. (B) 3D rendering of the two

clusters derived from the dominant mode of functional connectivity change (displayed in red and blue)

and the outlines of the group-specific template. Upper panel: right side view. Lower panel: top view

(see Figure 2—figure supplement 1 for coronal views of the two clusters). (C) Upper panel: Map shows

results of a non-parametric randomisation test of the spatial and non-spatial stimulation experiment restricted

to the EC for display purposes (see Figure 2—figure supplement 2 for whole-brain maps). The ‘scenes >
objects’ contrast is displayed in blue to light-blue, the ‘scenes < objects’ contrast in red to yellow. Note that

voxels in pmEC are sensitive to scenes, whereas voxels in alEC are sensitive to objects. Lower panel:

The clusters from panel B exhibit antagonistic responses to spatial and non-spatial stimuli. Beta estimates

for the contrast ‘scenes > objects’ (averaged across participants) are shown for clusters A and B. T(20) = 4.9,

p = 0.0001. Error bars show S.E.M. over participants. (D) Whole-volume functional connectivity with

clusters A and B. Regions connecting more with cluster A (p < 0.05, FWE corrected), such as occipital and

Figure 2. continued on next page
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If the two clusters (i.e., EC halves) derived from the dominant mode of functional connectivity

change correspond to the homologues of the rodent LEC and MEC, their whole-brain connectivity

profiles should correspond to the known connectivity profiles in rodents and resemble the AT and PM

system proposed by Ranganath and Ritchey (Ranganath and Ritchey, 2012). To test this hypothesis,

we computed whole-volume connectivity maps of the two clusters. Group-level contrasts showed

peaks in the medial-prefrontal and orbitofrontal cortex for the alEC, regions associated with the AT

system. In contrast, occipital and posterior-parietal cortex was dominated by connectivity with the

pmEC, areas associated with the PM system (Ranganath and Ritchey, 2012). In addition, the pmEC

showed increased connectivity with frontal regions (see Figure 2D). These findings are in line with the

patterns of reciprocal connections of the rodent LEC and MEC, respectively (Kerr et al., 2007).

Notably, this was not the case for the connectivity maps of the two clusters derived from the second-

dominant mode of connectivity change (Figure 3D) that were widely dominated by only one of the

clusters.

Furthermore, we examined both spatial and temporal SNR (tSNR) of the alEC and the pmEC

(Figure 2—figure supplement 3). tSNR did not differ between alEC and pmEC (T(21) = 0.2, p = 0.83)

but spatial SNR did (T(21) = 9.7, p < 0.001). This was associated with higher signal in the pmEC

compared to the alEC (mean signal: alEC = 4.97; mean signal pmEC = 7.76; T(21) = 38, p < 0.001) in

the absence of differences in spatial standard deviation (T(21) = 1.5, p = 0.144). Note, that mean signal

was subtracted from time-series prior to all connectivity analyses (see ‘Materials and methods’), which

makes it unlikely that signal intensity differences affected the connectivity results.

We used an independent component analysis (ICA)-based method for data cleaning (see ‘Materials

and methods’) that has been shown to efficiently remove residual effects of head motion. However, we

additionally repeated the data-driven connectivity analysis after excluding time periods with large

head movements (motion scrubbing [Power et al., 2012, 2015]). Motion scrubbing had only

minimal effects on the results. Pearson correlation coefficients of the pre- and post scrubbing results

were close to 1 and highly significant (gradient one: left R = 0.9964, right R = 0.9958; gradient two:

left = 0.9348, right = 0.8816; all p values <0.001).
We also tested if the alEC and pmEC exhibited stronger connectivity with their potential homologue

region in the contralateral hemisphere compared to each other. Here we observed that homologous

connectivity indeed exceeded non-homologous connectivity (Figure 2—figure supplement 4).

Importantly, this was also the case if non-homologous connectivity was assessed within the same

hemisphere, between adjacent parts of the EC (T(21) = 4.05, p = 0.0006).

Finally, studies on rodent electrophysiology (Deshmukh and Knierim, 2011; Knierim et al., 2013)

predict that the LEC and its human homologue should respond preferentially to non-spatial stimuli,

whereas the MEC and its human homologue should be involved in processing spatial information.

We tested this prediction by conducting a second fMRI study at 7 T in which an independent group of

participants was presented with spatial (pictures of scenes) and non-spatial stimuli (pictures of objects),

see ‘Materials and methods’ for details. We contrasted fMRI responses to spatial and non-spatial stimuli.

Here, we observed higher responses to spatial than non-spatial stimuli in the posterior EC, while

the inverse contrast (objects vs scenes) showed higher responses in the anterior EC (Figure 2C).

Figure 2. Continued

posterior-parietal cortex that form part of the PM system are shown in blue. Regions connecting more with

cluster B (p < 0.05, FWE corrected), such as medial-prefrontal and orbitofrontal cortex which form part of the

AT system are displayed in red.

DOI: 10.7554/eLife.06738.006

The following figure supplements are available for figure 2:

Figure supplement 1. Coronal views of the two clusters.

DOI: 10.7554/eLife.06738.007

Figure supplement 2. Whole-brain modulation by spatial and non-spatial stimuli.

DOI: 10.7554/eLife.06738.008

Figure supplement 3. Signal-to-noise ratios (SNRs) in the alEC and pmEC.

DOI: 10.7554/eLife.06738.009

Figure supplement 4. Homologous and non-homologous connectivity of the alEC and the pmEC.

DOI: 10.7554/eLife.06738.010
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Figure 3. Second-dominant mode of functional connectivity change within EC and sensitivity to spatial and

non-spatial information. (A) Second-dominant mode of functional connectivity change at the group-level

(Spearman’s R = 0.28). Similar colours indicate similar connectivity with the rest of the brain. (B) 3D rendering of

the two clusters derived from the second-dominant mode of functional connectivity change (displayed in red

and blue) and the outlines of the group-specific template. Upper panel: right side view. Lower panel: top view

(see Figure 3—figure supplement 1 for coronal views of the two clusters). (C) The clusters shown in panel B exhibit

no antagonistic responses to spatial and non-spatial stimuli. Beta estimates for the contrast ‘scenes > objects’

(averaged across participants) are shown for cluster A and B (T(20) = −0.26, p = 0.8). Error bars show S.E.M. over

participants. (D) Regions connecting more with cluster A (p < 0.05, FWE corrected) are shown in blue. Regions

connecting more with cluster B (p < 0.05, FWE corrected) are shown in red. Cluster A connected more with most of

the neocortex.

DOI: 10.7554/eLife.06738.011

The following figure supplement is available for figure 3:

Figure supplement 1. Coronal views of the two clusters.

DOI: 10.7554/eLife.06738.012
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ROI analyses using the clusters derived from the dominant mode of connectivity change revealed that

the anterior-lateral cluster showed higher sensitivity to non-spatial stimuli compared to the PM cluster

(T(20) = 4.9, p = 0.0001, Figure 2C). This dissociation was not present for the clusters that were derived

from the second-dominant mode of connectivity change within the EC (T(20) = −0.26, p = 0.8;

Figure 3C).

In sum, our results suggest that the human homologue of the rodent MEC maps predominantly on

the human posterior parts of the EC, while the homologue of the rodent LEC maps predominantly on

the anterior parts of the EC.

Discussion
The EC, in concert with the hippocampus, plays a crucial role in memory and learning (Eichenbaum

et al., 2007) and is the core of the brain’s navigational system (Moser and Moser, 2013). While the

Figure 4. Dominant and second-dominant modes of functional connectivity change on the basis of resting-state

functional magnetic resonance imaging. Results of analysis of the first 60 participants of the WU-Minn Human

Connectome Project (HCP), acquired on two different days (Smith et al., 2013). Top row: day one. Bottom row: day

two. (A, C) The dominant mode of functional connectivity change follows an anteroposterior trajectory. (B, D). The

second-dominant mode of functional connectivity change follows a mediolateral trajectory. Both modes were highly

reproducible across different scanning days (dominant mode: Pearson’s R = 0.99 p < 0.001, second-dominant mode:

R = 0.98; p < 0.001). Topology preservation—dominant mode, day one: Spearman’s R = 0.62; day two: R = 0.61;

second-dominant mode, day one: R = 0.44; day two: R = 0.46.

DOI: 10.7554/eLife.06738.013
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shape and location of the EC differs between

rodents and primates (Witter and Groenewegen,

1989), the anatomical organisation and con-

nectivity patterns are largely conserved across

species (Canto et al., 2008). However, trans-

lational studies on EC subregions faced the

problem of identifying homologous regions

across species. For example, recent neuroimag-

ing studies on mnemonic processing (Schultz

et al., 2012; Reagh and Yassa, 2014) and

Alzheimer’s pathology (Khan et al., 2014) di-

rectly related medial and lateral strips of EC in

humans to the rodent MEC and LEC. However,

the anatomical locations of these cytoarchitec-

tonically defined regions in rodents differ along

more than only the mediolateral axis. More

specifically, the LEC is situated more anterior-

ventrally, whereas the MEC is situated more posterior-dorsally in rodents (Van Strien et al., 2009).

Therefore, it is unlikely that medial and lateral strips of EC in humans correspond to the rodent MEC

and LEC, respectively. Furthermore, in primates the characteristic projections from the PRC and PHC

strongly map onto the anteroposterior axis (Suzuki and Amaral, 1994). Here, we leveraged the

distinct connectivity fingerprints and functional roles (such as complementary computation of scene

and object information) of the rodent LEC and MEC to find their human homologues with fMRI with

three complementary methods and three independent datasets. Both model-based and data-driven

connectivity analyses, as well as sensitivity to non-spatial vs spatial stimuli provide evidence for an

anterior-lateral and a PM localisation of the homologues of the rodent LEC and MEC, respectively.

Maass et al confirmed these findings in a study with two high-resolution, high-field fMRI datasets by

focusing on local connectivity between regions of the medial temporal lobes. They found preferential

connectivity of PRC and proximal subiculum to anterior-lateral parts of the EC, whereas posterior-

medial parts of the EC were more connected to PHC and distal subiculum. This corresponds well with

our findings (Figure 2—figure supplement 1). In line with the present study, Maass et al (Maass

et al., 2015) report local connectivity fingerprints of the human anterior-lateral and posterior-medial

EC that mimicked those of the rodent LEC and MEC, respectively.

In addition to the change in functional connectivity from PM to anterior-lateral, our data-driven

connectivity analysis also revealed a second organisation structure approximately perpendicular to

the first (Figure 3—figure supplement 1), which might reflect bands of intra-entorhinal projections

that are known to cross the LEC/MEC boundary in a roughly orthogonal orientation in rodents

(Canto et al., 2008) and in primates (Chrobak and Amaral, 2007).

The selective sensitivity to spatial and non-spatial information, or ‘context vs content’ more broadly

(Knierim et al., 2013), points towards fundamental difference in computations of the LEC and MEC.

How to characterise those differences most accurately remains an open question (Knierim et al., 2013),

but our results can help to inform future studies on the role of the human alEC and pmEC in higher-level

cognition.

Notably, the present findings confirm three out of four complementary criteria for the

definition of cortical areas that have traditionally been advocated (Van Essen, 1985), namely

topographic organization, connectivity and functional properties (the fourth one being cyto- and

myeloarchitectonic organization).

Previous neuroimaging studies in humans reported differences between medial and lateral aspects

of EC that mimicked differences between the rodent MEC and LEC and assumed that both subregions

are present on coronal slices of the EC (Schultz et al., 2012; Khan et al., 2014; Reagh and

Yassa, 2014), that is, that the MEC and LEC correspond to medial and lateral strips of the EC.

In light of our findings, these reports could be explained by a partial overlap of the medial and lateral

divisions with the pmEC and the alEC, respectively. For example, we noticed a mediolateral difference

of responses to spatial and non-spatial stimuli on some coronal slices (Figure 2—figure supplement 2B).

However, our results suggest that coronal slices through the most posterior EC exclusively harbour the

human homologue of the rodent MEC. Similarly, anterior slices appear to contain mostly the homologue

Video 1. 3D rendering of the two clusters derived

using the dominant mode of functional connectivity

change. Cluster A is shown in red and cluster B in blue.

DOI: 10.7554/eLife.06738.014
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of the rodent LEC. Hence, improved mapping of homologous regions between rodents and humans

should lead to increased effect sizes and more accurate interpretations.

In summary, the present findings can help to inform future translational research on the role of

entorhinal subregions in fields ranging from clinical neuroscience, such as on the early progression of

Alzheimer’s disease, to cognitive neuroscience, for example, nature and mechanisms of different forms of

memory and their integration into higher order representations (Eichenbaum and Lipton, 2008).

Materials and methods

Participants

Navigation experiment
26 participants took part in the study (11 females, age 19–36, mean 23 years). 22 entered the analysis

and 4 were excluded due to excessive movement (number of instantaneous movements [Power et al.,

2012] > 0.5 mm exceeded the mean plus 1 standard deviation). Materials and methods were

approved by the local research ethics committee (CMO University Duisburg-Essen, Germany and

CMO region Arnhem-Nijmegen, NL). Written informed consent was obtained from each participant

for data analysis and publication of the study results.

Resting-state dataset
The resting-state dataset consisted of the first 60 participants (41 females, age ranges: 4 between

22 and 25 years, 23 between 26 and 30 years and 33 between 31 and 35 years) of the WU-Minn

Human Connectome Project (HCP) (Van Essen et al., 2013). The experiments were performed in

accordance with relevant guidelines and regulations and all experimental protocol was approved by

the Institutional Review Board (IRB) (IRB # 201204036; Title: ‘Mapping the Human Connectome:

Structure, Function, and Heritability’). Written informed consent was obtained from each participant

for data analysis and publication of the study results.

Spatial and non-spatial stimulation
21 participants (13 females, age 20–54, mean age 26 years) participated in the experiment. None of

the participants participated in more than one experiment. Materials and methods were approved

by the local research ethics committee (CMO University Duisburg-Essen, Germany and CMO region

Arnhem-Nijmegen, NL). Written informed consent was obtained from each participant for data analysis

and publication of the study results.

FMRI acquisition

Navigation experiment
Blood-oxygenation-level-dependent T2*-weighted functional images were acquired on a 7 T Siemens

MAGNETOM scanner (Siemens Healthcare, Erlangen, Germany) using a three dimensional echo-

planar imaging (3D EPI) pulse sequence (Poser et al., 2010) on a 32-channel surface coil: TR =
2.7 s, TE = 20 ms, flip angle = 14˚, slice thickness = 0.92 mm, slice oversampling = 8.3%, in-plane

resolution = 0.9^2 mm, field of view (FoV) = 210 mm in each direction, 96 slices, phase encoding

acceleration factor = 4, 3D acceleration factor = 2. The first five volumes of the main scan were

discarded to allow for T1 equilibration. A field map using a gradient echo sequence was recorded for

distortion correction of the acquired EPI images.

Resting-state dataset
Participants underwent four resting-state scanning sessions recorded on two days, each comprising

15 min multi-band accelerated (TR = 0.72 s) fMRI. The two scans from each day were concatenated

into scans of 30 min. Each day one scan had a left-right phase encoding direction and the other a

right-left phase encoding direction and concatenating the two scans allowed for correcting the

ensuing opposing field inhomogeneities. Whole-brain images were acquired at 2 mm isotropic

resolution and all data are publicly available. For details see Van Essen et al (Van Essen et al., 2013;

Smith et al., 2013).

Spatial and non-spatial stimulation
The same 7 T Siemens MAGNETOM scanner was used as for the navigation experiment.

Procedures and acquisition parameters were the same unless described otherwise. TR = 2.1 s, TE = 25 ms,
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flip angle = 13˚, slice oversampling = 10%, in-plane resolution = 1.5^2 mm, FoV = 224 mm in each

direction, 80 slices, Phase Encoding acceleration factor = 3, 3D acceleration factor = 2. To allow for T1

equilibration, three (N = 11) or seven (N = 5) dummy volumes were discarded before the main scan.

Experimental tasks

Navigation experiment
Participants performed an object-location memory task while freely navigating a 3D, virtual environment

task adapted from Doeller et al. (Doeller et al, 2008;Doeller et al., 2010) (Figure 5A). In this self-paced

task participants collected and replaced six everyday objects within a virtual arena. They collected each

object from its associated location once during an initial trial, by running over it. In each subsequent trial

they saw an image (cue) of one of the objects in the upper part of the screen and had to move to the

object’s associated location and press a button (replace phase). After this response, the object

appeared in its associated position and participants collected it again (feedback phase). After an

average of 3 trials (range 2–4 trials), a fixation cross on a grey background was presented for 4 s

(inter-trial-interval, ITI). Next to the spatial aspects of the navigation task, non-spatial task components

were present approximately half of the time. Therefore, the task engaged functions associated with

both the PM and the AT network, respectively. Each scanning session was subdivided into EPI

acquisition blocks of 210 volumes. Participants underwent an average of 5 blocks (±1). Task-related
effects from the navigation experiment are subject of another report.

Spatial and non-spatial stimulation
Participants were presented with pictures of spatial and non-spatial stimuli (see Figure 5B) and gave a

trial-by-trial animacy judgement. Images of objects (non-spatial) and 12 images of scenes (spatial)—as

well as 24 images of two categories of animate stimuli not considered in the analyses—were resized to

400 × 400 pixels and shown in grey shading and matched on their low-level features (luminance,

contrast and spatial frequency) through the use of the SHINE toolbox (Spectrum, Histogram and

Intensity Normalization and Equalization [Willenbockel et al., 2010]). Single stimuli were presented

for 2 s followed by an ITI of variable duration (mean 5 s, range 1.5–10 s). The scanning sessions were

subdivided into two runs of four blocks each, with a duration of approximately 27 min in duration

per run.

Data pre-processing

Navigation experiment
Data pre-processing was implemented through the use of the automatic analysis library (Cusack et al.,

2015) (http://automaticanalysis.org/). Pre-processing included motion correction in SPM8 (http://www.

fil.ion.ucl.ac.uk/spm), data de-noising with the FIX artifact removal procedure implemented in FSL 5.0.4

(http://fsl.fmrib.ox.ac.uk/fsl/) that has been trained manually on 10 of the 22 participants and nonlinear

normalisation to a group-specific EPI template with the Advanced Neuroimaging Toolbox (Avants

Figure 5. Cognitive tasks. (A) Navigation experiment. First person view of the virtual arena that participants

navigated freely to perform the object-location memory task. (B) Spatial and non-spatial stimulation. Left: An

example stimulus of a ‘non-spatial’ object. Right: An example stimulus of a ‘spatial’ scene.

DOI: 10.7554/eLife.06738.015
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et al., 2011) (ANTS; http://www.picsl.upenn.edu/ANTS/). The use of a group-specific EPI template was

feasible because of the anatomical detail provided by the sub-millimetre images. In addition, this

rendered the registration to structural images unnecessary, which poses an additional source of noise

because of regional differences in distortion of the 7 Tesla EPIs. The functional data were smoothed with

a full-width at half-maximum (FWHM) Gaussian kernel of 2.5 mm3 (roughly 2.5 times the voxel size) to

increase the SNR and improve ICA-based data de-noising with the FIX procedure (see above) while

maintaining high spatial resolution for connectivity analyses. Correction for residual motion artefacts was

performed with an ICA-based method, which has been shown to outperform motion scrubbing and

spike-regression methods both in terms of reproducibility of resting-state networks and conservation of

temporal degrees of freedom (Pruim et al., 2015a; Pruim et al., 2015b). In addition, brain extraction,

tissue segmentation and high-pass filtering with a 128-s cut-off were carried out with FSL.

Resting-state dataset
The publicly available data were pre-processed as described in Smith et al. (2013), which included

correction for spatial distortions and head motion, registration to the T1 weighted structural image,

resampling to 2 mm Montreal Neurological Institute (MNI) space, global intensity normalization, high-

pass filtering with a cut-off at 2000s, and the FIX artefact removal procedure. Additionally, we smoothed

the images with a 6 mm3 FWHM kernel and converted the time-series of each voxel to percent signal

change by subtracting and dividing by their mean amplitude value over time.

Spatial and non-spatial stimulation
The same pre-processing procedure was used as for the navigation experiment, unless described

otherwise below. Since the voxel size was larger and only univariate analyses were conducted, we did

not perform data de-noising with the FIX procedure. The functional data were smoothed with a FWHM

kernel of 5 mm3 (roughly 2.5 times the voxel size) to increase the SNR.

ROI definitions
For the 7 Tesla experiments (navigation experiment and spatial and non-spatial stimulation

experiment), an EC ROI was manually defined with ITK Snap 3.2 (Yushkevich et al., 2006)

(http://www.itksnap.org) on the group-specific high-resolution mean EPI template from the navigation

experiment. Manual segmentation on the group-specific EPI template circumvented registration

problems between structural images and partly distorted functional images. Based on anatomical

landmarks as described by Insausti et al., (1998) and Frankó et al., (2014), the posterior border of

the EC was set to ∼1.5 mm posterior to the gyrus intralimbicus, the anterior border to ∼1.5 mm

posterior to the limen insulae, the lateral border to the midpoint of the medial bank of the collateral

sulcus and the medial border to the hippocampal fissure at the level of the uncus. A medial EC and

a lateral EC ROI of roughly equal volume were created by dividing the main ROI mediolaterally (which

roughly corresponded to a proximo-distal division in relation to the hippocampus) on consecutive

coronal slices along the entire anteroposterior axis. An anterior EC and a posterior EC ROI of roughly

equal volume were created by dividing the main ROI mid-way between the most anterior and the most

posterior coronal slice of the EC.

For the ‘model-based’ analysis, one ROI mask was created for the PM system and another one for

the AT system. For this purpose we placed spheres of 4 mm radius on MNI coordinates associated

with each system by Libby et al., (Libby et al., 2012) (see Table 1 for the selected coordinates). For the

control analysis using the resting-state fMRI data from the Human Connectome Project, a probabilistic

entorhinal ROI was generated using the Freesurfer toolbox (Augustinack et al., 2013). Freesurfer’s

cortical reconstruction algorithm (‘recon-all’) was used on a T1 weighted MNI template image to

generate an ROI mask of the EC with a probability threshold of 90% that was binarized and converted to

NiFTI file format.

Seed-based connectivity analysis
For the quantification of the model-based analyses of connectivity between the AT and PM networks

and the manually segmented medial and lateral or anterior and posterior EC, singular-value

decomposition (SVD) and subtraction of the mean was performed on the voxel-wise time-series

within each ROI. Next, functional connectivity was estimated by means of partial correlation

analysis between the time-series of groups of ROIs. Finally, Pearson’s partial correlation

coefficients were Fisher-Z transformed and used for across-subject comparisons (Figure 1D).
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For the estimation of voxel-wise connectivity maps we used the ‘dual_regression’ function

implemented in FSL 5.0.4 (http://fsl.fmrib.ox.ac.uk/fsl/). This involved using the time-series of

pairs of seed regions as regressors in a GLM to estimate functional connectivity to voxels in a target

region (Figure 1B, Figure 1C and Figure 1—figure supplement 1) or to the rest of the brain

(Figure 2D and Figure 3D). Finally, group-level statistics were computed with non-parametric

randomisation tests (FSL 5.0.4, http://fsl.fmrib.ox.ac.uk/fsl/) and threshold-free cluster enhancement

for null-hypothesis testing and the computation of p-value maps (Figure 2D and Figure 3D). All

connectivity analyses were restricted to gray matter voxels.

Data-driven connectivity analysis
To overcome limitations of the seed-based connectivity analysis, we employed ConGrads

(Haak et al., 2014), which allows for tracing the dominant modes of functional connectivity

change within a pre-specified region of the brain in a fully data-driven manner. First, the fMRI

time series from the EC were rearranged into a time-by-voxels matrix, which was also done for the fMRI

time series of all gray-matter voxels outside the EC. For reasons of stability and computational tractability,

we losslessly reduced the dimensionality of the data outside the EC using SVD. We determined the

connectivity fingerprints of each voxel inside the EC by computing the correlation between the voxel-wise

time series and the SVD-transformed data, and then used the η2 coefficient to quantify the similarities

among the voxel-wise fingerprints (Cohen et al., 2008). Next, we fed the ensuing similarity-matrix to the

LE algorithm (Belkin and Niyogi, 2003), resulting in a series of vectors that represent the dominant

modes of functional connectivity change. The LE algorithm and variants thereof have previously been

successfully applied to trace changes in probabilistic tractography connectivity (Johansen-Berg et al.,

2004; Cerliani et al., 2012), while in the context of resting-state fMRI, ConGrads has been shown to

generate highly reproducible results in regions such as the human motor strip, both across sessions and

participants (Haak et al., 2014). Note that group-level results were obtained by running the LE algorithm

on the average of the individual similarity matrices and that the analysis was performed separately for left

and right hemispheric EC ROIs.

To quantify how well the ensuing modes of connectivity change preserved the order of the

similarities among the original, high-dimensional connectivity fingerprints (topology preservation) we

used Spearman’s rank correlation coefficient. Because the LE algorithm maximizes topology preservation,

we report the correlation coefficients without p-values.

Clustering was performed on the high-resolution data from the navigation experiment by

grouping voxels above and below the median value of each mode of functional connectivity

change, which resulted in two equally sized clusters per mode of connectivity change. For the ROI

analyses on the data of the spatial and non-spatial stimulation experiment, the clusters were

warped into MNI space.

SNR estimation
tSNR was determined by dividing the mean signal within a region by the standard deviation of that

signal over time. Conversely, spatial SNR was determined by dividing the mean signal within a region

by the standard deviation of the signal across voxels. This was done for each time point and spatial

SNR was then averaged over time.

Motion scrubbing
First, we determined time points where instantaneous movement (Power et al., 2012, 2015)

exceeded a threshold of 0.5 mm. Then we excluded these time points (volumes) including the one

preceding and the two thereafter from subsequent analyses. Hence, per instantaneous movement

above threshold, four volumes were removed. On average this resulted in 121 volumes being

removed from participant’s time-series (range: 4–300).

Univariate fMRI analyses
The data from the spatial and non-spatial stimulation experiment were analysed in native

(subject-specific) space with general linear models that included regressors of interest for object

and scene trials. Six movement regressors were included to account for movement-related

noise. The regressors were convolved with the canonical hemodynamic response function and
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fitted to the time-series at each voxel in a whole-brain analysis. Single-subject contrast images

were first normalised to a group-specific template and then to the MNI space. Group-level

statistics were computed with non-parametric randomisation tests (FSL 5.0.4, http://fsl.fmrib.ox.

ac.uk/fsl/) on the contrast images (objects vs scenes and scenes vs objects) using variance

smoothing with a 5 mm3 kernel—to improve the estimation of the variance that feeds into the

final t-statistic.
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