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Abstract Shoot branching is a primary contributor to plant architecture, evolving independently

in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is

largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin.

We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of

epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can

account for branching patterns, and three known and ancient hormonal regulators of sporophytic

branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode

of auxin transport required in branch patterning is a key divergence point from known sporophytic

pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in

flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to

generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest

plasmodesmal connectivity as a potential mechanism for transport.

DOI: 10.7554/eLife.06808.001

Introduction
The radiation of the vascular plants was underpinned by the innovation of a branching growth habit in

the shoots of their last shared common ancestor around 430 million years ago (Langdale and

Harrison, 2008; Edwards et al., 2014). The earliest vascular plants branched by bifurcation, involving

the even partitioning of the growing tip into two new shoot tips (Sussex and Kerk, 2001; Harrison

et al., 2005, 2007; Langdale and Harrison, 2008; Harrison and Langdale, 2010; Ligrone et al., 2012;

Edwards et al., 2014; Tomescu et al., 2014). Subsequent diversification within the seed plants was

underpinned by the evolution of lateral (axillary) branching (Sussex and Kerk, 2001; Langdale and

Harrison, 2008), in which buds initiate in leaf axils but may then become dormant until receiving

environmental or internal cues to promote their activation and growth. Lateral branching thus permits

finely tuned regulation of plant architecture and space filling in response to the environment (Bergamini

and Peintinger, 2002; Domagalska and Leyser, 2011). Whilst branching by bifurcation is prevalent in

non-seed vascular plant sporophytes and many bryophyte gametophytes, a capacity for lateral

branching evolved by convergence in mosses and primed their diversification (Farge-England, 1996).

The mechanisms regulating lateral branching are well studied in flowering plant sporophytes, in

which the initiation of axillary meristems is regulated by a drop in auxin levels and a rise in cytokinin

*For correspondence: cjh97@

cam.ac.uk

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 23

Received: 05 February 2015

Accepted: 10 March 2015

Published: 25 March 2015

Reviewing editor: Christian S

Hardtke, University of Lausanne,

Switzerland

Copyright Coudert et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Coudert et al. eLife 2015;4:e06808. DOI: 10.7554/eLife.06808 1 of 26

http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.06808.001
mailto:cjh97@cam.ac.uk
mailto:cjh97@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.06808


levels as leaves initiate from the apical meristem (Wang et al., 2014a, 2014b). Classical decapitation

experiments showed that the main shoot apex exerts an inhibitory effect over subsequent branch

outgrowth, a phenomenon known as apical dominance. Replacing decapitated apices with lanolin

impregnated with phytohormones showed that auxin can mediate this inhibition, and that its action can

be antagonized by cytokinin application to buds (Thimann and Skoog, 1933; Wickson and Thimann,

1958; Cline, 1991). Strigolactone has recently been identified as a third hormonal regulator of branching,

exerting an inhibitory or stimulatory effect on branch outgrowth depending on the auxin transport status

of the plant (Gomez-Roldan et al., 2008; Umehara et al., 2008; Shinohara et al., 2013).

The mechanism by which the co-ordinated action of auxin, cytokinin and strigolactone regulates

branching is not yet fully clear, but regulated auxin transport plays a key role (Crawford et al., 2010;

Domagalska and Leyser, 2011). Auxin is synthesized in young expanding leaves and is transported

basipetally by several transporters including PIN-FORMED1 (PIN1) polar auxin efflux carriers to

generate the polar auxin transport stream in the stem (Gälweiler et al., 1998; Ljung et al., 2001). The

suppressive action of auxin on lateral branch outgrowth is mediated indirectly (Morris, 1997; Booker

et al., 2003), leading to the hypothesis that a second messenger (for example cytokinin) could act as

an intermediary between auxin and bud activation (Morris, 1997; Booker et al., 2003). However, a

dominant bud need not be apical, and more recent work suggests that buds compete to export auxin

into the main auxin transport stream and that such competition is enhanced by a suppressive action of

strigolactones on PIN1-mediated auxin transport (Crawford et al., 2010; Prusinkiewicz et al., 2010;

Shinohara et al., 2013). Thus, PIN-mediated auxin transport is a key integration point in the

regulation of branching patterns.

Despite the pivotal contribution of branching pattern innovations to the evolution of plant

architecture, the mechanisms underlying the evolution of branching are poorly understood

eLife digest Most land plants have shoots that form branches and plants can regulate when and

where they grow these branches to best exploit their environment. Plants with flowers and the more

ancient mosses both have branching shoots, but these two groups of plants evolved to grow in this

way independently of each other. Most studies on shoot branching have focused on flowering plants

and so it is less clear how branching works in mosses.

Three plant hormones—called auxin, cytokinin and strigolactone—control shoot branching in

flowering plants. Auxin moves down the main shoot of the plant to prevent new branches from

forming. This movement is controlled by the PIN proteins and several other families of proteins. On

the other hand, cytokinin promotes the growth of new branches; and strigolactone can either

promote or inhibit shoot branching depending on how the auxin is travelling around the plant.

Coudert, Palubicki et al. studied shoot branching in a species of moss called Physcomitrella

patens. The experiments show that cells on the outer surface of the main shoot are essentially

reprogrammed to become so-called ‘branch initials’, which will then develop into new branches.

Next, Coudert, Palubicki et al. made a computational model that was able to simulate the pattern of

shoot branching in the moss.

Further experiments supported the predictions made by the model. Coudert, Palubicki et al.

found that, as in flowering plants, auxin from the tip of the main shoot suppresses branching in the

moss, and cytokinin promotes branching. The experiments also showed that strigolactone inhibits

shoot branching, but its role is restricted to the base of the shoots. The model predicts that, unlike in

flowering plants, auxin must flow in both directions in moss shoots to produce the observed patterns

of shoot branching. Also, the experiments suggest that the PIN proteins and another group of

proteins that control the movement of auxin do not regulate shoot branching in moss. Instead, it

appears that auxin may move through microscopic channels that link one moss cell to the next.

Coudert, Palubicki et al.’s findings suggest that both flowering plants and mosses have evolved to

use the same three hormones to control shoot branching, but that these hormones interact in

different ways. One key next step will be to find out how auxin is transported during shoot branching

in moss by manipulating the opening of the channels between the cells. A further challenge will be to

find out the precise details of how the hormones control the activity of the branch initial cells.

DOI: 10.7554/eLife.06808.002
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(Sussex and Kerk, 2001). Auxin transport assays and decapitation experiments used in conjunction

with pharmacological treatments in the lycophyte, Selaginella, suggest that auxin (acting via polar

transport) and cytokinin are conserved regulators of branching in vascular plant sporophytes (Williams,

1937;Wochok and Sussex, 1973, 1975; Sanders and Langdale, 2013). Although bryophyte sporophytes

do not normally branch, there is a detectable basipetal auxin transport stream in mosses (Fujita et al.,

2008). In Physcomitrella, disruption of auxin transport by application of polar transport inhibitors or

perturbations in PIN function can induce a branching form (Fujita et al., 2008; Bennett et al., 2014b) that

closely resembles branching forms in the early fossil record, and such branching forms have also been

reported as rare natural liverwort variants (Bower, 1935). These data suggest that bulk basipetal polar

auxin transport is a conserved regulator of land plant sporophyte development, and point to a potential

contribution of PIN-mediated polar auxin transport to the evolution of sporophytic branching (Fujita et al.,

2008; Bennett et al., 2014b).

The extent of conservation between sporophytic and gametophytic branching mechanisms is

unknown. Classical decapitation experiments revealed apical dominance in mosses and showed that as in

flowering plants, a suppressive role of the apex on lateral branching acts via auxin and can be antagonized

by cytokinin (von Maltzahn, 1959). Whilst Physcomitrella PIN proteins are plasma-membrane targeted

polar auxin transporters with many roles in gametophore development (Bennett et al., 2014a, 2014b;

Viaene et al., 2014), bulk basipetal auxin transport is not detected with radiolabelled auxin transport

assays in moss gametophores (Fujita et al., 2008; Fujita and Hasebe, 2009), suggesting that auxin

transport patterns are not shared between sporophytes and gametophytes. The contribution of cytokinins

to gametophore branching has not been extended beyond the pharmacological approaches mentioned

above (von Maltzahn, 1959), and strigolactone biosynthesis ppccd8mutants have increased branching in

protonemal tissues but no reported gametophore defects (Proust et al., 2011). These data have led to

the hypothesis that distinct developmental mechanisms have been recruited to regulate gametophyte

and sporophyte shoot architecture in evolution (Fujita et al., 2008; Fujita and Hasebe, 2009).

Here, we investigated the hormonal regulation of lateral gametophore branching in the moss

Physcomitrella patens. We present a simple model in which apical auxin sources interact via non-polar

auxin transport with hormonally regulated global and local sensitivities to auxin elsewhere in the moss

gametophore, accurately reproducing observed branching patterns. Our work suggests that three

conserved hormonal cues have been recruited independently in evolution to produce a convergent

branching morphology, but that their co-ordinated action is integrated by different mechanisms to

those in flowering plants.

Results

Branch initials are specified de novo on the gametophore epidermis
To determine the manner of branch initiation in Physcomitrella, we first undertook a morphological and

histological analysis. We found rhizoids initiating in all leaf axils beyond a certain distance from the main

gametophore apex (Figure 1A–D) but branches were present in only a subset of axils

(Figure 1E–P). In contrast to reports from other species that have identified stereotypical and

taxon-specific branch initiation patterns (Berthier et al., 1965; Berthier, 1970), we found no

regular spacing in the pattern of initiation of Physcomitrella branches. We were unable to detect

any evidence of dormancy, suggesting that branch initiation and outgrowth are not distinct

developmental processes (Figure 1A–D). At the earliest stage of branch initiation that we were

able to detect, branches were manifest as a single apical cell surrounded by leaf initials and

adjacent to rhizoids (Figure 1E–H), appearing to differentiate from the epidermis (Figure 1G–H).

At later stages of development, more rhizoids developed at the base of each branch and newly

formed leaves were distinguishable (Figure 1I–L). Well developed lateral branches were

morphologically similar to the main gametophore axis (Figure 1M), and transverse sections cut

at the base of lateral branches showed that each branch persisted as a superficial projection; there

was no continuity between the conducting tissue of the lateral branches and the conducting tissue

of the main stem (Figure 1N–P). We reasoned that the largest branches would have initiated first

and evaluated the sequence of branch initiation by dissecting branches from 6 week old

gametophores, and ranking their size relative to their position (Figure 1Q). These morphological

data suggest that in Physcomitrella branches initiate de novo from the epidermis of the

gametophore axis and that initiation is usually, but not invariably, acropetal.
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Figure 1. Branches initiate from the epidermis or outermost cortical cell layer in Physcomitrella. (A–D) Although all leaf axils contained axillary rhizoids,

branches were absent in most. (A) Light micrograph, (B) scanning electron microscope (SEM) micrograph, (C) transverse histological section and

(D) corresponding line drawing showing a rhizoid (blue) in the axil of a leaf (yellow). Gametophore conducting tissues are shown in red. The label C in

(A) indicates the approximate plane of section in (C). (E–H) At the earliest detectable stage of branching, each branch comprised a single apical cell

surrounded by leaf initials and was adjacent to one or several developing rhizoids. (E) Light micrograph, (F) SEM micrograph, (G) transverse histological

Figure 1. continued on next page
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Branch initiation is patterned
To determine how branches are distributed in Physcomitrella, the leaves were removed from 60 wild-type

(WT) gametophores grown on sterile BCD + AT medium for 5 or 7 weeks (Figure 2A). The position of

lateral branches was recorded (Figure 2B), showing an uneven distribution (Figure 2C). The formation of

a minimum of 18 leaves was required prior to branch initiation, and an apical portion devoid of branches

was maintained at a similar length throughout development. We termed the barren apical portion of the

gametophore the apical inhibition zone (AIZ), and the portion of the gametophore in which branches

initiated was termed the branching zone (BZ). Reasoning that each of these aspects of the branch

distribution might be under regulatory control, we sought to determine how the branch initiation pattern

deviated from a random distribution. We simulated a dataset of 60 gametophores in which

branching occurs stochastically with a probability of 5% to obtain a similar number of branches to

WT (Figure 2D, ‘Materials and methods’). We defined a gametophore as a 1D series of metamers

where each metamer consists of a section of the main gametophore axis and a leaf, and growth

proceeds at a fixed rate adding new metamers as the simulation progresses. Although it was

immediately apparent that the simulated dataset lacked apical inhibition, potential differences in

branch spacing in the branching zone between WT and simulated datasets were not obvious. We

therefore calculated and compared the mean minimum distance between branches in the branching

zone of WT (4.48 ± 1.48) and simulated stochastically branching shoots (3.62 ± 0.41). In the WT

dataset, branches were more evenly dispersed than expected at random (p-value < 0.05;

Figure 2D), supporting the notion that the distribution of branches within the BZ is regulated.

Even if an apical inhibition zone is introduced into a random model of branching, for example by

assuming a branching competency that requires a minimum metamer age, it cannot produce

a realistic branching pattern (Figure 2E, Figure 2—figure supplement 1).

A model integrating the effect of a notional mobile apical cue with
sensitivity to that cue elsewhere in the gametophore can account for
branching patterns
Previous studies in mosses have shown that the main gametophore apex exerts an inhibitory effect

over branching that acts via auxin (von Maltzahn, 1959; Nyman and Cutter, 1981). To help us

understand branch patterning, we generated a regulatory model of moss branching which assumes

the main apex and newly forming branch apices are sources of auxin (assumption 1; Figure 2F). The

terminal apex is represented by a red square and produces new metamers represented by grey

squares (Figure 2G; rule 1). The bottom metamer is always defined as the first of the 1D metamer

file representing the gametophore in the model. The concentration of auxin in a metamer is expressed

with the parameter c, and auxin levels in the terminal apex and lateral apices are set to fixed values of

Hapex and H respectively; thus auxin is produced to a constant concentration. Biologically Hapex and H

represent a combination of inputs to regulate auxin levels including auxin synthesis, transport and

decay, and any potential feedback between these processes.

We assume that auxin moves from sites of production into neighboring metamers, changing the

auxin concentration in those metamers (assumption 2; Figure 2H). Such changes per metamer are

expressed in the model with the following equation:

Figure 1. Continued

section and (H) corresponding line drawing showing a branch apical cell (pink) surrounded by leaf initials (green) and adjacent to an initiating rhizoid

(blue). The label G in (E) indicates the approximate plane of section in (G). (I–L) At a later stage, growing buds had well-developed leaves. (I) Light

micrograph, (J) SEM micrograph, (K) transverse histological section and (L) corresponding line drawing showing a well-developed bud (green) and its

apical cell (pink) in the axil of the leaf (yellow). The label K in (I) indicates the approximate plane of section in (K). (M–P) Well-developed branches persisted

as superficial projections, there was no continuity between the conducting tissue system of the branch and the gametophore axis. (M) Light micrograph of

a lateral branch on a gametophore whose leaves have been removed. (N) Transverse histological section at the junction point of the lateral branch with

the main gametophore axis (indicated by N in [M]), the red arrowhead shows cortical tissue and the absence of continuity between conducting tissue

systems. (O) Transverse histological section and (P) corresponding line drawing above the junction point (indicated by O in [M]) where the conducting

tissues (red) of the lateral branch (green) and the main axis (white) can be seen. (Q) The sequence of branch initiation in thirty 6 week old gametophores.

For all images, arrows show lateral buds, dotted lines indicate the level of corresponding histological sections, asterisks mark rhizoids, dashed lines mark

the boundary between the stem and the detached leaf. Scale bars = 100 μm.

DOI: 10.7554/eLife.06808.003
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dci
dt

=KBðci+1 − ciÞ+KAðci−1 − ciÞ− vci ; (1)

where c is the concentration of auxin, t is the time interval between simulation steps, K represents an

auxin transport constant, i represents metamer indexing and v represents auxin decay.

Since metamer indexing increases from basal to apical metamers, parameter KB in equation

(Langdale and Harrison, 2008) always represents basipetal movement of auxin and parameter KA

represents acropetal movement of auxin. If KA = KB, auxin movement between metamers is not biased

acropetally or basipetally, and equation (Langdale and Harrison, 2008) conforms to Fick’s second law

of diffusion. If KA ≠ KB, auxin movement is directionally biased.

A lateral branch can only initiate if the concentration of auxin in a metamer falls below a threshold T

(assumption 3), or c/T < 1 (Figure 2G; rules 2 and 3). Points of branch initiation and insertion are

Figure 2. Branching patterns are non-random. (A) A wild-type gametophore before (left) and after (right) removing the leaves. Asterisks indicate lateral

branches. Scale bar = 1 mm. (B) Each gametophore is represented as 1-D series of metamers (light green squares) and lateral branch position is indicated

in dark green. (C–E) Branching patterns of 60 gametophores ordered by increasing size showing the apical inhibition zone (AIZ) and branching zone (BZ).

Data from wild-type (C), stochastic simulation (D) and stochastic simulation with imposed apical inhibition (E) had similar branch numbers but different

branch distributions. (F–I) Assumptions and replacement rules of the computational model. (F) Each gametophore starts off as an apex (red), which

produces auxin and grows by producing metamers (grey) containing auxin at concentration c. (G) illustrates replacement rules used in simulations. 1: an

apex (red) regularly produces metamers (grey). 2: if auxin concentration c in a metamer falls below the auxin sensitivity threshold T, then the metamer

becomes a branch and an auxin source (red). 3: if auxin concentration c is higher than T, then branch formation is inhibited. (H) The auxin concentration c

within a metamer reflects acropetal transport defined by the constant KA and basipetal transport defined by the constant KB. (I) Stages of growth in

a single simulated gametophore showing that, as new metamers are added, the ratio of c/T drops towards the base, allowing a branch to initiate

(compare iii to iv). The new apex becomes an auxin source and can export auxin both up and down the gametophore (v). This results in the formation of an

auxin minimum further up the gametophore axis and a second branch initiates (vi to vii).

DOI: 10.7554/eLife.06808.004

The following figure supplements are available for figure 2:

Figure supplement 1. Comparison of the WT branching pattern plot with different model outputs.

DOI: 10.7554/eLife.06808.005

Figure supplement 2. Stages of growth in a single simulated gametophore showing that as new metamers are added, the ratio of c/T drops towards the

base, allowing a branch to initiate (compare v to vi).

DOI: 10.7554/eLife.06808.006
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abstracted as red squares in the metamer file produced by the main apex (Figure 2I). Although

branch outgrowth is not depicted, it is also simulated as illustrated in Figure 2—figure supplement 2.

The ratio c/T is represented by blue hexagons (Figure 2F,G,I).

Parameters Hapex, H and T are determined for each gametophore in a series before simulations

start and are stochastically attributed values within a specified range. Parameter values may therefore

differ between, but not within gametophores.

The model incorporates a constant notional level of auxin decay represented by parameter v (see

‘Materials and methods’). Therefore metamers that are further away from the apex are older, and

have less auxin derived from the terminal apex than newer metamers, and a smaller value of c/T

(Figure 2I, Figure 2—figure supplement 2). This accounts for branch initiation towards the

gametophore base. The new lateral branch apices produce auxin, which moves to metamers adjacent

to the branch insertion point (Figure 2Iv). As the gametophore grows, a local auxin minimum appears

between active apices (Figure 2Ivi) and another branch initiates (Figure 2Ivii).

Bidirectional transport of an apical cue such as auxin is required to
generate a realistic branching pattern
To determine whether the model can capture WT branching patterns, a series of 60 gametophores

with 20–40 leaves was simulated. In line with published data showing bulk basipetal auxin transport to

be undetectable in moss gametophores, parameter exploration showed that theWT branch distribution

was best approximated by ratios of KA/KB = 1 (Table 1). A small bias in the direction of transport had

a major impact on the distribution of branches Figure 3). Where KA/KB > 1, branches initiated both

acropetally and basipetally and apical inhibition was lost (Figure 3A,B, Videos 1, 2). Where KA/KB < 1,

the branch density in the basal portion of each gametophore and the size of the apical inhibition zone

were both significantly increased (Figure 3C,D, Videos 3, 4). When KA/KB was set to reflect levels of

basipetal transport detected in Arabidopsis (KA/KB = 1/100), basal branches activated consecutively in

the branching zone (Figure 3D). Thus bidirectional transport was required in order to generate an apical

inhibition zone comparable in metamer number to those in real plants, and to generate a branching

zone with a branch distribution similar to the distribution in real plants (compare Figures 2C to

Figure 3E,F, and see Figure 2—figure supplement 1C for quantitative comparison. See also Video 5).

A point of convergence between the model and branch distribution data from real plants was that in

both, branch initiation in adjacent metamers was occasionally observed (compare Figure 3F to Figures

4B,C,D, 5A, 8A). We note that the frequency of such initiation is lower in data from real plants (8/210

gametophores using combined data from Figures 2C, 4B, 5A, 8A) than in the model (7/60 gametophores

with data shown in Figure 3F), and it is possible that there are mechanisms to prevent adjacent initiations

in plants. A further point of comparison relates to the sequence of branch activation (Figure 1Q), which we

originally assumed to be acropetal. Although branches normally initiate in an acropetal series, the model

predicted that minima of c/T should also form out of series (see Figure 2—figure supplement 2), and we

also found that branches can initiate out of series in real plants (Figure 1Q).

A point of divergence between branch patterns predicted by the model and data from real plants was

that given bidirectional auxin transport, model simulations constitutively activated branches in the basal

Table 1. Parameter values for the models shown in Figures 3, 6, 7

Model wild-type Model shi2-1 Model SHI ox-5 Model CKX2oe Model IPT1oe

(Figure 3F) (Figure 6A) (Figure 6B) (Figure 7A) (Figure 7B)

Hapex μ = 80, σ = 20 μ = 48, σ = 12 μ = 240, σ = 60

H μ = 20, σ = 4.5 μ = 12, σ = 2.7 μ = 60, σ = 13.5

T μ = 3.0, σ = 0.8 μ = 0.45, σ = 0.2 μ = 5.4, σ = 0.8

ν 0.01

KA 0.05

KB 0.05

Parameter μ represents the mean and σ the variance of the normally distributed stochastic variables H and T.

Parameter values left blank are identical to the wild-type model.

DOI: 10.7554/eLife.06808.007
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metamer (Figures 2I, 3E). A phenomenon that was not observed in real plants (compare Figure 2C to

Figure 3E). This led us to hypothesize that branching could be locally suppressed at the gametophore

base by an unknown inhibitory signal. We adjusted the model by locally reducing the branching threshold

in the most basal metamers of the gametophore (assumption 4; Figure 2—figure supplement 2). As

a decrease in the value of T drives up the ratio c/T, basal metamers less frequently reached conditions

where c < T than in simulations without the basal inhibitor. The frequency of branch initiation in the

bottom five metamers of subsequent simulations was similar to the frequency of branch initiation in those

metamers in real plants (Figure 3F, Figure 2—figure supplement 1C and Video 6).

Therefore, the model attained branch distribution patterns that were comparable to data from real

plants (Figure 2—figure supplement 1), and generated testable hypotheses relating to the

regulation of branch initiation.

The main gametophore apex inhibits branching, acting via auxin
To test the assumptions of our model we undertook a series of experiments in Physcomitrella. We first

sought to identify potential contributions of the main gametophore apex and auxin to the branching

pattern by performing surgical experiments in which thirty gametophores were teased out of several

Figure 3. Simulated branching patterns are sensitive to changes in the direction of auxin transport and predict

a basal branching inhibitor. (A–B) Output of simulations with mainly acropetal auxin transport, set to KA/KB = 3

(A) or KA/KB = 100 (B). (C–D) Output of simulations with predominantly basipetal transport, set to KA/KB = 1/3

(C) or KA/KB = 1/100 (D). (E, F) Output of simulations with bi-directional auxin transport set to KA/KB = 1.

Without local basal reduction of the branching threshold (T, black arrow), the most basal metamer always

produced a branch (E). A reduction of the branching threshold in the basal metamers was required to

generate a realistic WT branching pattern (F). For all insets, arrow sizes indicate the relative amount of

basipetal and acropetal auxin transport. Red indicates gametophore and branch apices, and blue indicates

the auxin concentration (c) relative to T.

DOI: 10.7554/eLife.06808.009
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colonies and decapitated by removal of the top six

metamers (the top third of the apical inhibition

zone). The excised apices were replaced with

lanolin or lanolin impregnated with indole-3-acetic

acid (IAA) (Figure 4A). Thirty further gameto-

phores were isolated and left intact as a control,

and all sets were left to grow for a week. Whilst

control gametophores continued to grow as

normal (Figure 4B), the gametophores which

had their apices replaced by lanolin discontin-

ued growth of the main axis and initiated

branches in the portion of the stem originally

comprising the apical inhibition zone beneath

the cut site (Figure 4C,E). In contrast, the

gametophores that had their apices replaced

by IAA impregnated lanolin had impaired

branch initiation and development (Figure 4D,

E). Whilst a total of around 70 branches initiated

from lanolin treated control gametophores,

around 50 branches initiated from IAA treated

gametophores, and of these less than 10

showed normal development. The remainder

were shorter than normal and were unable to

initiate leaves (Figure 4E), a defect that we have

previously observed in the main apex in game-

tophores treated with high concentrations of

auxin (Bennett et al., 2014b). No difference in

the spacing of branches in control or experi-

mental treatments was detected (Figure 4F).

These results suggest the hypothesis that the

shoot apex suppresses branch initiation by acting

as an auxin source, which contradicts the low

auxin activity levels in gametophore tips

reported by GH3::GUS signal accumulation.

However, the GH3::GUS reporter reflects down-

stream transcriptional outputs of auxin signalling,

and may not accurately reflect the auxin distri-

bution (Brunoud et al., 2012). We therefore

quantified IAA levels along the gametophore

axis by sampling the top six metamers, the apical

inhibition zone minus the tip and the branching

zone with the branches removed (Figure 4A).

Despite some variability between replicates, we

found that mean IAA levels were highest in the

tip. We also undertook decapitation experiments in the GH3::GUS reporter line and found that the

signal intensity dropped substantially in decapitated plants, consistent with the notion that the apex

can affect auxin levels elsewhere in the gametophore. In combination, data shown in Figure 4 support

assumption one of our model by (i) showing that the main apex can regulate the branching pattern, (ii)

providing evidence that the main apex is an auxin source, and (iii) showing that apically applied auxin

can suppress branching.

Auxin suppresses branching
To determine whether the suppression of branching by auxin is position dependent or whether auxin

can act as a global suppressor of branching, 5 week old gametophores were immersed in an auxin

solution for 24 hr and grown for a further 2 weeks prior to analysis of branching patterns (Figure 5). A

Video 1. (corresponds to Figure 3A) Simulation of

branching activation pattern with mainly acropetal auxin

transport (set to KA/KB = 3) and no basal branching

inhibitor.

DOI: 10.7554/eLife.06808.010

Video 2. (corresponds to Figure 3B) Simulation of

branching activation pattern with mainly acropetal auxin

transport (set to KA/KB = 100) and no basal branching

inhibitor.

DOI: 10.7554/eLife.06808.011

Video 3. (corresponds to Figure 3C) Simulation of

branching activation pattern with mainly basipetal auxin

transport (set to KA/KB = 1/3) and no basal branching

inhibitor.

DOI: 10.7554/eLife.06808.012
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natural auxin, IAA, and two synthetic auxins

with different metabolic and transport proper-

ties, 1-Naphthaleneacetic acid (NAA) and 2,4-

Dichlorophenoxyacetic acid (2,4-D), were

tested. For all the treatments, the size of the

apical inhibition zone significantly increased, the

branch number was strongly reduced and branch

initiation in the branching zone significantly de-

creased, suggesting that auxin can act as a global

suppressor of branching.

Auxin biosynthesis mutants
capture predicted effects of
changing model values Hapex and H
Although our model assumes that both the main

and lateral apices can act as auxin sources (Hapex

and H respectively), we were unable to isolate

the effect of lateral apices in surgical experiments

due to technical constraints. We therefore hy-

pothesized that the effects of altering global

levels of auxin synthesis could capture aspects of

variance in both the primary and lateral gameto-

phore tips (Figure 6, Figure 6—figure

supplement 1). To test this hypothesis, we grew

Physcomitrella mutants or transgenics in which

auxin synthesis is diminished or increased

(Eklund et al., 2010), and quantified their

branching patterns with respect to model pre-

dictions and WT controls. A global decrease in

auxin levels was simulated by reducing the values

of Hapex and H, and the predicted outcome was

a reduction of the apical inhibition zone size, accompanied by an increase in branch density within the

branching zone (Figure 6A). The branching phenotype of Ppshi2-1, an auxin-deficient mutant in which

auxin synthesis at the gametophore apex is reduced (Eklund et al., 2010), matched this predicted

outcome (Figure 6C,E,G,I,J, Figure 6—figure supplement 1, Video 7). Conversely, a global increase in

auxin levels was simulated by increasing the values of Hapex and H, generating the predictions that the

apical inhibition zone size should increase and the branch density should decrease (Figure 6B). The

branching pattern of PpSHI ox-5, a transgenic line with elevated auxin levels (Eklund et al., 2010), again

matched the model output (Figure 6D,F,H,I,J, Figure 6—figure supplement 1, Video 8). Thus, by

generating a decreased inhibition zone with more branches in the branching zone or an increased

inhibition zone with fewer branches in the branching zone respectively, the effects of depleting or

elevating SHI-mediated auxin biosynthesis captures predicted effects of changing the target auxin

concentrations Hapex and H in the model.

Cytokinin biosynthesis mutants capture predicted effects of changing
model values T
A second assumption of our regulatory model is that the sensitivity to auxin (parameter T) modulates the

branching pattern. In bud treatment experiments in flowering plants and moss, cytokinin antagonizes the

suppressive effects of auxin in promoting branching (Thimann and Skoog, 1933; Wickson and Thimann,

1958; von Maltzahn, 1959), and we postulated that cytokinin could modulate auxin sensitivity with levels

approximating to values of T (Figure 7, Figure 6—figure supplement 1). Therefore, decreasing the

values of T in our model should have the converse effect to an increase in parameter values of H, and this

effect should be observed in moss shoots by global reduction of cytokinin levels. To test this hypothesis,

we grew Physcomitrella transgenics in which cytokinin degradation is increased, thereby decreasing

cytokinin levels (von Schwartzenberg et al., 2007), and quantified their branching patterns (Figure 7).

The predicted outcome of the model was an increase of the apical inhibition zone size and a reduction in

Video 4. (corresponds to Figure 3D) Simulation of

branching activation pattern with mainly basipetal auxin

transport (set to KA/KB = 1/100) and no basal branching

inhibitor.

DOI: 10.7554/eLife.06808.013

Video 5. (corresponds to Figure 3E) Simulation of

branching activation pattern with equal basipetal and

acropetal auxin transport (set to KA/KB = 1) and no basal

branching inhibitor.

DOI: 10.7554/eLife.06808.014

Coudert et al. eLife 2015;4:e06808. DOI: 10.7554/eLife.06808 10 of 26

Research article Developmental biology and stem cells | Plant biology

http://dx.doi.org/10.7554/eLife.06808.013
http://dx.doi.org/10.7554/eLife.06808.014
http://dx.doi.org/10.7554/eLife.06808


branch number (Figure 7A). The branching pattern of a transgenic line that constitutively expresses the

Arabidopsis cytokinin degradation gene, CYTOKININ OXIDASE-2 (CKX2oe) (von Schwartzenberg et al.,

2007), was quantified and found to be similar to the model output in having fewer branches and a larger

apical inhibition zone (Figure 7C,E,G,I,J, Figure 6—figure supplement 1, Video 9). Conversely,

increasing the values of T in the model should have similar effects to a global increase in cytokinin levels.

To test this hypothesis, we generated Physcomitrella ISOPENTENYL TRANSFERASE-1 (von Schwartzenberg

et al., 2007) transgenics (IPT1oe) in which cytokinin levels are upregulated (Figure 7—figure supplement 1)

and quantified their branching patterns. The predicted outcome of the model was a reduction of the apical

inhibition zone size and an increase in the branch number (Figure 7B, Video 10), and the branching pattern

in the IPT1oe line was similar (Figure 7D,F,H,I,J, Figure 6—figure supplement 1). Moreover, cytokinin

application to gametophores was sufficient to promote meristematic cell formation and proliferation

along the gametophore axis (Figure 7K–N). Thus cytokinin is necessary for and promotes branching and

lateral meristem activity.

Neither PINs nor ABCB/PGPs contribute strongly to branching patterns
A third assumption of our regulatory model is that auxin moves between metamers, and the

output of the model was found to be very sensitive to changes in the direction of auxin transport.

Realistic branching patterns were only generated when there was relatively even basipetal and

acropetal transport within simulated gametophore axes (Figure 3), a result that is consistent with the

absence of detectable bulk basipetal transport in Physcomitrella gametophores (Fujita et al., 2008).

The molecular functions of canonical PIN proteins are conserved between flowering plants and mosses

(Bennett et al., 2014b; Viaene et al., 2014), and Physcomitrella PINs have been demonstrated to

Figure 4. The main Physcomitrella gametophore apex is an auxin source that suppresses branching. (A) Gametophores were isolated from wild-type

colonies (top), and the six top metamers were excised at the dotted line (middle) and replaced with lanolin or lanolin plus 1 mM auxin (bottom). Scale bar

= 1 mm. (B) Branching pattern of 30 intact gametophores ordered by increasing size. AIZ, apical inhibition zone. BZ, branching zone. (C) Branching pattern

of 30 gametophores 5 days after excision. Lateral branches activated in the portion of gametophore corresponding to the apical inhibition zone before

excision, coloured in red. (D) Branching pattern of 30 gametophores 5 days after excision and replacement of the apex by a source of auxin. (E) The

number of normal and defective branches formed in the apical inhibition zone of mock and IAA-treated gametophores. (F) Mean minimum metamer

number between lateral branches was not affected by gametophore apex excision. (G) shows mean auxin levels quantified from five biological replicates;

levels were are highest at the tip of the gametophore and decreased toward the base. (H) GH3::GUS expression was high in the apical inhibition zone (left)

and was strongly reduced after decapitation (right). Scale bar = 1 mm.

DOI: 10.7554/eLife.06808.015
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localise both proximally and distally within leaf cells (Viaene et al., 2014). PINs therefore provide one

potential mechanism to account for bi-directional auxin transport in the regulation of branching. We

previously engineered Physcomitrella pin mutants in a GH3::GUS background (Bennett et al., 2014b),

and found that whilst branching patterns in the GH3::GUS line were similar to WT controls (Figure 8A),

pin mutants had mildly disrupted branching patterns (Figure 8A–H). The apical inhibition zone was

shorter in pina pinb mutants than in GH3::GUS controls (Figure 8I). Branch number was slightly

increased in pinb and pina pinb double mutants (Figure 8J–L) and the mean minimum distance

between branches was reduced in pina, pinb and pina pinb double mutants (Figure 8M). To rule out the

possibility that residual PIN-mediated auxin transport could be responsible for the mild effects of pin

mutants on branching patterns, mutants were grown on medium supplemented with 5 μM NPA

(Figure 8N–W). In both GH3::GUS and pina pinb lines, branching patterns were found to be similar in

mock and NPA-treated plants. Thus PIN-mediated auxin transport is not a major contributor to

branching patterns.

A second class of auxin efflux transporters controlling development which interact with PIN proteins to

regulate auxin distributions are the ATP-binding cassette protein subfamily B (ABCB/PGP) transporters

(Cho and Cho, 2013). ABCB/PGP proteins have non-polar plasma membrane localizations and could

therefore putatively generate the bi-directional auxin transport required by the model to regulate

branching. 10 genes have been identified in the Physcomitrella genome (Carraro et al., 2012).

To test the hypothesis that ABCB/PGPs regulate Physcomitrella branching, we

analysed branching patterns in WT gametophores grown on an ABCB/PGP inhibitor (Kim

et al., 2010), 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid (BUM) at a 5 μM concentration

Figure 5. Globally applied exogenous auxins inhibit branch initiation. (A–D) Branching patterns in wild-type gametophores grown for 5 weeks, immersed

for 24 hr in mock (A), 1 μM IAA (B), 100 nM NAA (C) or 1 μM 2,4-D (D) and grown for another 2 weeks. (E–H) mock (E), IAA (F), NAA (G) and 2,4-D

(H) treated gametophores before (left) and after (right) removing the leaves, with asterisks indicating lateral branches. Scale bar = 1 mm. (I–K) Bubble plots

showed that branch number decreased in response to IAA (I), NAA (J) and 2,4-D (K) compared with mock-treated gametophores. Gametophore length is

depicted as the number of metamers and the bubble area is proportional to the number of gametophores with a similar branch number at a particular

length. Ordinary least squares regression was used to test whether the relationship between branch number and gametophore leaf number depended on

treatment (see ‘Material and methods’), and for (I) the best fitting model was B = (−4.45 + 2.52X) + (0.2 − 0.12X)L meaning that IAA treatment significantly

differed from mock treatment (p < 0.01). For (J) the best fitting model was B = (−4.45 + 2.87X) + (0.2 − 0.13X)L; NAA treatment significantly differed from

mock treatment (p < 0.001). For (K) the best fitting model was B = (−4.45 + 2.8X) + (0.2 − 0.13X)L; 2,4-D treatment significantly differed from mock

treatment (p < 0.001). (L) The apical inhibition zone size increased in response to IAA, NAA and 2,4-D (mean ± SD; bilateral t-test different from mock

control, *p < 0.05).

DOI: 10.7554/eLife.06808.016
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(Figure 8X–AB). We found no difference

between mock and BUM-treated plants suggest-

ing that ABCB/PGP proteins do not regulate

branching in Physcomitrella.

Callose synthesis inhibitors affect
branching
Although the contributions of plasma membrane-

targeted PIN and ABCB/PGP auxin transporters to

plant development are well accepted (Petrásek

and Friml, 2009), recent work in Arabidopsis has

suggested that symplastic auxin transfer via plas-

modesmata may also contribute to development

by maintaining auxin concentration gradients

between cells (Han et al., 2014). Symplastic permeability is under active control via callose deposition

such that increased deposition blocks plasmodesmatal connections, and decreased deposition opens

them up to allow greater permeability and higher rates of diffusion (Han et al., 2014). As the apolar

auxin transport required to generate realistic branching patterns in our model is equivalent in principle

to diffusion, we hypothesized that a callose-dependent mechanism could regulate branching. To test

this hypothesis, we grew Physcomitrella on a callose biosynthesis inhibitor, 2-deoxy-glucose (DDG), and

found that its application did not cause general defects at the concentrations used. We therefore

compared the branching patterns to model predictions arising from a simulated increase in the rate of

auxin movement (Figure 9, Table 2). Simulations predicted that stepwise increases in the rate of

movement should progressively reduce branching (Figure 9B,C, Videos 11, 12, 13), and in DDG

treated plants branching was similarly reduced (Figure 9D–M). These data suggest callose-gated

plasmodesmal connectivity as a plausible mechanism to regulate branching patterns in Physcomitrella.

Strigolactone fulfils a predicted requirement for basal suppression of
branching
A final testable assumption of our model is that branching is locally suppressed at the base of the

gametophore, expressed as a local reduction in T in our model (Figure 3F). We noted from published

literature (Proust et al., 2011) that the strigolactone biosynthesis gene ppccd8 is expressed at

the base of gametophores. ppccd8 mutants are strigolactone deficient and although no branching

defects were previously detected in mutant gametophores (Proust et al., 2011), we reasoned that

strigolactones could be the repressive signal. We therefore quantified the branching patterns in

ppccd8 mutant gametophores relative to WT (Figure 10). We found strongly increased branch

activation at the base of gametophores (number of branching gametophores: WT, 4/60; ppccd8

mutant, 29/60) (Figure 10A,B). To confirm that the ppccd8 mutant phenotype was caused by a

deficiency in strigolactone production, we quantified the branching pattern in ppccd8 mutants grown

on medium supplemented with 1 μM GR24, a synthetic strigolactone analogue, and found that GR24

was able to suppress basal branch formation (Figure 10C). To evaluate whether strigolactone can act as

a global branch suppressor, we analysed the branching pattern in Physcomitrella mutants that over

express the pea strigolactone synthesis gene, RMS1 (Proust et al., 2011). We found that branching was

very strongly suppressed in this transgenic line (Figure 10D, Figure 10—figure supplement 1). We used

gametophores with fewer than 20 leaves for this experiment because comparison of model predictions

(Figure 3E,F) to WT data (Figure 2C) showed that we should most clearly detect a difference at this

stage of development, and ppccd8 mutants make few gametophores. Our inferences were

supported in a similar but scaled down experiment using fully grown gametophores

(Figure 10—figure supplement 1). Thus basal expression of a strigolactone biosynthetic gene

can account for the predicted requirement of our model for a local basal inhibitor of branching.

Discussion
Hormonal signalling by auxin, cytokinin and strigolactone evolved before plants’ transition to land

(Cooke et al., 2002; De Smet et al., 2011; Delaux et al., 2013; Gruhn and Heyl, 2013), and was

recruited to regulate axillary bud initiation (auxin and cytokinin; [Wang et al., 2014a, 2014b]) and

Video 6. (corresponds to Figure 3F) Simulation of

branching activation pattern with equal basipetal and

acropetal auxin transport (set to KA/KB = 1) and with

basal branching inhibitor.

DOI: 10.7554/eLife.06808.018
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Figure 6. Auxin biosynthesis mutants and transgenics match predicted effects of changing parameter values of

Hapex and H. (A–B) Model simulations of branching patterns with Hapex and H values reduced from 80 ± 20 to 48 ± 12

and from 20 ± 4.5 to 12 ± 2.7 respectively (A) or Hapex and H values increased from 80 ± 20 to 240 ± 60 and from 20 ±
4.5 to 60 ± 13.5 (B). (C–D) Branching patterns in shi2-1mutants with reduced auxin biosynthesis levels (C) and SHI ox-

5 transgenics with elevated auxin biosynthesis levels (D). (E–F) shi2-1 (E) and SHI ox-5 (F) gametophores before (left)

and after (right) removing the leaves, with asterisks indicating lateral branches. Scale bar = 1 mm. (G–H) Bubble plots

showed that branch number increased in shi2-1 (G) and diminished in SHI ox-5 (H) compared with WT

gametophores. Gametophore length is depicted as the number of metamers and the bubble area is proportional to

Figure 6. continued on next page
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lateral branch outgrowth in flowering plant sporophytes (Domagalska and Leyser, 2011). We have

shown that these three ancient hormonal cues were recruited independently to regulate lateral

branching in gametophores of the moss Physcomitrella. In combination our model and experimental

data lead us to a notion of branching whereby the ratio c/T determines the fate of epidermal cells in

the gametophore axis. If the ratio drops below a threshold level, an epidermal cell can be respecified

as a lateral apical cell thereby triggering branch initiation. Such a drop usually occurs in leaf axils

independently of the leaf initiation process at the meristem (Harrison et al., 2009) as a result of

competing hormonal cues dispersed across the gametophore. However, cells elsewhere in the

metamer are also competent to form branch initials, and do so if the c/T ratio is perturbed, for

instance by changing auxin (Figures 5, 6), strigolactone (Figure 9) or cytokinin levels (Figure 7).

Although this process has some similarities to the branch initiation process in Arabidopsis in which

a drop in auxin levels in the axils of initiating leaves coupled with a rise in cytokinin levels primes the

initiation of the axillary meristem (Wang et al., 2014a, 2014b), there are many differences in the

regulation of lateral branching between flowering plant sporophytes and Physcomitrella gametophytes.

A first key difference is the mechanism underlying apical dominance, which requires PIN-mediated

bulk basipetal polar auxin transport in Arabidopsis (Gälweiler et al., 1998; Ljung et al., 2001).

Our model for branching in Physcomitrella

assumes that the main gametophore apex acts

as the source of a cue that can move into the

gametophore axis to suppress branching. De-

capitation experiments show that the main

gametophore apex inhibits branching and that

this inhibitory effect can be maintained if the

apex is substituted by a source of auxin

(Figure 4). We detect higher levels of auxin in

the apex than elsewhere in the gametophore,

and removal of the apex diminishes levels of

expression of an auxin responsive reporter in the

gametophore axis, thereby implicating auxin as

an apical cue and indicating a requirement for

auxin transport away from the apex in the

regulation of branching patterns (Figure 4).

Although these results are qualitatively similar

to the outcome of such experiments in Arabi-

dopsis (Thimann and Skoog, 1933; Wickson and

Thimann, 1958; Cline, 1991), no bulk basipetal

auxin transport has been detected in Physcomi-

trella (Fujita et al., 2008). Our model predicts

a requirement for bi-directional, or diffusion-like

transport to generate realistic patterns

(Figure 3), and suggests that not only the

direction (Figure 3), but also the rate of transport

has a significant impact on branch patterning

Figure 6. Continued

the number of gametophores with a similar branch number at a particular length. For (G) the best fitting model was

B = (−3.27 + 1.16X) + 0.18L; shi2-1 significantly differed from WT (p < 0.001). For (H) the best fitting model was B =
(−3.29 + 2.05X) + (0.18 − 0.11X)L, SHI ox-5 significantly differed from WT (p < 0.001). (I) Apical inhibition zone size

was reduced in shi2-1 and increased in SHI ox-5 (mean ± SD; bilateral t-test different from WT, *p < 0.05).

(J) Minimum distance between lateral branches was reduced in shi2-1 (mean ± SD; bilateral t-test different from WT,

*p < 0.05). n.d., not determined because branch number was insufficient.

DOI: 10.7554/eLife.06808.019

The following figure supplement is available for figure 6:

Figure supplement 1. Comparison of mutant branching pattern plots with model outputs.

DOI: 10.7554/eLife.06808.020

Video 7. (corresponds to Figure 6A) Simulation of

branching activation pattern in the shi2-1 mutant.

DOI: 10.7554/eLife.06808.021

Video 8. (corresponds to Figure 6B) Simulation of

branching activation pattern in the SHI ox-5 transgenic line.

DOI: 10.7554/eLife.06808.022
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Figure 7. Cytokinin biosynthesis mutants and transgenics match predicted effects of changing parameter values of T

and exogenous cytokinin treatment is sufficient for lateral meristem formation. (A) Model simulation of branching

patterns with T values reduced from 3 ± 0.8 to 0.45 ± 0.2. (B) Model simulation of branching patterns with T values

Figure 7. continued on next page
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(Figure 9). Our experiments with pin mutants and pharmacological inhibitors show that membrane-

targeted auxin transporters belonging to PIN and ABCB/PGP families are not significant contributors

to branch patterning (Figure 8). Patterning is sensitive to the application of the callose synthesis

inhibitor DDG, and incremental increases in the concentration of applied DDG have similar effects on

branch patterning as incremental increases in the rates of transport implemented in our model

(Figure 9). These data suggest that auxin may move with diffusive properties via callose-gated

plasmodesmatal connections between cells (Han et al., 2014).

Further distinctions relate to variation in conceptualized notions of global and local sensitivities to

auxin that can be produced in moss by varying

the activity of cytokinin biosynthesis and degra-

dation, and strigolactone biosynthesis pathways

respectively. Although the role of cytokinin in

gametophore induction is well characterized in

Physcomitrella (Ashton et al., 1979), and cytoki-

nin has previously been shown to antagonize

auxin in branch formation (von Maltzahn, 1959),

little is known about where and how cytokinin

acts later in gametophore development. Our

results are consistent with a homogenous

effect of cytokinin within the gametophore

axis (Figure 8), and further analysis of cytoki-

nin distributions, for instance with a modified

TCS reporter (Müller and Sheen, 2008), may

be informative. Upregulation of cytokinin

levels by overexpressing IPT1, and exogenous

cytokinin applications show that cytokinin is

sufficient to promote lateral meristem forma-

tion and therefore indicate that cytokinin

directly promotes branching (Figure 7).

The mechanism by which strigolactone

acts with auxin in the regulation of branching

is likely to differ between Arabidopsis and

Physcomitrella. Whereas strigolactone is thought

to suppress branch outgrowth in Arabidopsis

by dampening PIN mediated polar auxin

Figure 7. Continued

increased from 3 ± 0.8 to 5.4 ± 0.8. (C–D) Branching patterns in CKX2oe transgenics with reduced cytokinin levels

(C) and IPToe transgenics with increased cytokinin levels (D). (E–F) CKX2oe (E) and IPToe (F) gametophores before

(left) and after (right) removing the leaves, with asterisks indicating lateral branches. Scale bar = 1 mm. (G–H) Bubble

plots showed that branch number diminished in CKX2oe (G) and increased in IPToe (H) compared with WT

gametophores. Gametophore length is depicted as the number of metamers and the bubble area is proportional to

the number of gametophores with a similar branch number at a particular length. (G) The best fitting model was B =
(−3.28 + 3.19X) + (0.18 − 0.17X)L, CKX2oe significantly differed from WT (p < 0.001). (H) The best fitting model was

B = (−3.69 + 1.28X) + 0.2L, IPToe significantly differed from WT (p < 0.001). (I) Apical inhibition zone size was

reduced in IPT1oe (mean ± SD; bilateral t-test different from WT, *p < 0.05). (J) Minimum distance between lateral

branches was reduced in IPT1oe (mean ± SD; bilateral t-test different from WT, *p < 0.05). n.d., not determined

because branch number was insufficient. (K–N) Exogenous cytokinin treatment promoted branch initiation. WT

gametophores 1 week after immersion in mock (K) or 1 μM BAP (L) solution for 24 hr. Cytokinin promoted

development of callus-like structures (M). Scale bar = 1 mm. (N) Confocal microscope image showing that cytokinin-

induced structures were mainly constituted of leaves (white asterisks) resulting from the proliferation of ectopic

meristematic cells. Scale bar = 100 μm.

DOI: 10.7554/eLife.06808.023

The following figure supplement is available for figure 7:

Figure supplement 1. Molecular characterization and cytokinin profiling of the PpIPT1 overexpressing line.

DOI: 10.7554/eLife.06808.024

Video 9. (corresponds to Figure 7A) Simulation of

branching activation pattern in the CKX2oe transgenic line.

DOI: 10.7554/eLife.06808.025

Video 10. (corresponds to Figure 7B) Simulation of the

branching activiation pattern in the IPT1oe transgenic line.

DOI: 10.7554/eLife.06808.026
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Figure 8. PIN-mediated auxin transport is a minor contributor to branching patterns. (A–D) Branching patterns in GH3::GUS, pina, pinb and pina pinb

mutants. (E–H) GH3::GUS (E), pina (F), pinb (G) and pina pinb (H) gametophores before (left) and after (right) removing leaves, with asterisks indicating

lateral branches. Scale bar = 1 mm. (I) Apical inhibition zone size is significantly reduced in the pina pinb double mutant but not in pina or pinb single

mutants (mean ± SD; bilateral t-test different from GH3::GUS, *p < 0.05). (J–L) Bubble plots showed that branch number increases in pinb (K) and pina

pinb (L) but not pina (J) compared with GH3::GUS gametophores. Gametophore length is depicted as the number of metamers and the bubble area is

proportional to the number of gametophores with a similar branch number at a particular length. The best fitting model for (J) was B = −2.8 + 0.15L, pina

was not significantly different from GH3::GUS. The best fitting model for (K) was B = (−2.47 − 1.40X) + (0.14 + 0.07X)L, pinb was significantly different from

Figure 8. continued on next page
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transport, the mode of action of strigolactone in Physcomitrella is unclear. Notably, key

strigolactone signalling components required for the inhibition of sporophyte branching in higher

plants are not present in mosses (Delaux et al., 2013; de Saint Germain et al., 2013). For

instance, components such as D14 (involved in strigolactone perception) and D53 are absent in

Physcomitrella (Challis et al., 2013; Delaux et al., 2013; Zhou et al., 2013). Similarly the

Physcomitrella homologue of the F-Box protein MAX2 may not be involved in strigolactone signalling,

despite its central role in many strigolactone responses in flowering plants (de Saint Germain

et al., 2013). The modulation of branching by PpCCD8 and RMS1 (Figure 10, Figure 10—figure

supplement 1) was unexpected as previously published work identified roles for PpCCD8 in

protonemal but not gametophore branching patterns (Proust et al., 2011). The basal expression

domain of PpCCD8 (Proust et al., 2011) is consistent with a local site of hormone action, but the

mechanism underlying the ppccd8 and RMS1oemutant phenotypes remains to be seen. Although there

is a substantial body of evidence that strigolactone-like signals are active across the plant kingdom, the

ancestral function of strigolactone and/or these strigolactone-like signals is thought to be in rhizoid

elongation (Delaux et al., 2013; de Saint Germain et al., 2013). The absence of distinct branch

initiation and outgrowth processes in Physcomitrella implicates strigolactone in branch initiation, and

the relative unimportance of PIN-mediated auxin transport in the regulation of Physcomitrella branching

patterns suggests that strigolactone is unlikely to act via PIN-mediated auxin transport.

Diverse branching forms are evident in both the gametophytic (Taylor et al., 2005) and sporophytic

plant fossil record (Gerrienne et al., 2006; Edwards et al., 2014). Although plant phylogenies show

that gametophytic branching forms have several independent evolutionary origins, the innovation of

sporophytic branching maps once onto the plant tree of life (Langdale and Harrison, 2008) and

occurred in pre-vascular plants such as Partitatheca (Edwards et al., 2014). Exogenous hormone

treatments in Selaginella have shown that the antagonistic relationship between auxin and cytokinin in

the regulation of branching is conserved within the vascular plants (Sanders and Langdale, 2013).

Furthermore, auxin transport assays and pharmacological treatments used in combination with

decapitation in Selaginella (Williams, 1937; Wochok and Sussex, 1973, 1975) have shown that auxin

transport-mediated apical dominance is a homology of vascular plant sporophytes. Disruption of PIN-

mediated polar auxin transport in moss sporophytes can induce a branching form that is intermediate

between living bryophytes and vascular plants (Fujita et al., 2008; Bennett et al., 2014b), and

resembles the earliest branching forms in the sporophytic fossil record (Edwards et al., 2014),

suggesting that auxin transport-regulated branching may be a homology of the sporophyte

generation. Although the regulation of lateral branching by three key regulatory hormone pathways

in moss gametophytes indicates deep homology (Scotland, 2010), the mode and basis of auxin

transport are a key divergence point in branch patterning mechanisms between land plant

sporophytes and gametophytes.

Materials and methods
Sterile spot cultures were grown on BCD + AT medium as described previously (Harrison et al.,

2009) and gametophores were sampled after 5 and 7 weeks for branching pattern analysis. For

histological analyses, gametophores from 6-week-old colonies were fixed in 1% paraformaldehyde,

3% glutaradehyde, 0.5% tannic acid in phosphate buffered saline overnight at 4˚C. Fixed tissue was

Figure 8. Continued

GH3::GUS (p < 0.01). The best fitting model for (L) was B = (−2.96 + 0.52X) + 0.15L, pina pinb significantly differed from GH3::GUS (p < 0.01). (M) The

minimum distance between lateral branches is reduced in pina, pinb and pina pinbmutants with respect to GH3::GUS controls (mean ± SD; bilateral t-test

different fromGH3::GUS, *p < 0.05), thus branch density in the branching zone is higher in all the mutants. (N–O) Branching patterns inGH3::GUSmutants

treated without (N) or with (O) 5 μM NPA. (P–R) 5 μM NPA treatment did not affect the branch number in GH3::GUS transgenics (P), the apical inhibition

zone size (Q) and the minimum distance between lateral branches (R). For (P), the best fitting model was B = −3.64 + 0.2L; NPA treatment was not

significantly different from the mock treatment. (S–T) Branching patterns in pina pinb mutants treated without (S) or with (T) 5 μM NPA. (U–W) 5 μM NPA

treatment did not affect the branch number in pina pinb mutants (U), the apical inhibition zone size (V) and the minimum distance between lateral

branches (W). For (U), the best fitting model was B = −1.99 + 0.14L; NPA treatment was not significantly different from the mock treatment. (X–Y)

Branching patterns in WT treated without (X) or with (Y) 5 μM BUM. (Z–AB) 5 μM BUM treatment did not affect the branch number in WT (Z), the apical

inhibition zone size (AA) and the minimum distance between lateral branches (AB) (mean ± SD). For (Z), the best fitting model was B = −1.24 + 0.07L; BUM

treatment was not significantly different from the mock treatment.

DOI: 10.7554/eLife.06808.017
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dehydrated and embedded in Technovit 7100 resin as described by the manufacturer (Kulzer,

Germany). Five micrometer sections were cut and stained with 0.1% Toluidine Blue for 30 s, rinsed

in water, and dried for storage or further examination. For SEM, samples were frozen from fresh on

a Pelletier cooling stage set to −25˚C and imaged using a Zeiss EVO HD (Zeiss, Germany)

environmental scanning electron microscope with variable pressure mode and 30 Pa nitrogen gas.

Models were implemented as in the SI methods. For analysis of endogenous IAA and CK content,

gametophores were isolated from 6-week old colonies, dissected to collect 10–20 mg (for IAA) and

Figure 9. A callose synthesis inhibitor regulates branching. (A–C) Model simulation of branching patterns with K

values increased from 0.025 (A) to 0.045 (B) and 0.07 (C). (D–F) Branching patterns in wild-type gametophores

treated with mock (D), 10 μM 2-deoxy-glucose (DDG) (E) or 25 μM DDG (F). (G–I) mock (G), 10 μM DDG (H) or 25 μM
DDG (I) treated gametophores before (left) and after (right) removing the leaves, with asterisks indicating lateral

branches. Scale bar = 1 mm. (J–K) Bubble plots show that branch number diminishes in 10 μM DDG (J) and is

strongly reduced in 25 μM DDG (K) treated gametophores compared with mock treatment. Gametophore length is

depicted as the number of metamers and the bubble area is proportional to the number of gametophores with

a similar branch number at a particular length. The best fitting model for (J) was B = (−3.82 + 1.41X) + (0.21 − 0.08X)

L, 10 μM DDG was significantly different from mock treatment (p < 0.001). The best fitting model for (K) was B =
(−3.82 + 2.47X) + (0.21 − 0.14X)L, 25 μM DDG was significantly different from mock treatment (p < 0.001). (L) Apical

inhibition size is significantly increased in response to DDG treatment (mean ± SD; bilateral t-test different from WT

mock, *p < 0.05). (M) The minimum distance between lateral branches is not different in 10 μM DDG treated

gametophores with respect to mock controls (mean ± SD). n.d., not determined because branch number was

insufficient.

DOI: 10.7554/eLife.06808.027

The following figure supplement is available for figure 9:

Figure supplement 1. Comparison of branching pattern plots from pharmacologically treated plants with model

outputs.

DOI: 10.7554/eLife.06808.028
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50 mg (for CK) of tissue and snap frozen in

liquid nitrogen. Samples were extracted, puri-

fied and analyzed using gas chromatography-

tandem mass spectrometry as previously de-

scribed, Edlund et al. (1995) for IAA and

Novák et al. (2008) for CK. Each measurement

is the mean of four (CK) or five (IAA) biological

replicates.

Model implementation
All computational models were created using the

VVe modeling environment (Abley et al., 2013).

The moss gametophore is represented in the

model as a graph of vertices and connecting

edges. Each vertex represents either a metamer

or an apex. The graph representing the moss is

dynamic. Periodically, new vertices are added to

the graph representing growth of the gameto-

phore (Figure 2G). The number of simulation

steps between the addition of new vertices in

the model constitutes 1 plastochron, which we

assume to be approximately 1 day for wild-type

Physcomitrella patens grown on agar medium.

The differential equations calculating the rate of

change of auxin concentration per vertex

(Equation 1) of the graph are solved numerically

using the forward Euler integration scheme. The

time step Δt is set to 0.005, there are thus 200

simulation steps per plastochron. For all simula-

tion results presented, a number of gameto-

phores have been simulated where growth is

delayed by a random amount of simulation steps

between two neighboring axes, and the simulation

stops after a set number of total simulation steps

has been reached. All simulated gametophores

initiate as one apical vertex visualized in red, and

a vertex representing the first metamer, visualized

in grey. Separate lateral axes are simulated, and

their initiation point is represented as a red cell.

Higher order branching is not represented and was

rarely observed in experiments.

Table 2. Refitted parameter values for the models shown in Figure 9

Model wild-type Model 10 μM DDG Model 25 μM DDG

(Figure 9A) (Figure 9B) (Figure 9C)

Hapex μ = 30, σ = 10

H μ = 5, σ = 1.5

T μ = 0.7, σ = 0.2

ν 0.002

KA 0.025 0.045 0.07

KB 0.025 0.045 0.07

DOI: 10.7554/eLife.06808.008

Video 11. (corresponds to Figure 9A) Simulation of

the WT branching activation pattern with refitted

parameters.

DOI: 10.7554/eLife.06808.029

Video 12. (corresponds to Figure 9B) Simulation of

branching activation pattern with K values increased by 100%.

DOI: 10.7554/eLife.06808.030

Video 13. (corresponds to Figure 9C) Simulation of

branching activation pattern with K values increased by

200%.

DOI: 10.7554/eLife.06808.031
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Model parameter values
For the most important parameters such as auxin concentrations, auxin movement or auxin decay

rates there were no direct estimates available to this project. Nevertheless, we assume that auxin

movement in the gametophore of Physcomitrella is slower than in Arabidopsis shoot tissue (∼20 mm/

hr) and faster than in NPA treated Arabidopsis shoot tissue (∼0.1 mm/hr) choosing an arbitrary value

inside these bounds for our simulations. Our parameter value settings, given that we have 200

simulation steps per plastochron, correspond to an auxin movement rate of approximately 1 mm/hr in

the gametophore. However, we found for several auxin movement rate values inside these bounds for

which simulation results could be reproduced by readjusting other parameter values. For example, the

simulations represented in Figure 9 use a smaller time step Δt of 0.001 compared to all other

simulations.

Statistical analysis
Ordinary least squares regression was used to test whether the relationship between branch

number and gametophore leaf number depended on genotype. A linear model B = (a0 + a1 X) +
(a2 + a3 X) L, where a0, a1, a2 and a3 are coefficients, L is the number of leaves, B the number of

branches, and X is an indicator variable depending on genotype (0 corresponded to a mutant, 1

corresponded to WT) was fitted. Backwards stepwise elimination was used to find the minimal

model with support from the experimental data. A mutant was considered as different from control

genotype if either the interaction term (a3) or the term corresponding to genotype (a1) remained in

the minimal model.
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