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Abstract Vertebrates acquired dim-light vision when an ancestral cone evolved into the rod

photoreceptor at an unknown stage preceding the last common ancestor of extant jawed

vertebrates (∼420 million years ago Ma). The jawless lampreys provide a unique opportunity to

constrain the timing of this advance, as their line diverged ∼505 Ma and later displayed high-

morphological stability. We recorded with patch electrodes the inner segment photovoltages and

with suction electrodes the outer segment photocurrents of Lampetra fluviatilis retinal

photoreceptors. Several key functional features of jawed vertebrate rods are present in their

phylogenetically homologous photoreceptors in lamprey: crucially, the efficient amplification of the

effect of single photons, measured by multiple parameters, and the flow of rod signals into cones.

These results make convergent evolution in the jawless and jawed vertebrate lines unlikely and

indicate an early origin of rods, implying strong selective pressure toward dim-light vision in

Cambrian ecosystems.

DOI: 10.7554/eLife.07166.001

Introduction
The fossil record shows that by the middle Cambrian, camera-type eyes were already present in stem

vertebrates (Morris and Caron, 2014), supporting the emerging concept that spatially resolved vision

provided a major competitive advantage in those biota (Paterson et al., 2011). Lampreys, the only

surviving jawless vertebrates together with the related hagfish (Heimberg et al., 2010), are a pivotal

resource for gaining further insight into early vertebrate vision. In fact, their line diverged during the

Cambrian (∼505 Ma [Erwin et al., 2011]) and they later remained remarkably stable. This is true both

of their external morphology, as revealed by fossil specimens (Janvier and Arsenault, 2002; Gess

et al., 2006; Janvier et al., 2006; Chang et al., 2014), and of their anatomy, as demonstrated by

primeval features such as the absence of bilateral limbs and of myelinated axons, and by their

possession of the simplest nervous system among vertebrates. Adult lampreys have camera-type eyes

with layered retinas containing all the major neuronal classes present in jawed vertebrates

(Lamb, 2013) and sending retinotopically organized projections to the tectum (Jones et al., 2009),

as well as a photosensory pineal organ (Pu and Dowling, 1981). Researchers have debated the rod or

cone nature of lamprey retinal photoreceptors since the middle of the 19th century (relevant literature

reviewed by Walls, 1935; Govardovskii and Lychakov, 1984; Collin et al., 2009) to ascertain

whether, in vertebrates, cones pre-dated rods or vice versa. Current molecular genetic evidence

indicates that modern rods evolved from an ancestral cone (Okano et al., 1992; Yokoyama, 2000;

Lamb et al., 2007; Kawamura and Tachibanaki, 2008; Shichida and Matsuyama, 2009), implying

that vision in near darkness is a relatively recent acquisition (Lamb, 2013) and causing the point of

contention to become that of the timing of rod evolutionary emergence. This advance must have

occurred (i) after the appearance of the precursor of rhodopsin and of other rod-specific

phototransduction proteins isoforms and (ii) before the initial diversification of extant jawed

vertebrates (∼420 Ma; Erwin et al., 2011) endowed with modern rods. Phylogenetic analysis of

visual opsins constrains time bound i to have occurred anywhere between the divergence of ascidians

(∼610 Ma; Erwin et al., 2011) and that of the lamprey line (∼505 Ma; Erwin et al., 2011): the sea
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squirt Ciona intestinalis has only one jawed vertebrate-related visual opsin (Kusakabe et al., 2001), while

some lamprey species have all five major classes (Yokoyama, 2000) including an Rh1 rhodopsin ortholog

(Pisani et al., 2006) (but see Collin et al., 2003). Recently, strong evidence has emerged indicating that

these five opsin classes (and the rod-specific molecular toolbox) emerged in the context of two rounds of

whole-genome duplication called ‘2R’ (Kuraku et al., 2009; Lagman et al., 2013). Furthermore, analysis of

the whole sea lamprey genome suggests that the lamprey line diverged from the main vertebrate line

shortly after 2R (Smith et al., 2013). Therefore, unveiling the functional properties of lamprey

photoreceptors may shed light on the evolution of dim-light vision in the critical time period following

2R (Collin et al., 2009; Lamb, 2013).

The two types of photoreceptors in the retina of Northern hemisphere lampreys have light-absorbing

outer segments arranged in adjacent tiers (Figure 1A): those of short photoreceptors (SPs) lie in an inner

tier, while those of long photoreceptors (LPs) lie in an outer tier, next to the pigment epithelium. This

nomenclature is based on the entire length of the photoreceptors that of the outer segments showing

instead the reverse pattern. Importantly, SPs express an Rh1 rhodopsin ortholog (Pisani et al., 2006)

and some of their phototransduction protein isoforms examined thus far clade with those of rods

(Muradov et al., 2008), but they also have molecular and morphological features of cones including

outer segment discs that appear continuous with the plasma membrane (Dickson and Graves, 1979).

Thus, while they retain archaic features of a cone progenitor, SPs are homologues of jawed vertebrate

rods (Lamb, 2013). LPs, on the other hand, express an LWS red cone opsin and have a molecular

fingerprint consistent with cones (Muradov et al., 2008). Here, we examined single lamprey

photoreceptors at the levels of their inner and outer segments using two different recording techniques

that provide complementary information, to establish the extent to which SPs operate like jawed

vertebrate rods. We found multiple striking similarities that, taken together, argue against convergent

evolution, implying that middle Cambrian vertebrates possessed functionally advanced rod precursors.

Results
Using Lampetra fluviatilis, collected in Sweden and France during their spawning run, we investigated

the function of photoreceptors in retinal slices maintained at a physiological temperature of 9–11˚C.

eLife digest The eyes of humans and many other animals with backbones contain two different

types of cells that can detect light, which are known as rod and cone cells. Rod cells are much more

sensitive to light than cone cells. The rods allow us to see in dim light by amplifying weak light signals

and transmitting information to other cells, including the cones themselves. It is thought that the rod

cell evolved from the cone cell in the common ancestors of mammals, fish, and other animals with

backbones and jaws at least 420 million years ago.

Lampreys are jawless fish that diverged from the ancestors of jawed animals around 505 million

years ago, in the middle of a period of great evolutionary innovation called the Cambrian. They have

changed relatively little since that time so they provide a snapshot of what our ancestors’ eyes might

have been like back then. Like the rod and cone cells of jawed animals, the eyes of adult lampreys also

have two types of photoreceptors. However, it was not clear whether the lamprey photoreceptor cells

work in a similar way to rod and cone cells. Asteriti et al. collected lampreys in Sweden and France

during their breeding season and used patch and suction electrodes to measure the activity of their

photoreceptor cells. The experiments show that the short photoreceptor cells are more sensitive to

light than the long photoreceptors and are able to amplify weak light signals. Also, the short

photoreceptors send signals to the long photoreceptors in a similar way to how rod cells send

information to cone cells.

The similarities between lamprey photoreceptor cells and those of jawed animals support the idea

that they have a common origin in evolutionary history. Therefore, Asteriti et al. conclude that the

ability to see in low light evolved before these groups of animals diverged about 505 million years

ago. The picture that emerges is one in which our remote ancestors inhabiting the Cambrian seas

already possessed dim-light vision. This would have allowed them to colonize deep waters or to

move at twilight, an adaptation suggestive of intense competition or predation from other life forms.

DOI: 10.7554/eLife.07166.002
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Dark membrane potentials and
inner segment properties of SPs
and LPs
First, we made perforated patch-clamp recordings

from photoreceptor inner segments and found that

the dark membrane potential was of −43.2 ± 0.7

mV for SPs (n = 30) and −45.9 ± 1.1 mV for LPs (n =
10) (Table 1); these values are in line with those of

jawed vertebrate rods and cones (Cangiano et al.,

2012). Input resistances were 518 ± 41 MΩ (n = 8;

SPs) and 442 ± 68 MΩ (n = 9; LPs). The membrane

time constants, obtained by fitting single exponen-

tials to the early rise of a current step response,

were 31.9 ± 4.9 ms (n = 8; SPs) and 12.9 ± 1.3 ms

(n = 9; LPs) (p < 0.001), equivalent to low-pass

filtering with cut-off frequencies of ∼5 Hz for SPs

and ∼12 Hz for LPs. Thus, the electrical properties

of the inner segments of SPs seem adapted to

process slower photocurrent changes than those of

LPs. Both SPs (n = 7) and LPs (n = 2) expressed the

hyperpolarization-activated current Ih, similarly to

rods and cones (Della Santina et al., 2012); Ih was

abolished by ZD7288 (100 μM, n = 1 SP; Figure 1B).

SPs feed their signals to LPs
Light stimulation evoked a hyperpolarization in

both photoreceptors (Figure 1C,D), with peak

changes in membrane potential of up to 30 mV

(SPs) and 32 mV (LPs) in response to saturating

flashes. The amplitudes of the flash responses

from SPs were described by exponential

saturation functions (Figure 1C,E). From the

curves, we obtained a ratio of 4.4 ± 0.9 (n = 5)

for the sensitivities of these photoreceptors at

520 nm and 590 nm. This value is in reasonably

good agreement with the ratio of 5.6 pre-

dicted by an 11A1 visual pigment template

(Govardovskii et al., 2000) having a λmax of

517 nm (Figure 1—figure supplement 1A),

the absorbance maximum of SP outer seg-

ments found with microspectrophotometry

(Govardovskii and Lychakov, 1984), and is

thus consistent with the expression of an Rh1

visual pigment. For LPs, the flash responses

displayed two components (Figure 1D,F): the

first component had kinetics, sensitivity, and

spectral preference similar to SPs; the second

component had faster kinetics, lower sensitiv-

ity, and a ratio of sensitivities at 520 nm and

590 nm of 1.1 ± 0.04 (n = 6). This ratio agrees

with the value of 1.1 predicted by an 11A1

template (Govardovskii et al., 2000), whose λmax is

set at 555 nm (Figure 1—figure supplement 1A),

the absorbance maximum of LP outer segments

(Govardovskii and Lychakov, 1984), consistent

Figure 1. Signal processing in the inner segment of

lamprey photoreceptors resembles that found in

jawed vertebrates. (A) Image of a live retinal slice

showing the layered organization of lamprey photo-

receptors: short photoreceptors (SPs) in an inner tier

and long photoreceptors (LPs) in an outer tier. Scale

bar 10 μm. (B) Photoreceptors express the Ih current:

membrane current of a SP in response to hyper-

polarizing voltage clamp steps (from a holding

potential of −53 mV to −60/−67/−74/−81/−88/−95/
−102/−109 mV and repolarization to −65 mV) in

control and during superfusion of the Ih blocker

ZD7288 at 100 μM. Records are not averages. (C–F)

Photovoltage responses reveal that SPs feed their

signals into LPs. (C and D) Average responses to 520-

nm flashes of a SP (0.5, 1.6, 5.4, 15, 45, 136, 398, 1128

photons·μm−2) and a LP (16, 51, 170, 469, 1413, 4314,

12,597, 38,847, 77,695 ph·μm−2). Insets show their

outer segments (scale bars 5 μm). (E and F) Response

amplitudes to 520-nm (green circles) and 590-nm

flashes (orange circles with a dot) of a SP and a LP.

Fits are exponential saturation functions (for the LP

restricted to the first component: see text). In panel

E, left and right ordinate values refer to left and right

data sets, respectively, which were adjusted to match

saturating amplitudes. In panel F such an adjustment

could not be performed. Error bars are SEM. Action

spectra templates for SPs and LPs are shown in

Figure 1—figure supplement 1.

DOI: 10.7554/eLife.07166.003

Figure 1. continued on next page
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with their expression of an LWS pigment. It is

likely that the first component of the flash

response from LPs represents input from SPs,

probably mediated by gap junctions; this ar-

rangement would represent in lamprey retina an

arrangement homologous to rod-cone coupling

in jawed vertebrates (Asteriti et al., 2014). In

support of this interpretation, we observed with Lucifer Yellow injection thin telodendria emanating

from the synaptic pole of the photoreceptors and extending laterally into the inner plexiform layer

(Figure 2): the only known function of these processes in jawed vertebrates is that of forming inter-

photoreceptor junctional contacts (O’Brien et al., 2012). We attempted to uncouple these cells

pharmacologically with MFA (100 μM) or 2-APB (10–20 μM), known blockers of retinal gap junctions,

but unfortunately these agents produced marked non-specific effects (not shown).

SPs display bleaching desensitization
During their spawning run, lampreys do not feed and rely exclusively on stored reserves for several

months, leading to a vitamin A deficiency (Wald, 1942) that could hinder visual pigment regeneration.

Figure 1. Continued

The following figure supplement is available for figure 1:

Figure supplement 1. Predicted action spectra of SPs

and LPs and their relative sensitivities at 520 and 590 nm.

DOI: 10.7554/eLife.07166.004

Table 1. Electrophysiological parameters of SPs and LPs listed in the order they appear in the main text

Parameter

Patch clamp Suction electrode

SPs LPs SPs

Vdark (mV) −43.2 ± 0.7 (n = 30) −45.9 ± 1.1 (n = 10) –

IRmembrane (MΩ) 518 ± 41 (n = 8) 442 ± 68 (n = 9) –

τmembrane (ms) 31.9 ± 4.9 (n = 8)[]a 12.9 ± 1.3 (n = 9) [***]a –

Max response (mv) 30 32 –

i1/2 (520 nm ph·μm−2); control 149 ± 25 (n = 10) []b 1.9 × 105 ± 1.1 × 105 (n = 7) []c –

i1/2 (520 nm ph·μm−2); regenerated 63 ± 11 (n = 12) [**]b 2385 ± 513 (n = 7) [*]c –

Sensitivity 520/590; control 4.4 ± 0.9 (n = 5) []d 1.1 ± 0.04 (n = 6) []e –

Sensitivity 520/590; regenerated 5.6 ± 1.0 (n = 5) [n.s.]d 1.8 ± 0.1 (n = 7) [**]e –

Integration time, dim flash (s); control 0.32 ± 0.05 (n = 13) []f – –

Integration time, dim flash (s);
regenerated

0.81 ± 0.14 (n = 9) [***]f – 1.45 ± 0.10 (n = 10)

TTP at i1/2 (s); regenerated 0.29 ± 0.04 (n = 11) []g 0.11 ± 0.007 (n = 10) [***]g –

τrec at i1/2 (s); regenerated 1.05 ± 0.27 (n = 11) []h 0.12 ± 0.02 (n = 10) [***]h –

i1/2 (λmax ph·μm−2); regenerated 63 ± 11 (n = 12) []i 777 ± 167 (n = 7) [***]i –

Dim-flash sensitivity (mV·ph−1·μm2);
regenerated

0.61 ± 0.17 (n = 8) – –

Dim-flash sensitivity (%·ph−1·μm2);
regenerated

3.0 ± 0.6 (n = 8) – –

a (pA); regenerated – – 0.41 ± 0.04 (n = 10)

a% (%·R* −1); regenerated 2.6 ± 0.5 (n = 8) – 2.6 ± 0.3 (n = 10)

SNR; regenerated – – 1.5 ± 0.1 (n = 10)

Idark (pA); regenerated 13 ± 3 (n = 4) – 16 ± 1 (n = 10)

Collecting area (μm2·R*·ph−1);
regenerated

– – 0.83 ± 0.17 (n = 10)

Amplification constant (s−2); regenerated – – 0.59 ± 0.09 (n = 10)

Values are given as ‘mean ± SEM (sample size) [statistical significance]identifier letter’; n.s.: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; Vdark: dark

membrane potential; IRmembrane: input resistance; τmembrane: membrane time constant; i1/2: half-maximal response flash strength; TTP: time-to-peak; τrec:
decay time constant; a: absolute single photon response; a%: fractional single photon response; SNR: signal-to-noise ratio; Idark: dark current; SPs: short

photoreceptors; LPs: long photoreceptors.

DOI: 10.7554/eLife.07166.010
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We thus wondered whether some of the visual

pigment in our preparations might have been in

a bleached state (i.e., devoid of its light-sensing

chromophore). Clarifying this point was a crucial

prerequisite to our subsequent assessment of

single photon processing by SPs, for reasons

explained in the rest of this paragraph. In jawed

vertebrates, bleached rod and cone opsins con-

stitutively activate the phototransductive cascade

at a very low rate (Cornwall and Fain, 1994;

Cornwall et al., 1995). Due to this property in

rods, in which pigment regeneration is much

slower than in cones, bleaches of even a small

fraction of the total pigment pool caused by

bright light lead to a significant and long-lasting

desensitization, which is much larger than what is

expected from the simple decrease in light-

sensitive visual pigment molecules (Fain et al.,

2001; Lamb and Pugh, 2004). Bleaching de-

sensitization thus leads to a reduction in photo-

transduction gain, and therefore, in the single

photon response amplitude. Assuming that lam-

prey opsins behave similarly to those of jawed vertebrates, the possible presence of bleached visual

pigment in our experiments (see above) raises the possibility that SPs were desensitized relative to

their full potential.

To examine whether this was the case, we regenerated any bleached visual pigment molecules by

superfusing the retinal slices in the recording chamber with the artificial analog 9-cis-Retinal (100 μM
for 20–25 min). The sensitivity at 520 nm of two SPs, recorded both in control and during delivery of 9-

cis-Retinal, increased by 2.0 and 2.5-fold (Figure 3A). Moreover, sensitivity was higher (p < 0.01) in

regenerated than in control SPs: half-maximal response at 520 nm evoked with flashes (i1/2) of 63 ± 11

photons·μm−2 (n = 12; regenerated) vs 149 ± 25 photons·μm−2 (n = 10; control). Thus, some of the

visual pigment molecules in SP outer segments were indeed bleached. The ratio of sensitivities at 520

Figure 3. Visual pigment regeneration reveals the full sensitivity of photoreceptors in the upstream migrating river

lamprey. (A) Photovoltage response amplitudes to 520-nm flashes before (gray circles) and after visual pigment

regeneration with 9-cis-Retinal (red circles with a dot) of a SP. Left and right ordinate values refer to left and right

data sets, respectively, which were adjusted to match saturating amplitudes. (B) Normalized-averaged-normalized

dim-flash photovoltage responses in control (n = 13) and regenerated SPs (n = 9), highlighting the difference in

integration time. These records were obtained as follows: (i) the average dim-flash response of each SP was

normalized to its peak amplitude (always below 2 mV), (ii) normalized responses were averaged across cells, (iii) the

final average was normalized to its peak. Shaded areas show ±1 SEM. (C) Photovoltage response amplitudes to 520-

nm flashes before (gray circles) and after visual pigment regeneration with 9-cis-Retinal (red circles with a dot) of

a LP. Responses to 590-nm flashes are also shown (small empty circles; error bars are smaller than circle diameter).

Error bars are SEM.

DOI: 10.7554/eLife.07166.006

Figure 2. Lamprey photoreceptors extend telodendrial

processes. An example of a lucifer yellow stain of a live

SP showing two thin processes (arrowheads) extending

laterally from the synaptic pole into the outer plexiform

layer.

DOI: 10.7554/eLife.07166.005
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and 590 nm did not differ significantly (p = 0.42) between regenerated and control SPs: 5.6 ± 1.0 (n =
5; regenerated) vs 4.4 ± 0.9 (n = 5; control). To test whether such bleaching was associated to

desensitization, we examined dim-flash integration time (Jones et al., 1996). In one SP, integration

time increased by 2.6-fold after superfusion with 9-cis-Retinal and the same parameter was

significantly higher (p < 0.001) in regenerated than in control SPs (Figure 3B): 0.81 ± 0.14 s (n = 9;

regenerated) vs 0.32 ± 0.05 s (n = 13; control). These results strongly suggest that SPs were in a state

of bleaching desensitization.

Although secondary to the main goal of this analysis, we also tested the effect of 9-cis-Retinal on

LPs. In one LP, the sensitivity at 520 nm increased by 22-fold after superfusion with 9-cis-Retinal

(Figure 3C; second, lower sensitivity component). Moreover, sensitivity was much higher (p < 0.05)

in regenerated than in control LPs: half-maximal response at 520 nm evoked with flashes (i1/2) of

2385 ± 513 photons·μm−2 (n = 7; regenerated) vs 1.9 × 105 ± 1.1 × 105 photons·μm−2 (n = 7; control;

second, lower sensitivity component; see ‘Materials and methods’ for details on the uncertainty of

this specific value). As expected for the incorporation of 9-cis-Retinal in a significant fraction of the

LP visual pigment pool (Makino et al., 1999), this increase in sensitivity was associated with a

marked hypsochromic shift. Specifically, the ratio of sensitivities at 520 and 590 nm went from 1.1 to 1.7 in

the single LP treated with 9-cis-Retinal (Figure 3C, compare large and small circles) and was significantly

higher (p < 0.01) in regenerated than in control LPs: 1.8 ± 0.1 (n = 7; regenerated) vs 1.1 ± 0.04

(n = 6; control).

To examine the properties of lamprey photoreceptors under fully dark-adapted conditions, all

subsequent experiments were made on retinas pretreated with 9-cis-Retinal.

SPs are intrinsically slower than LPs
After pigment regeneration, the photovoltage responses of SPs, recorded with patch clamp,

remained markedly slower than those of LPs (Figure 4A,B). To characterize the photoreceptors’

kinetics, for each recorded cell we plotted time-to-peak (TTP) and decay time constant (τrec) as

a function of flash strength normalized to its half-maximal value (i1/2) (Figure 4C,D). From linear fits to

the data, we estimated the values of these

parameters at i1/2: for SPs, the TTP was 0.29 ±
0.04 s (n = 11) and the τrec was 1.05 ± 0.27 s (n

= 11). In contrast, for LPs, the TTP was only 0.11

± 0.007 s (n = 10; p < 0.001) and the τrec only

0.12 ± 0.02 (n = 10; p < 0.001). Therefore, when

compared at flash strengths eliciting responses

of similar fractional amplitude, SPs were indeed

slower than LPs. Importantly, while the estimates

of TTP and τrec in LPs may have been influenced

to some degree by the signals that are fed to

them from SPs (see above), the latter would

have acted to reduce (rather than increase) the

differences in kinetics between the two

photoreceptors.

SPs are intrinsically more sensitive
than LPs
To compare the intrinsic light sensitivity of

regenerated SPs and LPs, we first considered

whether we should correct their half-maximal

flash strengths (i1/2) measured at 520 nm for: (i)

the position of the peaks of their action spectra

(λmax) with respect to the stimulus wavelength

and (ii) the smaller quantum efficiency of pigment

bound to 9-cis-Retinal (about one third; Hubbard

and Kropf, 1958; Hurley et al., 1977). Both

factors have the effect of reducing the sensitivity

Figure 4. SPs are markedly slower than LPs. (A and B)

Average responses to 520-nm flashes of a SP (0.5, 1.6,

5.4, 15, 45, 136, 398, 1128 photons·μm−2) and a LP (16,

51, 170, 469, 1413, 4314, 12,597, 38,847, 77,695 ph·μm−2),

both recorded with patch clamp after visual pigment

regeneration with 9-cis-Retinal. (C and D) Plots of

time-to-peak (TTP) and decay time constant (τrec) vs
flash strength, normalized to its half-maximal value i1/2, in

regenerated SPs (n = 11; empty circles) and LPs (n = 10;

full circles). The data from each cell are connected by lines.

DOI: 10.7554/eLife.07166.007
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displayed by the photoreceptor with respect to its maximum achievable level.

For SPs, we made the conservative assumption that they incorporated only a negligible amount of

9-cis-Retinal, as suggested by their limited increase in sensitivity following regeneration combined

with their expression of bleaching desensitization (and supported by the non-significant change in

their 520/590 nm sensitivity ratios). This implied that our 520-nm flashes essentially coincided with

λmax (517 nm, see above) and that no correction was necessary for their i1/2 of 63 ± 11 photons·μm−2

(n = 12). Given the conservative nature of the above assumption, this value provides a lower bound for

the maximal sensitivity of fully dark-adapted SPs.

For LPs, we made the equally conservative assumption that their entire visual pigment pool was

replaced with 9-cis-Retinal. We then predicted their modified action spectrum (Figure 1—figure

supplement 1B) by slightly adjusting two parameters of the 9A1 template for red cones of Makino

et al. (1999) (λmax_A0 from 508 to 507 nm and λmax_G1 from 567 to 566 nm; see their Table 2) so as to

match our experimentally determined ratio of sensitivities at 520 and 590 nm of 1.8 ± 0.1 (n = 7; see

above). Taking into account the off-peak position of our flashes (520 nm) relative to the λmax of this

action spectrum (541 nm) and the smaller quantum efficiency of regenerated pigment, the corrected

i1/2 of LPs was 777 ± 167 photons·μm−2 (n = 7). Given the conservative initial assumption, this value

provides an upper bound for the maximal sensitivity of fully dark-adapted LPs. The i1/2 of LPs was

much higher than that of SPs (p < 0.001). Note that signals feeding from SPs into LPs would have

acted to reduce (rather than increase) the differences in sensitivity between the two photoreceptors,

leaving our conclusions unchanged.

The single photon response of SPs is within the range of jawed
vertebrate rods
A crucial functional measure of the position of lamprey SPs with respect to the evolutionary transition

from an ancestral cone to the modern rod is their performance in amplifying single photons (Lamb,

2013). Regenerated SPs were highly sensitive, with absolute and fractional dim-flash sensitivities in

patch clamp of 0.61 ± 0.17 mV·photons−1·μm2 (n = 8) and 3.0 ± 0.6%·photons−1·μm2 (n = 8).

We obtained a first estimate of their fractional single photon response of 2.6 ± 0.5%·R* −1 (n = 8)

by dividing the fractional dim-flash sensitivity with a theoretical effective collecting area of

1.18 μm2·R*·photons−1 (see ‘Materials and methods’). A search for quantal responses using the

patch-clamp technique proved inconclusive, as also observed in similar recordings of photo-

receptors from those jawed vertebrates having extensively coupled rods (Fain, 1975). We thus

performed suction electrode photocurrent recordings from the conical outer segments of SPs, in

retinae pretreated with 9-cis-Retinal (100 μM for 20–25 min): this recording technique only measures

the current flowing through the membrane enclosed in the pipette and is thus ideally suited to examine

phototransduction in a given photoreceptor without an appreciable contribution of its electrically

coupled neighbors (Baylor et al., 1979a). Under these conditions, responses to repeated delivery of

dim flashes were highly variable in amplitude (Figure 5A). We estimated the absolute amplitude of

the single photon response (a) to be 0.41 ± 0.04 pA (n = 10), by dividing the increase in the time-

dependent variance by the mean response for each SP (Figure 5B) (Rieke and Baylor, 1998) (for

details on the use of variance analysis in single photon response estimation see the ‘Materials and

methods’). The normalized time-dependent squared mean responses and variance increases

overlapped (Figure 5B) (Rieke and Baylor, 1998), consistent with the single photon responses

being governed by Poisson statistics. The fractional amplitude of the single photon response (a%),

determined for each SP on the basis of its maximal response to a single saturating flash delivered

prior to the dim flash trains, was 2.6 ± 0.3%·R* −1 (n = 10), in line with the independent estimate

obtained with patch (see above). Lastly, the signal-to-noise ratio (SNR), determined for each SP as the

ratio of a over the standard deviation of the biological component of dark noise measured between

consecutive dim flashes (0.5–20 Hz), was 1.5 ± 0.1 (n = 10). Importantly, the values of a, a%, and SNR in

SPs are within the range reported for jawed vertebrate rods (Figure 6). In these experiments, we:

(i) recorded only from intact outer segments (Figure 1C, inset), (ii) observed similar dark currents

(maximum current change with a saturating flash) with patch clamp (13 ± 3 pA, n = 4) and suction

electrodes (16 ± 1 pA, n = 10), and (iii) measured similar collecting areas (0.83 ± 0.17 μm2·R*·photons−1,
n = 10; ratio of the squared mean response over the product of the variance increase and the flash

strength [Rieke and Baylor, 1998]) to theoretical prediction (1.18 μm2·R*·photons−1). From this, it is
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highly likely that we had complete suction of the

outer segment, and as such, we could make

reliable estimates of a% and SNR.

The single photon response analysis made

with suction pipettes allowed us to estimate an

amplification constant of phototransduction

(Pugh and Lamb, 1993) in lamprey SPs of 0.59

± 0.09 s−2 at 9–11˚C (n = 10), which lies between

that of the large amphibian rods at room

temperature (∼0.1 s−2) and that of small mam-

malian rods at body temperature (∼8 s−2) (Lamb

and Pugh, 2006). The integration time measured

with suction electrodes was 1.45 ± 0.10 s (n = 10),

somewhat higher than that obtained with patch

clamp (which also incorporates downstream

processing in the inner segment). Taken to-

gether, the high-amplification constant and rela-

tively long integration time are key contributors

to SPs’ single photon performance.

Discussion
We examined lamprey SPs and LPs and found

that their general properties closely match those

of jawed vertebrate rods and cones: dark

membrane potentials of around −45 mV, hyper-

polarizing responses of up to 30 mV upon

illumination, and the expression of a prominent

hyperpolarization-activated Ih current are all

typical traits of jawed vertebrate photoreceptors

and must therefore have been in place already by

the middle Cambrian. A similar conclusion can be

made for bleaching adaptation, which we con-

firmed to be present in SPs. In jawed vertebrates,

this phenomenon is the result of a very low-

constitutive activity of free opsin and occurs in

both rods and cones exposed to bleaching lights

(Cornwall and Fain, 1994; Cornwall et al., 1995;

Fain et al., 2001; Lamb and Pugh, 2004). To

assess whether SPs, the phylogenetic homo-

logues of rods (Pisani et al., 2006; Muradov

et al., 2008; Lamb, 2013), also operate like rods,

we focused on multiple properties both at the

level of single photon detection in the outer segment and of downstream signal processing in the

inner segment. The rationale behind this approach is that, even if individual functional parameters of

SPs and rods could have evolved independently towards a common present state (convergent

evolution), this becomes quite unlikely if multiple common features are observed.

We find that SPs are exquisitely sensitive to light and feed their signals to the less sensitive but

intrinsically faster LPs, similarly to the way rods feed their signals to cones via gap junctions in jawed

vertebrates (Asteriti et al., 2014). The likely anatomical substrate of this signal crossover is

represented by the thin telodendrial processes that we observed to extend laterally from the synaptic

pole of the photoreceptors. Telodendria are ubiquitous in jawed vertebrates and their only known

function is to form gap junctional contacts with nearby photoreceptors (O’Brien et al., 2012). While in

mammals these processes are known to extend only from cone pedicles, in cold-blooded vertebrates

they are also formed by rods (Fadool, 2003). Since rod-cone coupling is thought to provide

a secondary route for rod signals when the high-gain output synapse of rods is saturated (Attwell

et al., 1987), the question arises of whether lamprey SPs have properties of synaptic transmission

Figure 5. Suction electrode recordings of SP

photocurrents in the single photon regime. (A) Sam-

ples of dim-flash response trains recorded from the

outer segments of 4 SPs (SP1: flash strength = 1.64

photons·μm−2, a = 0.25 pA; SP2: 3.26 ph·μm−2, 0.43 pA;

SP3: 1.64 ph·μm−2, 0.56 pA; SP4: 3.26 ph μm−2, 0.56·pA).
(B) Single photon response analysis from one SP (SP3 in

panel A), showing the mean response μ (thin trace: gross

mean response, dotted trace: mean dark current, thick

trace: net mean response), time-dependent variance σ2

(thin trace: gross variance, dotted trace: dark current

variance, thick trace: net variance), normalized squared

mean response norm μ2 (thin trace) and variance norm σ2

(thick trace). Dashed lines indicate the current baseline

or zero level. Dark current records were taken from the

last 2 s preceding each flash and where baselined in the

first 1.1 s, therefore, dark and net current records cover

up to 0.9 s after the flash (see ‘Materials and methods’).

DOI: 10.7554/eLife.07166.008
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similar to those of rods and a dedicated postsynaptic circuitry for scotopic signaling. Furthermore, in

mammalian photoreceptors, the Ih current has been proposed to assist rod-cone signaling via gap

junctions (Seeliger et al., 2011), a role it could also play in the lamprey retina given the presence of

telodendria and SP–LP signal flow.

The functional similarities between lamprey SPs and jawed vertebrate rods discussed above,

extend to the efficient processing in the single photon regime. With regards to scotopic performance,

we found that dark-adapted SPs approach the efficiency of jawed vertebrate rods, both in terms of

absolute and fractional single photon response and of its SNR. Here, it is important to note that while

Figure 6. Lamprey SP single photon response parameters in the context of those of jawed vertebrate rods. River

lamprey: this study; Jawed vertebrates: previous studies. (A) Absolute amplitude of the single photon response (a).

(B) Fractional amplitude of the single photon response (a%). (C) Signal-to-noise ratio (SNR). Data points shown in the

figure were obtained with suction pipette recordings of photoreceptor outer segments. Error bars for lamprey are

SEM. Letters next to the data points correspond to the following references: a (Palacios et al., 1998), b (Ala-Laurila

et al., 2007), c (Baylor et al., 1984), d (Baylor et al., 1979a, 1979b), e (Baylor et al., 1980), f (Nakatani et al.,

1991), g (Robinson et al., 1993), h (Field and Rieke, 2002b), i (Field and Rieke, 2002a), j (Okawa et al., 2010), k

(Mendez et al., 2001), l (Burns et al., 2002), m (Azevedo and Rieke, 2011), n (Krispel et al., 2006), o (Luo and

Yau, 2005), p (Makino et al., 2004), q (Wen et al., 2009), r (Gross and Burns, 2010), s (Palma et al., 2001), t

(Donner et al., 1990), u (Vogalis et al., 2011), v (Nikonov et al., 2006), w (Rieke and Baylor, 2000).

DOI: 10.7554/eLife.07166.009
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the fractional single photon response a% and the SNR are potentially subject to overestimation due to

the fact that their denominators (the circulating current in darkness for a% and the biological dark

noise for the SNR) appear smaller if the outer segment is damaged or is not fully within the recording

pipette (see however the evidence above that these conditions were respected in our experiments),

this issue does not exist when estimating the absolute amplitude a.

Taken together, our findings raise the strong possibility that our last common ancestor in the

middle Cambrian had already evolved scotopic vision. Recent evidence indicates that the lamprey line

diverged soon after (Smith et al., 2013) the occurrence of two rounds of whole-genome duplication in

stem vertebrates (2R) (Dehal and Boore, 2005; Putnam et al., 2008), which led to the diversification

of the ancestral visual opsin and phototransduction protein repertoire (Lagman et al., 2013).

Therefore, dim-light vision appears to have been acquired rapidly once a dedicated set of genes

became available for specializing a type of cone into the rod (Okano et al., 1992; Yokoyama, 2000;

Lamb et al., 2007; Kawamura and Tachibanaki, 2008; Shichida and Matsuyama, 2009). Admittedly,

one cannot definitively exclude that such performance was refined independently in the two branches

following their split ∼505 Ma (Erwin et al., 2011): to do so, one would need to resurrect

(Thornton, 2004) the full ancestral phototransductive cascade and then characterize its function.

However, our data provide compelling support for the view that the evolution of the modern rod

was already well under way at the time of divergence of the two branches: (i) the similarities

between SPs and rods are multiple and extend from phototransduction to downstream processing,

(ii) the photoreceptors specialized for scotopic vision in lampreys and in jawed vertebrates derive

from one and the same precursor (and not from different ancestral cones), (iii) some of the

phototransduction protein isoforms examined thus far in SPs clade with those of rods. This newly

evolved ability to operate in dim light would have provided a significant advantage to early

vertebrates faced with intense competition in a rapidly evolving ecological landscape (Paterson

et al., 2011; Lacalli, 2012).

In coincidence with the submission of the present work, a study on the photoreceptors of

a different species of lamprey was published (Morshedian and Fain, 2015), based on suction

electrode recordings from outer segments. Although our study examines a broader range of

photoreceptor properties, with both patch-clamp and suction electrode recordings, the two studies

converge on the positive response to single photons.

Materials and methods
L. fluviatilis of both sexes were collected during their spawning run either: (i) in the Swedish river Dal

while migrating upstream from the gulf of Bothnia, at the end of summer 2013 or (ii) in the French river

Garonne while migrating upstream from the Atlantic ocean, at the end of winter 2015. The animals

were housed in a tank containing artificial water mimicking either: (i) that of the drainage lakes in the

Dalarna region (Arnemo, 1964): (in μM) 60 CaSO4, 110 NaHCO3, 60 MgCl2, 20 KCl, 290 CaCO3 or

(ii) that of the Garonne (Etchanchu and Probst, 1988): (in μM) 223 CaSO4, 431 NaHCO3, 200 MgCl2,

42 KCl, 907 CaCO3. Both water types were supplemented with 5% bottled mineral water for trace

elements. Tank water temperature was kept at 5–6˚C (i.e., below the spawning threshold of this

species [Hardisty and Potter, 1971]) and steady state pH was 7.2. A 10-hr light/14-hr dark cycle was

adopted, except in preparation for the electrophysiological experiment when the animals were dark-

adapted for at least 24 hr. Lampreys were deeply anesthetized with 400 mg/l tricaine

methanesulfonate (MS-222; E10521, Sigma–Aldrich, St. Louis, MO) and decapitated. All subsequent

procedures were performed under dim far-red light in ice-cold bicarbonate buffered Ames’ medium

(A1420, Sigma–Aldrich), equilibrated with O2/CO2. Main constituents of Ames’ are (in mM) 120 NaCl,

22.6 NaHCO3, 6 D-glucose, 3.1 KCl, 1.2 MgSO4, 1.1 CaCl2, 0.5 KH2PO4, 0.5 L-glutamine. The head

was pinned down in a sylgard-lined dissection chamber, the primary eye spectacles and the corneas

were removed by performing circular cuts with fine scissors and the eyes enucleated with the lenses

still in situ. One eyecup was transferred to the slicing chamber where the lens was removed and the

retina gently detached from the sclera and extracted, while the other was stored in the fridge in

bicarbonate buffered Ames’ under an O2/CO2 atmosphere and used the following day. Slices of 250-

μm thickness were obtained as previously described for the mouse retina (Cangiano et al., 2012),

transferred to a recording chamber, superfused with bicarbonate buffered Ames’ medium at 9–11˚C,

and visualized with DIC microscopy at 780 nm. For suction electrode recordings only, 0.25 mg ml−1
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hyaluronidase type IV (H3884; Sigma–Aldrich) was added to the slicing solution to clear the

extracellular matrix surrounding the outer segments and facilitate pipette access.

Perforated patch recordings
The inner segments of SPs and LPs lying close to the slice surface (Figure 1A) were visually targeted

with 5–6 MOhm pipettes pulled with a P-97 (Sutter Instruments, Novato, CA) from borosilicate

glass capillaries (1B120F-4, WPI, Sarasota, FL) and filled with a solution containing (in mM) 90

Kaspartate, 20 K2SO4, 15 KCl, 10 NaCl, 5 K2Pipes, as well as 0.5 mg ml−1 Lucifer yellow, and

corrected to a pH of 7.20 with KOH/HCl. The backfilling solution also contained 0.4 mg ml−1

Amphotericin B (item no. 11636, Cayman, Ann Arbor, MI) pre-dissolved in dimethyl sulfoxide

(DMSO) at 60 mg ml−1. Based on an analysis of the liquid junction and Donnan potentials when

using this solution and recording photoreceptors (Cangiano et al., 2012), we report uncorrected

values of membrane potential. Recordings were made with an Axopatch 1D amplifier, low-pass

filtered at 500 Hz and acquired at 5 KHz with a Digidata 1320 and pClamp 9 software (Molecular

Devices, Sunnyvale, CA).

Suction electrode recordings
The outer segment current of intact SPs lying close to the slice surface (Figure 1C, inset) was recorded

with suction electrodes (Baylor et al., 1979a). Specifically, glass capillaries (intraMARK, Blaubrand,

Germany) were pulled with a P-97, broken to obtain even tips of 10–20 μm and heat polished to

∼4-μm inner diameter. Tips were silanized by dipping in Sigmacote solution (SL2, Sigma–Aldrich),

followed by vigorous back suction in air. Finally, pipettes were rinsed and filled with filtered Ames’

medium, for a resistance in the bath of 2–3 MOhm. Intrapipette pressure was controlled with

a pneumatic system filled with light mineral oil (330779; Sigma–Aldrich) using coarse and fine

precision syringes (100 μL and 10 μL; Hamilton, Reno, NV) actuated by micrometer heads. Recordings

were made in voltage clamp (holding voltage set at zero) with the same apparatus described above,

except that signals were low-pass filtered at 20 Hz before acquisition (4-pole Bessel filter).

Light stimulation
Full-field stimuli of unpolarized light were delivered by a green LED (520 nm; OD520; Optodiode

Corp., Newbury Park, CA) or a yellow-orange LED (590 nm; APG2C3-590; Roithner LaserTechnik,

Austria) mounted beside the objective turret. LEDs were driven by current sources commanded

through the analog outputs of a Digidata 1320A (Axon Instruments, Foster City, CA). The power

density reaching the recording chamber vs LED drive was measured separately with a calibrated low-

power detector (1815-C/818-UV; Newport, Irvine, CA) positioned at the recording chamber. Flash

duration was in the range 1–27 ms. Consecutive bright flashes were delivered at intervals of 13 s

between each other. The photon flux density reaching the photoreceptors was derived from the

measured power density and was likely to be overestimated to varying degrees across recorded cells

due to reflection at the air–water interface and absorption by the surrounding tissue. In patch-clamp

recordings, outer segments were generally, but not strictly, oriented at right angles with respect to

the direction of incident light. In suction electrode recordings, orthogonality was instead guaranteed

by the pipette itself.

Pigment regeneration and pharmacology
Where specified, any bleached visual pigment was regenerated with the artificial chromophore analog

9-cis-Retinal. Stock solutions of 9-cis-Retinal (R5754; Sigma–Aldrich) in ethanol (100 mM) were prepared

in darkness and stored at −80˚C. On the day of the experiment, an aliquot was thawed and diluted to

a final concentration of 100 μM in Ames’ medium integrated with 1% wt/vol fatty acid-free bovine serum

albumin (A8806; Sigma–Aldrich), an effective solubilizing and protective agent (Li et al., 1999). This

solution was delivered to the preparation directly in the recording chamber, without modifying flow rate

or temperature, for 20–25 min followed by washout. A pharmacological blockade of gap junctions was

attempted with meclofenamic acid (MFA; M4531, Sigma–Aldrich) and 2-aminoethyl diphenylborinate

(2-APB; D9754, Sigma–Aldrich). The Ih current was blocked with 4-Ethylphenylamino-1,2-dimethyl-6-

methylaminopyrimidinium chloride (ZD7288; cat. no. 1000, Tocris, United Kingdom).
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Collecting area
The effective collecting area of SPs was estimated according to the approximate relation

(Baylor et al., 1979b):

Ac =2:303 ·V · f · α ·Qisom; (1)

where V is the volume of their truncated conical outer segments, estimated at 102 μm3 frommean values

of length (13.0 μm), basal diameter (4.5 μm), and apical diameter (1.6 μm) measured in optical images

acquired from live slices; f is a factor accounting for the dichroism of native opsin (1 for light incident

along the outer segment axis and 0.5 for unpolarized light incident at right angles); α is the specific axial

pigment density at the maximum absorption wavelength, measured (Govardovskii and Lychakov,

1984) in lamprey SPs at 0.015 μm−1, a value similar to that of lower vertebrate rods containing rhodopsin

and/or porphyropsin (Harosi, 1975); Qisom is the quantum efficiency of photoisomerization, assumed to

have the rhodopsin value of 0.67 R*·photons−1. Note that any bleached visual pigment regenerated with

9-cis-Retinal would have the somewhat different absorption spectrum and quantum efficiency of

isorhodopsin (Hubbard and Kropf, 1958; Hurley et al., 1977; Makino et al., 1999); however, this

contribution was neglected since the twofold–threefold increase in sensitivity displayed by SPs after

delivery of 9-cis-Retinal could result from the regeneration of a small fraction of bleached pigment due

to the phenomenon of bleaching desensitization (e.g., in larval tiger salamander rods, bleaching of ∼6%
rhodopsin halves sensitivity [Jones et al., 1996]).

Data analysis and reporting
Data in the text and graphs are reported as mean and standard error of the mean. Statistical

significance was assessed with the Mann–Whitney–Wilcoxon test. Integration time was defined as the

integral of the dim-flash response divided by its peak amplitude. TTP was measured starting from

the middle of the flash. Decay time constant (τrec) was estimated by fitting a single exponential to the

second half of the flash response recovery phase (i.e., starting from the point when the response had

recovered to about half of its peak amplitude).

Patch clamp
Half-maximal response flash strength (i1/2) and light sensitivity (defined as its reciprocal) were

obtained by fitting exponential saturation functions to response amplitude vs flash strength graphs. In

the fitting procedure, the brightest saturating flashes delivered to SPs were excluded since they

showed diminishing response amplitudes due to incomplete recovery from the previous flash in the 13-s

interval used in our protocols. Since the low-sensitivity response component of LPs untreated with 9-cis-

Retinal did not reach saturation with the flash strengths used in this study, fits were performed (i) by using

the saturating amplitude observed after delivery of 9-cis-Retinal (when this was available) or (ii) by

assuming a conservative saturating amplitude of 16 mV (i.e., the smallest value observed in LPs). The

second assumption implies that we likely underestimated the half-maximal flash strength of unregenerated

LPs (low-sensitivity component). Precise estimates of SP dim-flash sensitivity were obtained by dividing the

amplitude of the mean response to many dim flashes by the strength of these flashes.

Suction electrodes
The single photon response amplitude a was estimated by the established method of variance analysis

(Baylor et al., 1979b, 1984; Rieke and Baylor, 1998; Vogalis et al., 2011). Specifically, for each SP, the

net mean response and time-dependent variance were calculated, from an ensemble of at least 50-dim

flashes, as follows: (i) the gross mean response and variance were calculated after aligning the raw flash

response records by subtracting their average value in the 1.1-s interval before the flash; (ii) the mean

and variance in darkness were calculated from the 2-s interval prior to each flash, again after aligning the

raw dark records by subtracting their average value in the first 1.1 s; (iii) the net mean response and

variance were obtained by subtracting those in darkness from the gross ones, and therefore, include

only the first 0.9 s after the flash: this, however, was sufficient to encompass the peak of the dim-flash

response (Figure 5B). In those SPs in which dim flashes of two strengths were delivered, the final

estimate of a was the average of the two separate estimates, weighed by their respective number of

flashes. As in other rod studies in which a was small relative to total recorded dark noise, we could not

perform a reliable analysis of the single photon response with amplitude histograms (notably, only 6 of

the 26 estimates of a plotted in Figure 6A included histogram analysis). However, when both the
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variance and histogram techniques were employed, similar values of a were found (Baylor et al., 1979b,

1984; Vogalis et al., 2011). Biological dark noise was taken as the square root of the difference

between the recorded dark noise variance (integral within 0.5–20 Hz of the average power spectrum in

the 2.1 s before the dim flashes) and the expected thermal noise variance (Baylor et al., 1979b, 1984)

(using the measured pipette seal resistance). The amplification constant of phototransduction was

estimated by fitting the rising phase of the average dim-flash response with Equation 23 in Pugh and

Lamb (1993). For these fits, a delay teff of 23 ms was used, which was separately estimated by fitting

Equation 20 in Pugh and Lamb (1993) to full families of flash responses. The average number of

photoisomerizations/flash was a result of the single photon response analysis.

Data presentation
Exclusively for presentation purposes, the electrophysiological records shown in the figures were

conditioned as follows: (i) current-clamp patch recordings were ‘box car’ filtered with a running

window of 20 ms, (ii) voltage-clamp suction pipette recordings were detrended (Vogalis et al., 2011)

to remove slow fluctuations in the baseline current and digitally low-pass filtered at 2 Hz.
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