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Abstract Behavioral adaptation to environmental threats and subsequent social transmission of

adaptive behavior has evolutionary implications. In Drosophila, exposure to parasitoid wasps leads

to a sharp decline in oviposition. We show that exposure to predator elicits both an acute and

learned oviposition depression, mediated through the visual system. However, long-term

persistence of oviposition depression after predator removal requires neuronal signaling functions,

a functional mushroom body, and neurally driven apoptosis of oocytes through effector caspases.

Strikingly, wasp-exposed flies (teachers) can transmit egg-retention behavior and trigger ovarian

apoptosis in naive, unexposed flies (students). Acquisition and behavioral execution of this socially

learned behavior by naive flies requires all of the factors needed for primary learning. The ability to

teach does not require ovarian apoptosis. This work provides new insight into genetic and

physiological mechanisms that underlie an ecologically relevant form of learning and mechanisms for

its social transmission.

DOI: 10.7554/eLife.07423.001

Introduction
All organisms must acquire and respond to information about their environment. Some changes

in the environment are predictable or periodic, like light/dark or seasonal cycles that result in

organismal adaptation manifesting as physiological changes in order to optimize survival and

fitness in the context of a changing environment (Baldwin and Meldau, 2013; Cermakian et al., 2013).

This ability to adapt to environmental change is essential for survival, but can such an adaptive response

occur in the absence of the direct experience?

Well-defined examples of this phenomenon have been observed in what are considered ‘social’

organisms (Franks et al., 2002; Townsend et al., 2011). Yet, emerging studies are providing

mounting evidence to suggest that the use of social cues extend far beyond the traditional notions of

social animals: organisms once viewed as asocial in nature are now known to have advanced forms of

social communication (Gariepy et al., 2014). This social transmission of information can result in

distinct behavioral changes, based on another individual’s set of experiences. The ability to learn from

others influences the choices and behaviors of individuals and allows a group of individuals to share

information about a changing environment. It is speculated that social information transmission

involves either the ability to feel vicarious reward and punishment or other complex communication

strategies to transmit an individual’s experience to the community of conspecifics. The potential

benefits of adaptive behavior, based on information acquired from others within the community,

can give social learners a significant advantage over those that must directly explore and gather

environmental information for themselves. Understanding how this information transfer occurs
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and what the underlying neurological and molecular mechanisms are is critical for a compre-

hensive view of adaptive behavior across a wide range of taxa.

Many species considered as ‘social’ and ‘non-social’ communicate about the environment.

Plants have been observed to alter their physiology in response to signaling from another plant

(Baldwin and Schultz, 1983). An example of such communication involves salt stress, which has been

shown to trigger the release of volatile organic compounds that induce salt resistance in neighboring

plants that have yet to experience any salt stress (Lee and Seo, 2014). In animals, the process is

speculated to be more complex: honeybees are able to fine tune signals directed at individuals

within the hive that elicit highly specific behavioral changes in response to specific environmental

cues (Wenner, 1962; Schneider and Lewis, 2004; Richard et al., 2012). Even Drosophila are prone

to social cues, altering their decision making based on the behavior of conspecifics (Mery et al., 2009;

Sarin and Dukas, 2009; Battesti et al., 2012). It is clear that the once thought ‘fine line’ between social

and non-social organisms is beginning to blur, and that social communication is actually much more

fundamental to life than originally considered.

In animals, this ability to transmit and process information about the environment has been termed

‘social learning’ (Gariepy et al., 2014; Gruter and Leadbeater, 2014). Learning can occur in a social

context through olfactory cues, observation and instruction, or by imitation, and thus, is a mechanism

for sharing information about a changing environment (Baldwin and Meldau, 2013; Cermakian et al.,

2013). The potential benefits of adaptive behavior, based on information acquired from others within

the community, can give social learners a significant advantage over those that must directly explore

and gather environmental information for themselves. However, in general, the underlying molecular

mechanisms of social learning are almost entirely mysterious and remain a terra incognita in terms of

the strategies for communication, perception, neural plasticity, and the underlying physiological

changes that cause changes in behavior. In this study, we use endoparasitoid wasps to explore social

learning in the Drosophila model system with the aim of addressing some of these open questions.

Endoparasitoid wasps are ubiquitous keystone species in many ecosystems around the world.

These wasps prey on immature stages of other insects, using larva and pupa of certain species as hosts

eLife digest Every animal must be able to adapt to threats and changes to their environment

that could affect their survival. Some ‘social’ animals, such as honeybees and ants, go further than

this, and also transmit information about a threat—and how to survive it—to other members of their

species. This helpful behavior is now known to occur to some extent even in animals that have not

been considered to be social, like the Drosophila species of fruit fly.

Parasitoid wasps lay their eggs in the larvae and pupae of certain insect species. When the wasp

eggs hatch, they feed on the host insect, eventually killing it. Drosophila fruit flies have evolved

various behaviors to protect their offspring from these wasps. For example, female fruit flies reduce

the number of eggs they lay when they are in the presence of a wasp.

Kacsoh, Bozler et al. exposed female flies to wasps for a day. These flies produced fewer eggs

than flies that were not exposed to wasps and continued to lay fewer eggs for 24 hours after the

wasps were removed. Introducing these flies to ‘naive’ flies that had not encountered a wasp caused

the naive flies to produce fewer eggs as well.

After ruling out several possible ways that the wasp-exposed flies might ‘teach’ the naive flies to

produce and lay fewer eggs, Kacsoh, Bozler et al. found that naive flies cannot learn this behavior

when they are blind. In addition, exposed flies cannot instruct other flies of the threat if their wings

are absent or deformed. These and other findings, therefore, suggest that information about the

wasp threat is transmitted through visual cues that involve the wings.

Kacsoh, Bozler et al. found that the flies must have certain brain circuits associated with memory

and learning to be able to teach others and to reduce the numbers of eggs they lay after the wasp

has been removed. This suggests that signals from this brain region must be continually sent out to

alter the physiology of the developing eggs in order to maintain the lower rate of egg laying;

understanding how flies use visual cues for communication and how the brain signals to the ovary

remain key challenges for future work.

DOI: 10.7554/eLife.07423.002
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for their own offspring. Such wasps pose a serious threat to juvenile Drosophila, with infection rates as

high as 90% in natural populations (Janssen et al., 1988; Driessen et al., 1990; Fleury et al., 2004).

Adult Drosophila have evolved complex behavioral changes to protect their offspring from these

predatory wasps, including altered food preference and reduced oviposition rates (Lefevre et al., 2012;

Kacsoh et al., 2013). Adult Drosophila themselves are not infected by these wasps, thus, making the

change in reproductive behavior beneficial only to an anticipated threat to their offspring and not

a response to predation itself. A remarkable feature of this altered reproductive behavior is that female

Drosophila never having seen this predator can nevertheless robustly and reproducibly respond to it,

suggesting an innate recognition of this predator-threat. Here, we use this natural predator system to

explore predator threat communication within Drosophila melanogaster and describe the specific

learning, memory, and anatomical components necessary for this response. Our findings report the first

example of social learning in Drosophila that can be delineated from simple mimicry, through the use of

a natural predator. Exposure to the predatory wasp results in a distinct germ line-cell physiological

apoptotic response in both flies having seen the wasp (direct experience) or flies having been paired

with experienced individuals (social learning), which is clearly independent of mimicry. Furthermore, we

address the genetic factors, neural circuits, and behavioral changes necessary for the transmission of this

socially learned alteration in germ line physiology.

Results

Flies respond to wasps by decreasing oviposition and are able to confer
this information to naive flies
Drosophila melanogaster alters its egg-laying behavior after it encounters parasitoid wasps,

which infect fly larvae. This behavioral change entails at least two different and quantifiable

behavioral responses. First, if high-ethanol containing food is made available to adult Drosophila, then

wasp-exposed females will actively prefer to lay eggs on ethanol-laden food (Kacsoh et al., 2013).

Second, if ethanol-containing food is not an option, Drosophila females will depress their egg-laying

frequency, presumably to allow for time to search and discover an egg-laying environment that is not

wasp infested (Lefevre et al., 2012). AdultDrosophila are not infected by these wasps, thus, making the

change in reproductive behavior beneficial only to an anticipated threat to their offspring. To address

the question of whether changes in reproductive behavior could be transferred from exposed teacher

flies to naive student conspecifics, we examined the underlying physiological, physical, and genetic

components of the exposed teacher and naive student flies and asked if these mechanisms rely on

learned reproductive behavior.

Drosophila were exposed for 24 hr to wasps in cylindrical 7.5-cm long by 1.5-cm diameter tubes

arrayed into fly condos of 24-tubes where each tube contained five female flies and one male fly,

either with three female wasps (exposed) or with no wasps at all (unexposed) (Figure 1A, see methods

and supporting information for details). After 24 hr, food plates were removed and embryos counted.

Consistent with previous observations (Lefevre et al., 2012), exposed females reduced their oviposition

rate significantly (average unexposed lay ∼65 ± 3.2 eggs; average exposed lay ∼13 ± 1.98 eggs)

(Figure 1B). We observed this robust response in at least four different genetic backgrounds including

Canton-S (CS), Oregon-R (OreR) (unexposed ∼57 ± 2.84 eggs compared to exposed 13 ± 1.88 eggs

on average), w1118 (unexposed ∼25 ± 1.54 eggs compared to exposed ∼1 ± 0.53 egg on average),

and transgenic flies carrying Histone H2AvD-GFP (His-GFP) (unexposed ∼108 ± 7.69 eggs

compared to exposed 18 ± 1.97 eggs) (Clarkson and Saint, 1999). To test whether this decrease

in egg laying can be transmitted from exposed flies to naive females, we exposed Canton-S flies to

wasps for 24 hr, then removed the wasps and placed these pre-exposed flies in a new condo with

three naive female flies expressing Histone-GFP (His-GFP) for an additional 24 hr (Figure 1A). The

His-GFP line was ideal for discriminating mixed populations of non-green fluorescent protein (GFP)

and GFP embryos since this histone is clearly visible by 70 min after oviposition (embryonic cell cycle 9)

(Foe et al., 1993; Clarkson and Saint, 1999) (Figure 1—figure supplement 1A,B). Oviposition in

exposed teacher females was significantly reduced during the 24-hr exposure to wasps (acute depression:

0–24 hr) (53 ± 3.35 compared to 14 ± 1.59 eggs) and this depression persisted for an additional

24-hr post wasp exposure (learned depression: 24–48 hr) (35 ± 2.44 compared to 19 ± 1.33 eggs),

relative to age-matched, unexposed sibling controls (Figure 1C, Figure 1—figure supplement 1C).

Quantification of total GFP and non-GFP embryos deposited during the 24–48 hr after initial teacher
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exposure to wasps demonstrated that naive His-GFP student flies had also decreased oviposition,

relative to His-GFP siblings mixed with unexposed Canton-S flies (33 ± 2.34 compared to 6 ± 0.86

eggs) (Figure 1C, Figure 1—figure supplement 1C). In the reciprocal experiment, naive Canton-S

student flies mixed with pre-exposed His-GFP teacher flies also exhibited a decrease in oviposition

(46 ± 2.48 compared to 14 ± 1.34 eggs, see Supplementary files 6,7 for all raw egg numbers)

Figure 1. Flies respond to wasps by decreasing oviposition and are able to confer this information to naive flies. (A) Standard exposure setup.

(B and C) Percent of eggs laid normalized to unexposed. (B) Wild-type flies unexposed or exposed to wasps. (C) Canton-S teachers and His-GFP students.

For (B) and (C), error bars represent standard error (n = 24 biological replicates) (**p < 1.0e-5).

DOI: 10.7554/eLife.07423.003

The following figure supplement is available for figure 1:

Figure supplement 1. Social transmission of information from wasp-exposed female teacher fly to naive female student fly occurs.

DOI: 10.7554/eLife.07423.004
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(Figure 1—figure supplement 1D,E). Thus, naive female flies, never experiencing wasp exposure

directly, reduced oviposition when encountering exposed flies. The decrease in oviposition of student

flies is not due to an effect of the ratio of teacher to student flies. We tested a 1:1 ratio of 3 exposed

female teachers to 3 naive female student flies. This elicited a similar reduction in oviposition

(Figure 1—figure supplement 1F,G). Interestingly, when we tested a 1:1 ratio of 3 exposed males to

3 naive female student flies, we found no significant decrease in oviposition for students instructed

by exposed males (Figure 1—figure supplement 1H,I). This suggests that, under these conditions,

only females can transmit predator-response information. Males are neither necessary nor sufficient

for the information transfer. Therefore, for all further experiments, we used a teaching cohort of 5

females and 1 male to 3 female students, unless otherwise noted.

Teacher-instructed student flies are unable to become teachers
To test whether the decrease in oviposition can be transmitted from students to a new batch of

naive flies, we removed Canton-S pre-exposed teacher females from student His-GFP expressing

flies and placed the teacher-instructed student flies in a new chamber with 3 new, naive Canton-S

flies (Figure 2A). In teacher-instructed student flies, reduced oviposition behavior persisted for

24 hr after they were separated from teacher flies, indicative of a persisting memory of social

learning. Interestingly, we found that our teacher-instructed student His-GFP flies were not able to

instruct new students, as the naive Canton-S females did not decrease oviposition (Figure 2B,

Figure 2—figure supplement 1A).

We postulated that perhaps information transfer could only occur once between wasp-exposed

teachers and student flies, leading to the inability of students to further pass on information and

become teachers. To test this, we removed the first cohort of student His-GFP expressing flies and

placed the Canton-S pre-exposed teacher female flies in a new chamber with a second cohort of

3 new, naive Canton-S flies (Figure 3A). We found that oviposition depression in exposed teacher

females was persistent for an additional 24-hr post wasp exposure (learned depression: 48–72 hr),

relative to age-matched, unexposed, sibling controls (Figure 3B). Quantification of total GFP

and non-GFP embryos deposited during the 48–72 hr after initial teacher exposure to wasps

demonstrated that the second cohort of naive His-GFP student flies had also decreased

oviposition, relative to His-GFP siblings mixed with unexposed Canton-S flies (Figure 3B). In the

reciprocal experiment, a second cohort of naive Canton-S student flies mixed with pre-exposed

His-GFP teacher flies also exhibited a decrease in oviposition (Figure 3C). Our results demonstrate

that teachers can instruct multiple cohorts of students, thus, the inability of a student to become

a teacher is not due to a limitation in amount a teacher can teach.

Wasp exposure induces stage-specific apoptosis in wasp-exposed
teachers
In order to better understand the physiological basis of how a predator-threat leads to changes in

oviposition behavior, we examined the status of egg production in exposed female ovaries. Given that

poor nutrition or other stressors can cause egg chambers in the ovaries to be eliminated by

apoptosis at oogenesis checkpoints in region-2/3 of the germarium or stage 7/8 egg chambers

(the mid-oogenesis checkpoint) (Drummond-Barbosa and Spradling, 2001; McCall, 2004), we

hypothesized that the presence of parasitoid wasps could similarly reduce oviposition by

triggering an oogenesis checkpoint, and thus, account for depressed oviposition. Therefore, we

quantified stage-specific apoptosis in ovaries of exposed females.

Dissection of ovaries from females having been exposed to wasps for 24 hr revealed a significant

increase in the number of egg chambers exhibiting apoptosis relative to unexposed sibling control

females (Supplementary file 1A,B). Interestingly, the majority of apoptosis was observed at the

stage 7/8 egg chamber checkpoint, with almost no apoptosis in region 2/3, as visualized by DNA

staining with 4’, 6-diamidino-2-phenylindole (DAPI), suggesting that the pathway through which

apoptosis was being triggered is fundamentally different from previously described apoptotic

events (Drummond-Barbosa and Spradling, 2001; McCall, 2004) (Supplementary file 1A,B,

Figure 4A–F). Canton-S and His-GFP fly ovaries were easily distinguishable when stained together,

thus, making it possible to score apoptosis levels in ovaries of exposed and unexposed females

under completely identical conditions (Figure 4—figure supplement 1A–D). Further confirmation

that wasp exposure triggered a true apoptotic event is evidenced by the presence of characteristic
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DAPI-intense pychnotic nurse cell nuclei, by terminal deoxynucleotide transferase dUTP nick end

labeling (TUNEL) stain that detects fragmented DNA (Figure 4G–J and Figure 4—figure

supplement 1E,F), and activated caspase-3 staining (Figure 4—figure supplement 1G–J): All

positive markers of the cell death process (McCall, 2004). We noted that both DAPI and TUNEL

were readily detected in apoptotic stage 12/13 nurse cells in both exposed and unexposed females

Figure 2. Student flies cannot become teachers. (A) Standard exposure setup. (B) Teacher exposed primary student His-GFP flies paired with naive

secondary student Canton-S flies. Error bars represent standard error (n = 24 biological replicates) (*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.005

The following figure supplement is available for figure 2:

Figure supplement 1. Student flies cannot become teachers.

DOI: 10.7554/eLife.07423.006
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Figure 3. Teacher flies can teach multiple batches of students. (A) Standard exposure setup for teachers teaching multiple batches of students.

(B and C) Percent of eggs laid normalized to unexposed. (B) Canton-S flies unexposed or exposed to wasps and paired with primary and secondary

His-GFP students. (C) His-GFP flies unexposed or exposed to wasps and paired with primary and secondary Canton-S students. For (B) and (C), error bars

represent standard error (n = 24 biological replicates) (**p < 1.0e-5).

DOI: 10.7554/eLife.07423.007
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Figure 4. Stage-specific apoptosis observed in wasp-exposed teachers and teacher-exposed student flies. (A and B) Average percent of apoptotic

events for stage 7/8 egg chambers. (A) Canton-S exposed and unexposed ovary apoptosis. (B) His-GFP exposed and unexposed ovary apoptosis.

(C to D) Canton-S unexposed/exposed ovariole. (E to F) His-GFP unexposed/exposed ovariole. (G to H) Canton-S transferase dUTP nick end labeling

(TUNEL) staining performed on exposed fly ovaries. (I to J) His-GFPTUNEL staining. For (A) and (B), error bars represent standard error (n = 3 biological

replicates from which 12 ovaries were scored for each group) (*p < 0.05). Scale bars, 20 μm.

DOI: 10.7554/eLife.07423.008

The following figure supplement is available for figure 4:

Figure supplement 1. Stage-specific apoptosis is induced following wasp exposure.

DOI: 10.7554/eLife.07423.009
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at similar levels. Developmentally regulated cell death is normally expected to eliminate late-stage nurse

cells in maturing oocytes, thus, serving as an internal control for the level of detected apoptosis in

exposed and unexposed females (Supplementary file 1A,B). Similar to the reduced oviposition

behavior observed, this physiologically triggered apoptosis specifically of stage 7/8 egg chambers

persisted well beyond the period of initial wasp exposure (Figure 4A,B, Supplementary file 1C,D).

Flies continue to eat high-protein diet following wasp exposure but still
depress oviposition
We considered the possibility that exposure to wasps could change fly feeding behavior, and

subsequent poor nutrition could trigger the mid-oogenesis checkpoint (Drummond-Barbosa

and Spradling, 2001). We gave both exposed and unexposed flies a high-protein yeast food

stained with red food dye to visualize food intake. We found that both wasp-exposed and

unexposed flies exhibited a similar amount of high-protein yeast food intake even when given

a choice to feed on normal food without yeast by visualizing the red dye in the fly abdomens

(Figure 5A–D, Figure 5—figure supplement 1A–D). The red yeast paste was placed on instant

Drosophila media, which turns blue upon contact with water, allowing us to visualize whether

flies are preferring high (red)- or low (blue)- nutrient food (Figure 5—figure supplement 1E–L).

We found that even in the presence of high-protein yeast food, exposed flies still depressed

oviposition when compared to unexposed controls, in addition to having apoptosis induced at

the egg chamber stage 7/8 checkpoint (Figure 5E–G, Figure 5—figure supplement 1M–T,

Supplementary file 1E). Thus, the mid-oogenesis apoptosis checkpoint triggered in exposed

flies is not due to a poor nutrition intake. These data are indicative of a predator-induced neuroendocrine

signaling pathway that impinges on a pathway specifically controlling mid-oogenesis specifically

(stage 7/8 but not stage 2/3), and therefore, is likely different from the previously described poor

nutrition oogenesis checkpoint.

Naive student flies induce apoptosis when paired with wasp-exposed
teachers
To test whether triggering of the mid-oogenesis check point could be transmitted from

experienced, wasp-exposed females to naive females, we mixed teacher and student flies as

described above. Naive student flies mixed with exposed teachers showed apoptosis at the stage

7/8 checkpoint, as did their teachers (Supplementary file 1C,D,F,G, Figure 4A–B). Students

mixed with unexposed, ‘mock’ teachers did not show significant levels of increased apoptosis in

the ovary (Supplementary file 1C,D,F,G, Figure 4A–B). Thus, in naive student flies, transmitted

information from exposed teacher flies results in triggering a specific-apoptotic mid-oogenesis

checkpoint in students that have learned from teachers’ experience. These data indicate that

teacher flies transmit instructive cues to student flies that student flies receive these cues and then

process them in a manner that leads to apoptosis of egg precursor cells and reduced oviposition.

Oviposition depression in teacher and student requires the caspase
encoding genes Dcp-1 and drice, which are dispensable for teacher
behavior
One explanation for social learning could be that student flies instinctively mimic the behavior of more

experienced teacher flies. Repeated episodes of imitative behavior could lead to a strengthening of

neural circuits that underlie this behavior. We explored this idea by testing if wasp-exposed flies that

are genetically unable to suppress oviposition efficiency are still able to successfully act as teacher

flies. The Drosophilamid-oogenesis checkpoint is known to activate effector caspases Dcp-1 and drice

(McCall, 2004). Additionally, the caspase-3 staining we performed on wasp-exposed teacher ovaries

recognizes effector caspases Dcp-1 and drice (Figure 4—figure supplement 1G–J), leading us to

hypothesize that these caspases are important in oviposition depression in teacher and student flies as

a response to parasitoid wasps. By using a maternal α-Tubulin > Gal4 driver to express an RNA-hairpin

targeting mRNA from each of these genes, we were able to reverse both the decrease in oviposition

as well as the increase of stage 7/8 egg chamber apoptosis of wasp-exposed females, while RNAi

depletion of these caspases had no effect on oviposition of unexposed females (Figure 6—figure

supplement 2A,B). This provides further evidence that the stage 7/8 egg chamber apoptosis and

corresponding oviposition decrease is a specific physiological checkpoint, similar to that previously
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Figure 5. Flies continue to eat high-protein diet following wasp exposure but still depress oviposition. Continued oviposition depression

cannot be explained by a lack of nutrient intake that normally inactivates insulin signaling. The high-nutrient intake by exposed female flies

suggests that an active insulin signaling pathway is inhibited or bypassed downstream of nutrient sensing. (A) Exposed and unexposed flies

anesthetized immediately after 24-hr exposure period shows red food in abdomens. (B) Lateral view of unexposed fly. (C) Lateral view of

exposed fly. (D) Percent of male and female flies with red food in abdomen, error bars are 95% confidence intervals. (E) Percent of eggs laid

normalized to unexposed following 24-hr exposure period. All eggs on the food plate were counted, including eggs on the yeast paste.

(F) Representative ovary dissected from unexposed fly. 36 total ovaries were dissected and examined across 3 replicates for each treatment.

(G) Ovary dissected from exposed fly. Scale bar for (F) to (G) is 1.0 mm. (H) Average percent apoptosis in mid-oogenesis checkpoint for

Figure 5. continued on next page
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described for poor nutritional intake (Figure 4A,B, Supplementary file 1H) (Drummond-Barbosa and

Spradling, 2001). We considered the possibility that ovarian apoptosis could produce secondary

signals important for conveying information to naive flies, which in turn triggers apoptosis in student

ovaries. To test this, we used teacher flies that were incapable of triggering apoptosis because of

RNAi depletion of Dcp-1 or drice, specifically in developing egg chambers. Strikingly, following

wasp exposure, flies, depleted of germ line Dcp-1 or drice function, were still excellent teachers

capable of cueing naive student flies to decrease their oviposition and induce apoptosis at the stage

7/8 mid-oogenesis checkpoint in the students’ ovaries (Figure 6A,B, Figure 6—figure supplement

1 A-B and G, Supplementary file 1I,J). The finding that Dcp-1 and drice deficient females incapable

of depressing oviposition can nevertheless convey critical cues to naive students demonstrates that

the depressed oviposition response can be decoupled from the process required for teacher–

student information transfer. Thus, information transfer in this context is not due to secondary

effects of ovarian cell death. Interestingly, Dcp-1- and drice-deficient student females could not

depress oviposition in response to exposed, wild-type teachers, suggesting that the same effector

caspases activated in exposed teachers are also needed for oviposition depression in students

(Figure 6C–D). Control, parental lines were found to behave as wild type as both teachers and

students (Figure 6—figure supplement 1A–F). We tested two additional Dcp-1 (Dcp-12 and Dcp-13)

(Etchegaray et al., 2012) mutant lines that displayed the same phenotype as the RNAi result

(Figure 6E–F, Figure 6—figure supplement 1G,H). We conclude that the depressed oviposition in

student flies cannot be from simple mimicry.

Teacher flies communicate information to naive flies through visual cues
Previous work has demonstrated that wasp-exposed females actively prefer to lay eggs on ethanol-

laden food through the use of visual cues. These visual cues were important for wasp perception and

subsequent behavior change (Kacsoh et al., 2013). Therefore, to better understand the mechanism

through which information was being transferred from teacher to student flies, we tested the role of

both smell and vision in information acquisition in our system by testing these mutations in both

teacher and student flies. The gene Orco is known to be expressed in almost all olfactory receptor

neurons, and the mutant-lacking Orco is unable to respond to smell stimuli (Vosshall et al., 1999).

We found that Orco1 flies could respond to wasps and teach student flies (Figure 7A). Additionally,

Orco1 flies as naive students could learn normally from teacher flies (Figure 7B). These data suggest

that olfaction is not necessary to perceive the wasp threat nor to confer or receive the information

during social learning.

We then analyzed the role of vision in this paradigm with the use of flies mutant for ninaB. ninaB is

part of a single enzyme family, which acts as a key component for visual pigment production and

vision in Drosophila (von Lintig et al., 2001; Voolstra et al., 2010). The ninaBP315 blind females

exhibited no initial response to the presence of wasps and were not able to transmit information

to naive flies (Figure 7C). In contrast to Orco1 flies, blind ninaBP315 student flies were unable to

learn from teacher flies (Figure 7D).

Our ninaBP315 data suggest that visual stimuli are responsible for both the acute and learned

response. Therefore, we wanted to further elucidate the role of vision in this system. As in previous

studies, we impaired vision of wild-type flies simply by running trials in complete darkness (Tompkins

et al., 1982; Budick et al., 2007; Duistermars et al., 2009; Robie et al., 2010; Ofstad et al., 2011).

We found that performing the entirety of experiment in darkness using Canton-S or His-GFP teachers

yielded no response to the presence of wasps and exposed females were not able to transmit

information to naive flies (Figure 8A,B, Figure 8—figure supplement 1A). Similarly, performing only

Figure 5. Continued

unexposed and exposed Canton S. For (D), (E), and (H), error bars represent standard error (n = 3 biological replicates. For (D), 100 female and

20 male flies were counted per replicate. For (E), 3 egg lay plates were counted per treatment. For (H), 3 biological replicates from which

12 ovaries were scored for each group) (*p < 0.05).

DOI: 10.7554/eLife.07423.010

The following figure supplement is available for figure 5:

Figure supplement 1. Flies continue to eat high protein diet following wasp exposure but still depress oviposition.

DOI: 10.7554/eLife.07423.011
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Figure 6. Socially transmitted oviposition depression in response to wasp exposure acts through the mid-oogenesis checkpoint. (A to F) Percent

of eggs laid normalized to unexposed. (A and C) Drice RNAi-knockdown as teachers and students. (B and D) Dcp-1 RNAi-knockdown as teachers

Figure 6. continued on next page
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the wasp exposure period in the dark and the social-learning period in the light again yielded no

response to the presence of wasps and these exposed females were not able to transmit information

to naive flies (Figure 8C,D, Figure 8—figure supplement 1B). Finally, we performed the wasp

exposure period in the light, but moved the teachers paired with students for the social-learning

period into the dark (Figure 8E). Here, we find teacher flies had both an acute and learned response,

but these teachers were not able to transmit information to naive flies, presumably due to the learning

period being in the dark (Figure 8F, Figure 8—figure supplement 1C). Consistent with previous

studies indicating the necessity of light in visual learning (Ofstad et al., 2011), these data suggest that

wild-type fly vision can only detect cues from wasps and teachers if there is light present, again

demonstrating the role for visual cues for the behavior.

Finally, we wanted to elucidate if a visual cue alone is sufficient to elicit the behavioral changes.

Previous experiments had both teachers and students co-habitating, leading us to speculate whether

other stimuli were involved in either the acute- or social-learning response. To test this, we built the

Fly Duplex, which we constructed by using three standard 25 mm × 75-mm glass microscope slides

that were adhered between two 75 mm × 50 mm × 1-mm glass microscope slides using clear

aquarium silicone sealant, making two compartments separated by one 1-mm thick glass slide. This

setup allows flies to see other flies or wasps in the neighboring chamber, but do not allow direct

contact (Figure 9A). We find that both the acute and learned response are intact when performing the

exposure in separate, but adjacent, chambers using the Fly Duplex (Figure 9B–C). We also find that

teachers are able to transmit information to naive flies when in separate chambers, yielding depressed

oviposition (Figure 9B–C). Both the requirement for light and the use of the Fly Duplex strongly

suggest that olfactory, auditory, and tactile information is not likely to be important for this type of

social communication. Instead, this demonstrates that visual cues alone are sufficient for acute-,

learned-, and social-learning responses.

Collectively, our data demonstrate that teacher flies respond to a visual stimulus during wasp

exposure and subsequently provide visual cues, which student flies process in a manner that leads to

reduced oviposition.

Teacher flies communicate information to naive flies using their wings
In order to elucidate the visual cue used to transmit information from teachers to naive students, we

tested flies that were missing wings, either through genetic or mechanical perturbation. We first

tested flies mutant in the wingless gene (wg1). The wingless phenotype in the wg1 stock is not fully

penetrant. The progeny of wg1 parents are comprised of flies with two wings, one wing, and no wings

(Figure 10A,B, Figure 10—figure supplement 1A,B). Reported segregation patterns suggest that

the three phenotypes are genotypically similar and that phenotypic change is a result of incomplete

penetrance (Sharma, 1973). We find that both one-winged and two-winged mutants have an intact acute

and learned response following wasp exposure (Figure 10C, Figure 10—figure supplement 10F).

However, one-winged wg1 flies are unable to act as teachers, suggesting a role for both wings in

communication (Figure 10C). Two-winged wg1 flies behaved as wild-type teachers, demonstrating

that the wg1 mutation does not induce impaired teaching (Figure 10—figure supplement 1F).

For additional validation of this observation, we mechanically removed the wings of wild-type flies.

The wings of wild-type Canton-S flies were cut prior to wasp exposure and tested for oviposition

response. These flies displayed an intact acute and learned response, but they were unable to teach

(Figure 10D–F, Figure 10—figure supplement 1C,D). Finally, we used the GAL4/UAS system to

express the cell death protein reaper (UAS-Rpr) in conjunction with a wing driver (MS1096) to ablate

Figure 6. Continued

and students. (E to F) Dcp-12 as teachers and students. For (A) to (F), error bars represent standard error (n = 24 biological replicates) (*p < 0.05,

**p < 1.0e-5).

DOI: 10.7554/eLife.07423.012

The following figure supplements are available for figure 6:

Figure supplement 1. Socially transmitted oviposition depression acts through the mid-oogenesis checkpoint.

DOI: 10.7554/eLife.07423.013

Figure supplement 2. Further evidence indicating that oviposition depression acts through the mid-oogenesis checkpoint.

DOI: 10.7554/eLife.07423.014
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proper wing development (Figure 10G, Figure 10—figure supplement 1E). We find that these

flies also have an intact acute and learned response, but they were unable to teach (Figure 10H).

Flies lacking wild-type wings were able to function as students, demonstrating that wings are not

necessary for student learning (Figure 10—figure supplement 1G).

We hypothesized that perhaps flies whose wings had been genetically ablated or mechanically

removed could be experiencing overall mobility impairment, thus, yielding the inability to teach. We

decided to perform our assay using flies mutant in the erect wing locus, which encodes a protein,

EWG. Loss-of-function erect wing alleles result in embryonic lethality. Viable alleles of erect wing

cause severe abnormalities of the indirect flight muscles (DeSimone et al., 1996). Flies carrying viable

allelic combinations of mutations at the erect wing (ewg) locus do not have, or have greatly reduced,

indirect flight muscles (Deak II et al., 1982; Fleming et al., 1982). We tested two EWG alleles, ewg1

and ewg2, and found that these flies displayed an intact acute and learned response, but they were

unable to teach. These mutants exhibited a wild-type ability to learn from His-GFP teachers, again

demonstrating that wings are not required to learn (Figure 11A–D). EWG is also required in the

development of the nervous system (Fleming et al., 1982; DeSimone and White, 1993). Given this

information, we wanted to examine if nervous system-specific expression of wild-type EWG protein in

an ewg mutant background is sufficient to restore teaching ability. This expression does not rescue

Figure 7. Flies respond to wasps and confer this information to naive flies through visual cues. (A to D) Percent

of eggs laid normalized to unexposed. (A to B) Smell mutants as teachers and students. (C to D) Sight

mutants as teachers and students. For (A) to (D), error bars represent standard error (n = 24 biological

replicates) (*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.015
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Figure 8. Acute and teaching response requires light. (B, D, and F) Percent of eggs laid normalized to unexposed. (B, D, and F) Canton S as teachers and

His-GFP as students. (A) Exposure setup when both acute and social response occurs in dark. (B) Results of experiment as described in (A). (C) Exposure

setup when acute response occurs in the dark but social response occurs in the light. (D) Results of experiment as described in (C). (E) Exposure setup

Figure 8. continued on next page
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the muscle phenotype (DeSimone et al., 1996). We found that ewgNS4 (neuronal rescue) displayed an

intact acute and learned response, had the ability to learn from His-GFP teachers, but they were

unable to teach (Figure 11E–F).

Through the use of multiple genetic mutants and genetic and mechanical perturbations of wings,

we find that both wings and wing movements are necessary for teaching ability. Collectively, these

data suggest that teacher flies are using their wings as the visual cue to inform naive student flies.

Maintained oviposition and social learning require active learning and
associated plasticity
To examine the possibility that the behavioral response to predator-threat requires active learning

and associated plasticity in wasp-exposed flies, we asked how predator responses were affected in

learning and memory mutants rutabaga (rut1, rut2080), dunce (dnc1, dncML), Adf1 (Adf1nal), amnesiac

(amn1, amnX8), FMR1 (Fmr13, Fmr1B55), and Orb2ΔQ; the last being of particular significance as the ΔQ

mutation leaves all essential functions of the Orb2 neuronal regulator intact, but deletes a Gln-rich

prion domain exclusively required for persistent long-term memory, possibly by enabling an Orb2

conformational switch that leads to active synaptic translation (Si et al., 2003; Keleman et al., 2007;

Majumdar et al., 2012). Each of these mutants responded acutely to predator presence with a

dramatic decrease in oviposition when in the presence of wasps for the first 24 hr (Figure 12A,C,E,G,I,K

and Figure 12—figure supplement 1A,B,E,G). This indicates that the acute oviposition depression is

independent of these gene functions. However, when wasps were removed and mutant flies were

placed in a new tube for an additional 24 hr after wasp exposure, oviposition returned to levels

comparable to unexposed flies (Figure 12A,C,E,G,I,K and Figure 12—figure supplement 1A,B,E,G).

This indicates that although the acute response to a predator threat does not require memory

consolidation, the persistence of decreased oviposition behavior after wasp removal requires a form of

long-term memory whose consolidation requires cAMP signaling and translational control mediated at

least in part through the prion domain ofOrb2. These results are consistent with other wasp-induced fly

memory formation, specifically with respect to seeking ethanol-laden substrates upon wasp exposure

(Kacsoh et al., 2015). Naive wild-type student flies encountering the pre-exposed mutants also did not

respond through oviposition decrease (Figure 12A,C,E,G,I,K and Figure 12—figure supplement 1A,

B,E,G). Collectively, the data from multiple alleles of multiple mutants indicated that these mutations

yielded flies that did not retain physiological effects of the threat-response necessary to successfully

transmit information to naive wild-type student females.

Unexpectedly, socially learned depression of oviposition in naive student flies was defective in rut,

dnc, Adf1, amn, FMR1, and Orb2 mutants (Figure 12B,D,F,H,J and Figure 12—figure supplement

1C,D,F,H). As these learning mutants show normal acute oviposition depression in response to direct

wasp exposure, this suggests that wasp-induced and teacher-induced reductions in oviposition

behavior occur through fundamentally different mechanisms. This is consistent with the fact that

wasps and teachers must provide different visual signals to initiate learning and must, therefore, be

expected to alter behavior through different neural circuit mechanisms. Taken together with the

observations of blind ninaBP315 mutants, experiments performed in the dark, and the Fly Duplex,

these results demonstrate that during social learning student flies must be able to visually perceive

information from teacher flies and then undergo an active-learning process in order to stably

respond by depressing oviposition.

We further asked how apoptosis in egg chambers was affected in wasp-exposed orb2ΔQ mutant

flies. The apoptotic response to acute wasp exposure (0–24 hr) in orb2ΔQ was similar to the wild type,

as expected, given that these flies had a normal depressed oviposition in presence of wasps

(Figure 12M, Supplementary file 1K). However, in the 24-hr period following removal of wasps

Figure 8. Continued

when acute response occurs in the light but social response occurs in the dark. (F) Results of experiment as described in (E). For (B), (D) and (F), error bars

represent standard error (n = 24 biological replicates) (**p < 1.0e-5).

DOI: 10.7554/eLife.07423.016

The following figure supplement is available for figure 8:

Figure supplement 1. Further evidence indicating that learning requires light.

DOI: 10.7554/eLife.07423.017
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(24–48 hr), orb2ΔQ female flies had increased their egg laying and showed low levels of apoptosis in

stage 7/8 egg chambers comparable to control unexposed flies (Figure 12M, Supplementary file 1L).

We conclude that Drosophila females depress their egg laying during exposure to predatory wasps

through an acute pathway that requires visual perception of wasp presence and leads to active

Figure 9. Visual cues are necessary and sufficient for learning. (B and C) Percent of eggs laid normalized to unexposed. (A) Standard exposure setup using

the Fly Duplex. The Fly Duplex ensures only visual cues are transferred between groups. (B) Canton S as teachers with His-GFP students. (C) His-GFP as

teachers with Canton S as students. For (B and C) error bars represent standard error (n = 10 biological replicates) (**p < 1.0e-5).

DOI: 10.7554/eLife.07423.018
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Figure 10. Teacher–student dynamics require wings to allow for communication to take place. (For C, F, and H) Percent of eggs laid normalized to

unexposed. (A) Dorsal view of wg1 with one wing. (B) Dorsal view of wg1 with two wings. (C) wg1 one-winged flies as teachers. (D) Dorsal view of Canton-S

female. (E) Dorsal view of Canton-S female with clipped wings. (F) Canton-S flies with clipped wings as teachers. (G) Dorsal view of a female fly expressing

Figure 10. continued on next page
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elimination of developing eggs. The persistence of depressed oviposition and apoptosis in the 24-hr

period after wasp removal requires an intact orb2 gene, suggesting that maintenance of the initial

behavior may require neural consolidation of the memory of wasp presence learned during the

exposure period. Both acute and persistent mechanisms indicate that a systemic pathway initiated in

photoreceptors and visual systems of female flies, processed centrally through neural circuits that can

encode memories, leads to neuroendocrine signaling that impinges on developing egg chambers

where it activates caspase-signaling cascades.

Continued input from the mushroom body is required for the learned
response and teaching behavior
To test if the reduced oviposition requires continued neuronal input to maintain reduced oviposition

and teaching behavior, we mechanically removed neural input of exposed wild-type flies. Following

wasp exposure, we surgically removed fly heads and paired them with naive student flies. Decapitated

flies are of standard use in behavioral assays, and only decapitated flies that recovered after anesthesia

were used (Cook, 1975; Nilsen et al., 2004; Clyne and Miesenbock, 2008; Trott et al., 2012).

We found that decapitated flies could not maintain the same level of reduced oviposition as

normal flies (i.e., decapitation led to an increase in oviposition), and they could no longer teach,

suggesting a continued input from the brain is needed to elicit these behavioral changes

(Figure 13A–C, Figure 13—figure supplement 1E,F). To ask whether the mushroom body (MB)

specifically plays a role in maintained oviposition reduction and the teaching behavior, we used

the GAL4/UAS system to express tetanus toxin light chain (UAS-TeTx) in conjunction with a MB driver

(OK-107-GAL4) (Aso et al., 2009) to block synaptic transmission (Martin et al., 2002). The tetanus toxin

light chain works by catalytically inhibiting synaptic transmission once present in the cytosol by cleaving

either synaptobrevin, syntaxin, or SNAP-25 (Poulain et al., 1988; Bittner et al., 1989; Mochida et al.,

1990; Kurazono et al., 1992; McMahon et al., 1993). We found that flies expressing UAS-TeTx in the

MB exhibited a wild-type acute response, suggesting that the acute response occurs independent of

the MB. However, in the learned period, these flies no longer showed reduced oviposition and were

unable to teach naive students (Figure 13D). Using a second MB driver (MB247), this result was

recapitulated (Figure 13—figure supplement 1I) (Mao et al., 2004). Control parental lines functioned

as both wild-type students and teachers both as homozygotes and when outcrossed to Canton-S

(Figure 13—figure supplement 1A–H). Flies expressing UAS-TeTx in the MB failed to function as

students (Figure 13—figure supplement 1J–K). These data suggest that wasp presence is sensed

through the visual system, and this information is relayed to the MB to induce a persistent reduction of

oviposition, apoptosis, and teaching behavior, all of which are maintained over a time span of days.

Inhibition of a canonical long-term memory gene in the MB eliminates
teaching ability
We found that mutants in orb2 exhibited a defect of oviposition depression as well as teaching and

social-learning ability (Figure 12A–B). However, these experiments could not exclude the possibility

that orb2 gene product was required in non-neural tissues. Similarly, orb2 may have been necessary

for early neuronal development, and mutant phenotypes observed simply reflected developmental

defects that precluded proper adult MB functions (pleiotropic effects). Given that inhibiting synaptic

transmission in the MB with UAS-TeTx eliminated a long-term behavioral response to wasp exposure,

teaching ability, and social learning (Figure 13D, Figure 13—figure supplement 1I–K), we tested the

hypothesis that the gene products of known learning and memory genes (such as orb2) may also be

required to function in this anatomical region of the brain. To test this, we used the GAL4/UAS system

Figure 10. Continued

reaper in the wing disc. (H) Flies expressing reaper in the wing disc as teachers. Error bars represent standard error (For (C) n = 18 biological replicates.)

(For [F and H] n = 24 biological replicates) (*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.019

The following figure supplement is available for figure 10:

Figure supplement 1. Teacher flies need wings in order to instruct student flies.

DOI: 10.7554/eLife.07423.020
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Figure 11. Teacher–student dynamics require functional wings to allow for communication to take place. (For A to F) Percent of eggs laid normalized to

unexposed. (A and B) ewg1 as teachers and students. (C and D) ewg2 as teachers and students. (E and F) ewgNS4 as teachers and students. Error bars

represent standard error (For [A to F] n = 24 biological replicates.) (*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.021
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Figure 12. Learning mutants are unable to teach or be students. (A to L) Percent of eggs laid normalized to unexposed. (A to B) Orb2ΔQ as teacher and

student. (C to D) rut1 as teacher and student. (E and F) dnc1 as teacher and student. (G and H) Adf1nal as teacher and student. (I and J) FMR1B55 as teacher

and student. (K and L) amn1 as teacher and student. For (M), average percent of apoptotic events for stage 7/8 egg chambers. (M) Orb2ΔQ exposed and

Figure 12. continued on next page
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as before: in this case, the MB driver (OK-107-GAL4) drove expression of an RNA-hairpin targeting

orb2 mRNA. We found that RNAi depletion of Orb2 in the MB produced the same phenotype as the

orb2ΔQ mutant tested (Figure 12A,B, Figure 14A–B). This result highlights that flies deficient in orb2

in the MB are able to perceive and respond to wasps, but not remember exposure, and therefore

cannot teach naive students, once wasps are removed. Flies deficient in orb2 in the MB are also

unable to learn from wild-type teachers. Control parental lines with either just the OK-107-GAL4 or

UAS-Orb2-hairpin transgenes (but not both) functioned as wild type as they exhibited no defects in

behavior persistence (Figure 13—figure supplement 1A–D, Figure 14—figure supplement 1A,B).

Control lines expressing RNA-hairpin targeting the white gene in the MB demonstrated wild-type

behavior, demonstrating induction of the RNA-hairpin alone does not induce deficient memory

formation, teaching ability, or learning ability (Figure 14C,D, Figure 14—figure supplement 1C,D).

This suggests that orb2 is required in MB neuronal circuits in order for maintained wasp-induced

oviposition depression, and it further suggests that persistence of this behavior likely requires long-

term memory formation is the MB.

The above data, however, do distinguish between two possible roles for orb2. First, the orb2 gene

product could be required for normal development of the MB and other parts of the nervous system

that interface with the MB. The OK-107-GAL4 driver begins expression of GAL4 in the larvae. Thus, it

remains possible that RNAi depletion of Orb2 in the larvae could cause developmental defects that

then indirectly cause behavioral phenotypes in adults. A second possibility is that persistence of

depressed oviposition and in turn teaching ability requires orb2 function in the adult MB, regardless of

Figure 12. Continued

unexposed ovary apoptosis. Error bars represent standard error. (For [A] to [L] n = 24 biological replicates.) (For [M] n = 3 biological replicates from which

12 ovaries were scored for each group) (*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.022

The following figure supplement is available for figure 12:

Figure supplement 1. Learning mutants are unable to teach or be students.

DOI: 10.7554/eLife.07423.023

Figure 13. Learning and teaching require a continuous neural input from the brain. (A and D) Percent of eggs laid normalized to unexposed. (A) Canton-S

teachers with heads removed after acute exposure. (B) Dorsal view of representative Canton-S female. (C) Dorsal view of representative Canton-S female

with no head. (D) Flies expressing tetanus toxin (UAS-TeTx) in mushroom body (MB) as teacher. Error bars represent standard error (For [A] and [D] n = 24

biological replicates.) (**p < 1.0e-5).

DOI: 10.7554/eLife.07423.024

The following figure supplement is available for figure 13:

Figure supplement 1. Blocking synaptic transmission in the MB prevents teacher behavior and student learning.

DOI: 10.7554/eLife.07423.025
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its possible function during MB development. In order to address this question, we turned to the

GAL4-based Gene-Switch System where the GAL4 transcription factor is fused to the human

progesterone ligand-binding domain (Burcin et al., 1999). We used flies expressing the Gene-Switch

transgene specifically in the MB, where only an administration of the pharmacological Gene-Switch

ligand RU486 could activate the GAL4 transcription factor (Mao et al., 2004). In order to confirm our

feeding protocol could work in The Fly Condo, we used the MB Gene-Switch line to express a nuclear-

localized GFP. Flies were placed into condos containing instant Drosophila media hydrated by a

mixture of RU486 dissolved in methanol and water. We found that flies placed in the Fly Condo where

the food contains RU486 are able to function as wild-type teachers and students (Figure 15A–B). This

observation demonstrates that RU486 does not perturb Drosophila’s ability to perceive and respond

to wasp presence by changing their oviposition behavior, as both flies expressing a Gene-Switch

construct and His-GFP flies behaved as wild type. Our data also demonstrate that induction of

Figure 14. Knockdown of Orb2 in the MB results in defective learning. (A to D) Percent of eggs laid normalized to unexposed. (A to B) Orb2

RNAi-knockdown as teachers and students. (C to D) white RNAi-knockdown as teachers and students. (For [A] to [D] n = 24 biological replicates.)

(*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.026

The following figure supplement is available for figure 14:

Figure supplement 1. Expression of an RNAi hairpin in the MB does not induce defective learning and memory.

DOI: 10.7554/eLife.07423.027
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Figure 15. Induction of GFP in the MB using the Gene-Switch System does not perturb learning and memory. (A to D) Percent of eggs laid normalized to

unexposed. (A to B) GFP induction with RU486 feeding in the MB as teachers and students. (C to D) Lack GFP induction with methanol feeding in the MB

Figure 15. continued on next page
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a protein in MB, in this case GFP, does not perturb learning and memory formation nor teaching

ability. When the assay is run with just methanol, therefore lacking RU846, we find flies are able to

function as wild type, similar to when they were fed RU486 (Figure 15C–D). Control MB-Gene switch

parental lines behave as wild-type flies as both homozygotes and when outcrossed to Canton-S.

In cases when RU486 laden food was fed to flies containing the MB Gene Switch and GFP nuclear

localization signal (nls) construct, we find that 24 hr is sufficient to induce GFP signal specifically

localized to the MB, whereas food lacking RU486 (methanol only) does not induce GFP after 24 hr

(Figure 15E–G, Figure 15—figure supplement 1E–G).

Given the successful feeding protocol and the MB Gene-Switch construct specificity, we used the

MB Gene-Switch to express an RNA-hairpin targeting mRNA for Orb2. Induction of the RNA-hairpin

through RU486 feeding in the MB was expected to occur within the same window of time as the GFP

expression (Figure 15). Flies expressing the MB Gene-Switch and carrying the UAS-Orb2-RNA-hairpin

construct, that were not fed RU486, showed normal, wild-type memory, learning, and teaching ability

(Figure 16C–D). Flies expressing the MB Gene-Switch and carrying the UAS-Orb2-RNA-hairpin

construct, which were fed RU486, showed a wild-type acute response, but impaired memory

formation, learning, and teaching abilities (Figure 16A,B). These two data points suggest that

the UAS-Orb2-RNA-hairpin construct is only driven in flies expressing the MB Gene-Switch when

fed RU486 only. When the MB Gene-Switch parental control line was used to express an RNA-hairpin to

the white gene, flies elicited wild-type memory formation with and without RU486 feeding, demonstrating

that the Gene-Switch ligand (RU486) alone and an RNA-hairpin alone is not responsible for memory,

teaching, and learning impairment (Figure 16E–H, Figure 16—figure supplement 1A–D). This

observation again demonstrates that RU486 does not perturb Drosophila’s ability to perceive and

respond to wasp presence and that orb2 function is required for formation of a long-term memory

of wasp exposure and not perception of and an acute response to wasps.

Collectively, these data indicate that normal orb2 function is required in the adult MB for normal

long-term memory formation and behavioral changes that persist over multiple days, such as the

ability to teach. Use of the MB Gene-Switch construct provides strong evidence to delimit temporal

and spatial expression requirements for orb2 function in the context of this memory assay.

Importantly, Orb2-RNAi knockdown in the MB using either OK107-GAL4 or MB Gene-Switch did not

prevent oviposition depression to occur when flies were in the presence of wasps. This also demonstrates

that loss/diminution of orb2 function in the MB does not affect perception and acute response to this

predator (Figure 14A,B, Figure 16A–B).

Discussion
In this study we have shown that Drosophila exhibit an acute response to predatory wasp that

entails apoptosis of germ line cells within the ovary and corresponding reduced egg-laying

behavior. The response persists over multiple days when learning and memory functions are intact.

We also find that this behavior can be socially transmitted from experienced teacher females to

naive student females: the transfer of information from teachers does not occur as a by-product of

apoptosis in the teacher, but rather through an independent pathway, since depressed oviposition

is not a necessary condition for social transmission of reduced egg-laying behavior or apoptosis in

the student females (Figure 17). These conclusions are further supported by the unexpected

observation that student flies, that had learned to reduce oviposition, could not serve as teachers

(Figure 2B, Figure 2—figure supplement 1). We emphasize that teacher-instructed students

continued to exhibit depressed oviposition and stage 7/8 egg chamber apoptosis in the 24-hr

period after removal of teachers. This again indicates that depressed oviposition itself is not

Figure 15. Continued

as teachers and students. Brains from flies expressing the GeneSwitch construct (RU486+) in the MB along with a GFP nuclear localization signal (nls)

showing (E) DAPI, (F) GFP expression, and (G) the merged image. Scale bar = 10 μm. (For [A] to [D] n = 24 biological replicates.) (**p < 1.0e-5).

DOI: 10.7554/eLife.07423.028

The following figure supplement is available for figure 15:

Figure supplement 1. Further evidence demonstrating that induction of GFP in the MB using the GeneSwitch System does not perturb learning and

memory.

DOI: 10.7554/eLife.07423.029
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Figure 16. Knockdown of Orb2 in the MB using the GeneSwitch System results in defective learning. (A to H) Percent of eggs laid normalized to

unexposed. (A to B) Orb2 RNAi-knockdown in the MB (GeneSwitch) fed RU486 as teachers and students. (C to D) Orb2 RNAi-knockdown in the MB

Figure 16. continued on next page
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sufficient for information transfer. However, at a higher level, these observations also indicate that

such adaptive information transfer cannot spread throughout a population, since only primary

teachers are able to transmit the predator-threat information.

The above findings document a pathway initiated through visual stimulation and results eventually in

a dramatic physiological response in the ovary. The discovery of neurally driven control of non-neural

germ line cell physiology is conceptually similar to a recent study in Drosophila, which demonstrated

that olfactory stimulation was necessary for maintenance of blood progenitor cells (Shim et al., 2013),

thus, also establishing a link between perception of environmental information and physiological

response to specific information. Although learning mutants and flies expressing an RNA-hairpin to orb2

could perceive and respond to predator presence, the observation that egg production completely

recovered by 24 hr following removal of the wasp threat (Figure 12, Figure 12—figure supplement 1,

Supplementary file 1K,L) is consistent with previous observations where females switched from a poor

to rich food source repress the mid-oogenesis checkpoint via insulin signaling and recover normal egg

production within 24 hr (Drummond-Barbosa and Spradling, 2001). This rapid recovery of oviposition

in learning and memory mutants, coupled with removing fly heads and inhibiting synaptic transmission

in the MB, suggests that maintenance of the depressed oviposition state requires continued neural

signaling mediated by a memory component of the brain.

Our observations document and describe a particularly robust form of social learning in Drosophila

and establish several fundamental features. First, direct learning and social learning require visual

system function but occur through different mechanisms: in particular, the acute response of flies to

direct wasp exposure can occur even in classic-learning mutants, while persistence of the predator

response and subsequent social learning requires functions of learning genes and continued neural

input. Loss of memory gene functions, such as Adf1, amn, dnc, dFmr1, rut, and Orb2, or inhibition of

MB synaptic transmission had no effect on the ability to change oviposition behavior in the presence

of wasp, however, in each of these cases, persistence of this behavior after wasp removal, and

subsequent teaching ability, was abolished. Additionally, inhibition of orb2 using the GAL4/UAS and

Gene-Switch systems suggests that maintenance of the change in oviposition state requires neural

signaling mediated by a memory component of the adult brain. Second, social learning occurs

through a mechanism distinct from mimicry. Information of wasp presence can be transmitted by

animals that have encountered wasps but are physiologically unable to display egg retention, which is

the normal behavioral output of such learning (Figure 17). Third, social learning in this context

appears to be limited in its spread: being transmitted only from teachers with direct predator

experience to students that they encounter. Therefore, students that have learned through social

learning cannot become teachers themselves (Figure 2). This is noteworthy because the inability of

primary students to further transfer information to secondary students will limit the time frame and

number of individuals in which this knowledge transfer takes place. The spreading of socially learned

behavior has been previously postulated to possibly drive local adaptation by maintaining behavioral

diversity of groups through self-propagating social learning once initiated in an individual (Battesti

et al., 2012). With regards to social learning of oviposition depression in response to a predator

threat, it seems reasonable that such information would be most useful if limited to nearest neighbors,

whose progeny may be similarly vulnerable in time and space by parasitoid wasps. However, the

fitness costs of prolonged oviposition depression and/or spreading to conspecifics beyond primary

learners could be devastating if it were self propagating, and thus, the degree to which it can spread

within a group must be limited by restricting teaching behavior only to individuals having had direct

visual experience of the threat, while ensuring memory of the threat in both primary (teachers) and

secondary (students) learners is maintained and then decays over time.

Figure 16. Continued

(GeneSwitch) not fed RU486 (methanol fed). (E to F) White RNAi-knockdown in the MB (GeneSwitch) fed RU486 as teachers and students. (G to H) White

RNAi-knockdown in the MB (GeneSwitch) not fed RU486 (methanol fed). (For [A] to [H] n = 24 biological replicates.) (*p < 0.05, **p < 1.0e-5).

DOI: 10.7554/eLife.07423.030

The following figure supplement is available for figure 16:

Figure supplement 1. Expression of an RNAi hairpin in the MB using the GeneSwitch System does not perturb learning and memory.

DOI: 10.7554/eLife.07423.031
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In sum, we have shown that visual inputs modify synaptic signaling in the MB of the fly brain to

implement a behavioral and physiological change, both of which are transferable through extrinsic

inputs to naive student flies, and that experiments based around wasp exposure can serve as

a simple and robust learning, social learning, and memory paradigm in future D. melanogaster

studies. The learning and memory genes we tested and found to be involved are conserved across

many animal species (Bolduc and Tully, 2009), and thus, serves as an excellent approach to model

cellular and neuronal network functions that may be relevant to vertebrate brain function. Even though

the vertebrate brain is vastly more complex than that of the fly, additional genes, gene families, and

pharmacological effects can be elucidated in Drosophila and may identify core mechanisms that are

Figure 17. Pathway model for fly-wasp mediated social learning. Initial oviposition depression during the 0- to 24-hr

acute response period and information transmission during social learning 24- to 48-hr periods are not coupled.

Sustained oviposition depression requires learning and memory genes in both teachers and students. Alleles tested

for indicated genes were ninaBP315, Orb2ΔQ, Adf1nal, dnc1, dncML, rut1, rut2080, FMR1B55, FMR13, amn1, amnX8, wg1,

ewg1, ewg2, ewgNs4, and drice-RNAi, Dcp-1-RNAi, Dcp-11, Dcp-13.

DOI: 10.7554/eLife.07423.032
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used in all species. These conserved components provide starting points in vertebrate animals for

further vertical integration in the fields of learning and social communication. In this way, mechanisms

that are unique to vertebrates can also be inferred, and we suggest that the learning and memory

paradigm presented here will prove to be a useful discovery tool. We believe this study establishes

a new and robust ecologically relevant model of social learning in Drosophila with possible far reaching

implications for neurobiology, Darwinian selection and evolution.

Materials and methods

Insect species/strains
The D. melanogaster strains Canton-S (CS),Oregon-R (OR), w1118, and transgenic flies carrying Histone

H2AvD-GFP (His-GFP) were used as wild-type strains for assaying egg retention in the presence of

wasps. All subsequent experiments we performed using either CS or His-GFP flies as wild type. Orco1,

ninaBP315, Dcp-1RNAi, driceRNAi, Histone H2AvD-GFP, and the Matα GAL4 mutant strains were acquired

from the Bloomington Drosophila Stock Center (strain numbers 23129, 24776, 28909, 32403, 35518,

and 7063, respectively). dnc1, dncML, rut1, rut2080, amn1, and amnX8 were kindly provided by Leslie Griffith

(Brandeis University). Wg1, ewg1, ewg2, ewgNS4, MS1096 GAL4, and UAS-Reaper (UAS-Rpr)

flies were kindly provided by Yashi Ahmed (Geisel School of Medicine at Dartmouth). Dcp-12 and

Dcp-13 were kindly provided by Kim McCall (Boston University). The MB Gene-Switch line and the

MB-247 were kindly provided by Greg Roman (Baylor College of Medicine) (Supplementary file 2).

All flies were maintained on standard cornmeal/yeast/molasses Drosophila medium. For all

outcrosses, Canton-S virgin females were mated to males of the appropriate genotype.

Flies aged 3–5 days post-eclosion on fresh, molasses-based, Drosophila media were used in all

experiments. Stocks were maintained at 25˚C in 70% humidity with a 12:12 light:dark cycle. For stocks

maintained in vials, 25 females were kept for stocks with 10 males at maximum to prevent

over-crowding. Stocks kept in bottles had a maximum of 100 females and 40 males to prevent

over-crowding. When flies were close to eclosion, parents were removed from the bottles.

Newly eclosed flies were moved to fresh Drosophilamedia (in bottles or vials at the same population

density) and aged until they were between 3 and 5 days of age maintained at 25˚C in 70% humidity

with a 12:12 light:dark cycle, at which point they were used in experiments. We stress the

importance of aging the flies on fresh media, as it appears that flies aged on old media (i.e., the

same media in which they eclosed) are nutrient deprived and naturally lay very few eggs.

The Figitid larval endoparasitoid Leptopilina heterotoma (strain Lh14) was used in all experiments.

L. heterotoma strain Lh14 originated from single females collected in Winters, California in 2002, and was

kindly provided by Todd Schlenke (Schlenke et al., 2007). In order to culture wasps, adult flies were

allowed to lay eggs in standard Drosophila vials containing standardDrosophilamedium for 4 days before

being replaced by adult wasps (10 female, 6 male), which then attack the developing fly larvae. Wasp vials

were supplemented with approximately 500 μl of a 50% honey/water solution applied to the inside of

the cotton vial plugs. Wasps aged 3–7 days post-eclosion were used for all experiments. Fresh

wasps were used for all experiments, such that wasps were never reused between experiments.

Fly oviposition
Fly oviposition rates were conducted using The Fly Condo (Genesee Scientific (San Diego, CA) Cat # 59-

110) (Figure 1A), which contained 24 independent chambers. Each chamber is 7.5 cm long by 1.5-cm

diameter. Each condo/chamber had a bottom 24-well food plate with approximately 2 ml of standard,

molasses cornmeal media per chamber. Briefly, bottles containing Drosophila were microwaved for 30 s at

maximum heat. This liquid food was allowed to cool before dispensing 2 ml into the Fly Condo plates,

where food was allowed to cool for another 30 min before the start of the experiment. All experiments

used this food protocol unless otherwise noted (specifically experiments using instant Drosophila media

with RU486 experiments). Mesh wire was along the top of the condo, allowing air transfer. In order to

assay egg retention of flies in the presence of wasps (acute exposure), 5 female flies and 1 male fly

(prepared and aged as described above) were placed into one chamber of The Fly Condo in the control,

while 3 female Lh14 wasps were placed with the flies in the experimental setting. The oviposition plate

from control and experimental condos was made 24 hr later.

In order to assay fly communication and the social learning period, 5 female flies and 1 male fly

were placed into one chamber of The Fly Condo in the control, while 3 female Lh14 wasps were placed
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with the flies in the experimental setting for 24 hr. After the 24-hr exposure, wasps were removed by

anesthetizing flies and wasps in the condos. Control flies underwent the same anesthetization.

Wasps were removed and replaced with 3 female ‘student’ flies. All flies were placed into new clean

condos for the second 24-hr period. The oviposition plate from each fly condo was replaced 24 hr

after the start of the experiment, and the second plate was removed 48 hr after the start of

the experiment. Fly egg counts from each plate were made at the 0–24-and 24–48-hr time points.

To control for both seasonal influence and population effects of both flies and wasps used, acute-

and social-learning period experiments were repeated in 24-experimental replicate increments in

both August 2013 and April 2014. We found the same effect in both time points tested, suggesting

that seasonal changes and population effects were not affecting our results (Figure 1C and

Figure 1—figure supplement 1C–E).

In order to demonstrate that students cannot become teachers, the same protocol as above was

performed (Figure 2). At the 48-hr time point, exposed teacher flies were removed by anesthetizing

teacher and 1˚ student flies in the condos. Control flies underwent the same anesthetization. The

exposed teacher flies were replaced with 3 new naive student flies, termed 2˚ students. These 2˚

students were placed with 1˚ student flies into new condos for the third 24-hr period. Fly egg counts

from each oviposition plate were made at the 0–24, 24–48, and 48–72 hr time points.

In order to demonstrate that teachers could teach more than one cohort of students, the same

protocol as above was performed with the exception of teacher removal (Figure 3). At the 48-hr time

point, 1˚ student flies were removed by anesthetizing students and teachers and teacher flies were

placed into new condos. The 1˚ student flies were replaced with 3 new naive student flies, termed 2˚

students. These 2˚ students were placed with teacher flies into new condos for the third 24-hr period.

Fly egg counts from each oviposition plate were made at the 0–24, 24–48, and 48–72 hr time points.

To assay if the ratio of teachers to students impacted the ability for information transfer, 3 female

flies were placed into one chamber of The Fly Condo in the control, while 3 female Lh14 wasps were

placed with the flies in the experimental setting for 24 hr. Wasps were then removed and replaced

with 3 female, naive student flies of the opposite genotype (either His-GFP or Canton-S depending on

teacher identity). Flies were then placed into new, clean condos. This provided a 1:1 ratio of teachers

to students. The same protocol was performed to see if males participated in transmission of

information by having 3 male flies exposed to 3 female Lh14 wasps. Wasps were then removed

and replaced with 3 female, naive student flies of the opposite genotype (either His-GFP or

Canton-S depending on teacher identity).

In order to assay the role of light during initial exposure and the role of light during the learned

response, multiple assays were performed where light availability was varied (Figure 8). For experiments

where the acute response occurred in the dark, flies were anesthetized and placed into The Fly Condo

with or without wasps as described above. However, they were then immediately placed into a box,

taped closed with Duct Tape (to prevent light leaks), and allowed to awaken in the dark. Flies were kept

in the dark for either 24 hr, after which wasps were removed and students were added and moved into

the light, or kept in the dark for the duration of the experiment (48 hr) including the social-learning

period with students. If flies were to be kept in the dark, the only light they were exposed to was just

before they were anesthetized and given students.

All treatments were run at 25˚C at 70% humidity with a 12:12 light:dark cycle in twenty-four

replicates unless otherwise noted with both teacher and student flies aged 3–5 days post-eclosion.

Food used for Fly Condo plates was the same molasses based Drosophila media used in maintaining

fly stocks, unless otherwise noted. Fly condos and oviposition plates were bleached thoroughly with

10% bleach and rinsed with distilled water mixed with Sparkleen after every use (1 gallon of

water: 1 gram of Sparkleen). All egg plates were coded and scoring was blind as the individual

counting eggs were not aware of treatments or genotypes.

To assay whether flies continued to eat high-nutrient food during wasp exposure, flies were

placed into a large embryo collection chamber (Genesee Scientific (San Diego, CA) Cat No. 59-

101), which fits a 100-mm Petri dish. Dishes were filled with 5 grams of blue instant drosophila

media (Fisher Scientific (Pittsburgh, PA) Cat No. S22315C), supplemented with a total of 20 ml of

distilled water to hydrate the food. Yeast paste was made with 15 ml distilled water, 5 mL

McCormick’s red food dye, and 13 mL live yeast. Approximately, 15 mL of the yeast paste solution was

added to the center of the petri dish containing the instant Drosophila media. In the egg lay chambers,

100 female Canto- S and 20 male Canton-S flies were added for control conditions. For exposed

Kacsoh et al. eLife 2015;4:e07423. DOI: 10.7554/eLife.07423 30 of 36

Research article Cell biology | Neuroscience

http://dx.doi.org/10.7554/eLife.07423


conditions, 100 female Canton-S and 20 male Canton-S flies were added with the addition of 50 female

Lh14. The experiment was run for 24 hr at 25˚C in 70% humidity on a 12:12 light:dark cycle. After 24 hr,

flies were anesthetized and were scored for color in their abdomens. A random subset of 12 females

was taken after abdominal quantification for ovary dissection and DAPI staining. Three replicates were

performed for these experiments.

Mechanical manipulation
To assay whether or not wings were involved in the information transmission in the social learning

period, 5 female and 1 male Canton S were anesthetized and their wings were cut at the base using

micro-scissors (Fine Science Tools (Foster City, CA); Item No. 15,001-08). Following clipping, flies were

placed into one chamber of The Fly Condo in the control, while 3 female Lh14 wasps were placed with

the flies in the experimental setting for 24 hr. After the 24-hr exposure, wasps were removed by

anesthetizing flies and wasps in the condos. Control flies underwent the same anesthetization. Wasps

were removed and replaced with 3 female ‘student’ flies. All flies were placed into new clean condos for

the second 24-hr period. The oviposition plate from each fly condo was replaced 24 hr after the start of

the experiment, and the second plate was removed 48 hr after the start of the experiment. Fly egg

counts from each plate were made at the 0–24 and 24–48 hr time points.

In order to assay whether a continued input from the brain is needed for flies to remember

wasp exposure and to transmit that information, 5 female flies and 1 male fly were placed into one

chamber of The Fly Condo in the control, while 3 female Lh14 wasps were placed with the flies in

the experimental setting for 24 hr. After the 24-hr exposure, wasps were removed by anesthetizing flies

and wasps in the condos. Control flies underwent the same anesthetization. During this anesthetization

period, both male and female flies were decapitated using the micro-scissors. Decapitated flies that

were not standing after anesthesia recovery were excluded. Wasps were removed and replaced with

3 female ‘student’ flies. All flies were placed into new clean condos for the second 24-hr period.

The oviposition plate from each fly condo was replaced 24 hr after the start of the experiment,

and the second plate was removed 48 hr after the start of the experiment. Fly egg counts from

each plate were made at the 0–24 and 24–48 hr time points.

Fly duplexes
Fly duplexes (Figure 9) were constructed by using three standard 25 mm × 75-mm glass microscope

slides (VWR (Radnor, PA): Item No. 48,300-025) that were adhered between two 75 mm × 50 mm × 1-

mm glass microscope slides (Fisher: Item No. 12-550C). Clear aquarium silicone sealant was used to

glue these glass slides together, making two compartments separated by one 1-mm thick glass slide.

Sealant was allowed to cure for 48 hr; each duplex was then soaked in water and Sparkleen detergent

overnight (1 gallon distilled water: 1 gram Sparkleen), rinsed in distilled water (dH2O) overnight,

rinsed with 70% ethanol and air-dried. The interior dimensions of each of the two units measured

approximately 23.5 mm (wide) × 25 mm (deep) × 75 mm (tall).

For experiments using Fly Duplexes, plates from The Fly Condo (Genesse Cat. Item No. 59-113)

were filled to the rim with standard Drosophila media and allowed to cool. Upon cooling, a single Fly

Duplex was inserted into the food such that it touched the bottom of the plate. The open end of the

Fly Duplex was closed using a cotton plug (Genesse Scientific (San Diego, CA) Cat. Item No. 51-102B)

to prevent insect escape. 10 female flies and 2 male flies were placed into one chamber of the Fly

Duplex in the control, while 10 female Lh14 wasps were placed in the compartment adjacent to the

flies in the experimental setting for 24 hr. After the 24-hr exposure, flies and wasps were removed by

anesthetizing flies and wasps in the Fly Duplexes. Control flies underwent the same anesthetization.

Wasps were removed and replaced with 10 female ‘student’ flies. All flies were placed into new clean

Duplexes for the second 24-hr period. The oviposition plate from each fly condo was replaced 24 hr

after the start of the experiment, and the second plate was removed 48 hr after the start of the

experiment. Fly egg counts from each plate were made at the 0–24 and 24–48 hr time points.

RU486 feeding
RU486 (Mifepristone) was used from Sigma-Aldrich Corp. (St. Louis, MO) (Lot Item No. SLBG0210V).

Condos were prepared by measuring 0.375 grams of flaky instant blue Drosophila medium into each

well of The Fly Condo plates. For all food treatments, we pipetted a total liquid volume of 2250 μl
directly onto the instant food. For experiments with RU486, an RU486 solution was used. This was
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prepared by dissolving 3.575 mg of RU486 in 800 μl methanol (Fisher Scientific (Pittsburgh, PA) Lot

number 141313). This solution was added to 15.2 ml of distilled water. The total solution (16 ml) was

thoroughly mixed and 2250 μl were pipetted onto the instant food into each well. For plates containing

no RU486 (methanol only), 800 μl methanol was mixed with 15.2 ml of distilled water. The total solution

(16 ml) was thoroughly mixed and 2250 μl were pipetted onto the instant food into each well.

Immunofluorescence
Ovaries that were prepared for immunofluorescence were fixed in 4% methanol-free formaldehyde in

PBS with 0.001% Triton-X for approximately 5 min. The samples were then washed in PBS with 0.1%

Triton-X and blocked with 2% normal goat serum (NGS) for 2 hr. The primary antibody, rabbit cleaved

caspase-3 (Cell Signaling (Beverly, Massachusetts) 5 A1E) at a concentration of 1:400, was incubated

overnight at 4˚C in 2% NGS. The secondary antibody used was Cy3 conjugated (Jackson

Immunoresearch (West Grove, PA)) and used at a concentration of 1:150 during a 2-hr incubation

at room temperature. This was followed by a 10-min nuclear stain by DAPI.

In order to assay whether feeding flies RU486 in The Fly Condo would be sufficient to turn on the

MB gene switch construct, we placed flies into condos containing RU846+ food. Flies had the MB

switch construct as well as a UAS-GFP nls construct, such that if the MB switch is activated, it should

fluoresce with GFP. After a 24-hr period in The Fly Condo, adults were removed and fixed in 4%

methanol-free formaldehyde in PBS with 0.001% Triton X overnight at 4˚C. Brains were then dissected

out of whole adults in PBS. The samples were then washed in PBS with 0.1% Triton X and stained with

DNA staining with DAPI, for 10 min and mounted in Vectashield (Vector Laboratories (Burlingame,

CA) Item No. H-1000) before imaging.

TUNEL
Individual ovarioles were dissected and fixed in PBS with 4% methanol-free formaldehyde and 0.1%

Triton-X for 30 min. Ovarioles were washed and incubated in PBS with 20 μg/ml proteinase K for 10

min. Recombinant terminal transferase (Tdt) labeling was conducted with the use of Cy3-conjugated

dUTP (GE Healthcare (Troy, NY) PA53032). Tdt reaction mixture (200 mM NaCacodylate, 0.1 mM

DTT, 1 mM CoCl2, 0.05 mM Cy3-dUTP, 0.05 mM dTTP) in Tdt buffer and Tdt enzyme (Roche (Basel,

Switzerland) 03333566001) was incubated with samples for 3 hr at 37˚C in a dark hybridization oven.

At the end of the incubation period, 2 μl of (0.25 M) EDTA was added to stop the reaction. Samples

were counter-stained with DAPI, mounted in Vectashield, and stored at −20˚C until imaging.

Apoptosis quantification
For quantification of egg chamber apoptotic events, ovaries from exposed teachers and exposed

students (in addition to unexposed controls) were fixed in 4% methanol-free formaldehyde in PBS with

0.001% Triton X for approximately 5 min. The samples were then washed in PBS with 0.1% Triton X

and stained with DAPI for 10 min. Batches of student and teacher flies were stained together in the

same wells to prevent stain bias. In all cases, student and teacher ovaries on the same slides could be

distinguished based on the Histone H2AvD-GFP marker (Figure 4—figure supplement 1A,B).

Imaging
A Nikon (Melville, New York) A1R SI Confocal microscope was used for imaging TUNEL, brain, and

caspase staining. Image averaging of 4× during image capture was used for all images unless

otherwise specified. A Nikon E800 Epifluorescence microscope with Olympus DP software was used

to quantify apoptotic events in egg chambers in addition to the capture of egg images and of whole

flies (Figure 4B,C,F,G, Figure 4—figure supplement 1A–J,M–T). Images of The Fly Condo,

oviposition plates with red yeast paste, and low-magnification images of exposed and unexposed flies

with red abdomens were made using an iPad 2 operating with ISO 64 (Figure 1A, Figure 4A,

Figure 4—figure supplement 1K–L). Images of The Fly Condo and the Fly Duplex were color

enhanced in iPhoto (Figure 1A, Figure 9A).

Statistical analysis
Statistical tests were preformed in R (version 3.0.2, ‘Frisbee Sailing’). Welch’s two-tailed t-tests were

preformed for all egg count data. p-values reported were calculated for comparisons between paired
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treatment-group and unexposed. A chi square test was preformed to determine significance of

feeding experiments for frequency of colored abdomens. Welch’s two-tailed t-tests were performed

on apoptosis data with each exposure batch treated as a replicate (n = 3), in instance where both the

treatment and control group had 0% apoptosis across all of the three replicates the p-value was not

calculable, and is reported as ‘N/A’ (See Supplementary files 3–5).
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·Supplementary file 1. Absolute number of apoptotic egg chambers. (A) Absolute number of

apoptotic egg chambers in Canton-S flies immediately following wasp exposure or mock exposure (0-

to 24-hr period in oviposition experiments). Each replicate, replicate sum, and replicate average along

with standard error is shown (*p < 0.05, **p < 0.001). (B) Absolute number of apoptotic egg chambers

in GFP-Histone flies immediately following wasp exposure or mock exposure (0- to 24-hr period in

oviposition experiments). Each replicate, replicate sum, and replicate average along with standard

error is shown (*p < 0.05, **p < 0.001). (C) Absolute number of apoptotic egg chambers in teacher

Canton-S flies 24 hr following wasp exposure or mock exposure (24- to 48-hr period in oviposition

experiments). Each replicate, replicate sum, and replicate average along with standard error is shown

(*p < 0.05, **p < 0.001). (D) Absolute number of apoptotic egg chambers in teacher GFP-Histone flies

24 hr following wasp exposure or mock exposure (24- to 48-hr period in oviposition experiments).

Each replicate, replicate sum, and replicate average along with standard error is shown (*p < 0.05,

**p < 0.001). (E) Absolute number of apoptotic egg chambers in Canton-S flies fed yeast paste

immediately following wasp exposure or mock exposure (0- to 24-hr period in oviposition

experiments). Each replicate, replicate sum, and replicate average along with standard error is

shown (*p < 0.05, **p < 0.001). (F) Absolute number of apoptotic egg chambers in student

Kacsoh et al. eLife 2015;4:e07423. DOI: 10.7554/eLife.07423 33 of 36

Research article Cell biology | Neuroscience

http://dx.doi.org/10.7554/eLife.07423


GFP-Histone flies 24 hr following wasp exposure or mock exposure (24- to 48-hr period in oviposition

experiments). Each replicate, replicate sum, and replicate average along with standard error is shown

(*p < 0.05, **p < 0.001). (G) Absolute number of apoptotic egg chambers in student Canton-S flies 24

hr following wasp exposure or mock exposure (24- to 48-hr period in oviposition experiments). Each

replicate, replicate sum, and replicate average along with standard error is shown (*p < 0.05, **p <
0.001). (H) Absolute number of apoptotic egg chambers in Dcp-1[RNAi] flies immediately following

wasp exposure or mock exposure (0- to 24-hr period in oviposition experiments). Each replicate,

replicate sum, and replicate average along with standard error is shown (*p < 0.05, **p < 0.001). (I)

Absolute number of apoptotic egg chambers in teacher Dcp-1[RNAi] flies 24 hr following wasp

exposure or mock exposure (24- to 48-hr period in oviposition experiments). Each replicate, replicate

sum, and replicate average along with standard error is shown (*p < 0.05, **p < 0.001). (J) Absolute

number of apoptotic egg chambers in student GFP-Histone flies, paired with Dcp-1[RNAi] teachers,

24 hr following wasp exposure or mock exposure (24- to 48-hr period in oviposition experiments).

Each replicate, replicate sum, and replicate average along with standard error is shown (*p < 0.05,

**p < 0.001). (K) Absolute number of apoptotic egg chambers in Orb2ΔQ flies immediately following

wasp exposure or mock exposure (0- to 24-hr period in oviposition experiments). Each replicate,

replicate sum, and replicate average along with standard error is shown (*p < 0.05, **p < 0.001).

(L) Absolute number of apoptotic egg chambers in Orb2ΔQ flies 24 hr following wasp exposure or

mock exposure (24- to 48-hr period in oviposition experiments). Each replicate, replicate sum, and

replicate average along with standard error is shown (*p < 0.05, **p < 0.001).
DOI: 10.7554/eLife.07423.033

· Supplementary file 2. Genotypes of each fly strain used in study. Names used in study, followed by

full genotype and location acquired from shown.
DOI: 10.7554/eLife.07423.034

· Supplementary file 3. Statistical analyses and corresponding P-values shown for main figures.

Comparison groups, statistical test performed, sample size, and P-values are shown for

a corresponding figure.
DOI: 10.7554/eLife.07423.035

· Supplementary file 4. Corresponding P-values generated from t-tests are shown for supplementary

figures. Comparison groups, sample size, and P-values are shown for a corresponding figure.
DOI: 10.7554/eLife.07423.036

· Supplementary file 5. Corresponding P-values generated from t-tests are shown for supplementary

file 1A–L. Comparison groups, sample size, and P-values are shown for a corresponding file.
DOI: 10.7554/eLife.07423.037

· Supplementary file 6. Corresponding raw average egg counts corresponding to main figures are

shown.
DOI: 10.7554/eLife.07423.038

· Supplementary file 7. Corresponding raw average egg counts corresponding to supplementary

figures are shown.
DOI: 10.7554/eLife.07423.039
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