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Abstract

Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly

debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited

mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during

development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian com-

putation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell

divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is

flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of

this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease

onset, e�cacy of clinical sampling strategies, and e↵ects of potential dynamic interventions, thus developing a quantitative

and experimentally-supported stochastic theory of the bottleneck.

Mitochondria are vital energy-producing organelles within
eukaryotic cells, possessing genomes (mitochondrial DNA or
mtDNA) that replicate, degrade and develop mutations [1, 2].
MtDNA mutations have been implicated in numerous patholo-
gies including fatal inherited diseases and ageing [3, 4, 5, 1].
Combatting the buildup of mtDNA mutations is of paramount
importance in ensuring an organism’s survival. Substantial
recent medical, experimental and media attention focused on
methods to remove [6] or prevent the inheritance of [7, 8, 5, 9,
10] mutated mtDNA in humans.

One means by which organisms may ameliorate the mtDNA
damage that builds up through a lifetime is through a devel-
opmental process known as bottlenecking. Immediately after
fertilisation, a single oocyte (which may contain > 105 indi-
vidual mtDNAs) may have a nonzero mtDNA mutant load or
heteroplasmy (the proportion of mutant mtDNA in the cell). As
the number of cells in the developing organism increases, the
intercellular population will then acquire an associated hetero-
plasmy variance, that is, the variance in mutant load across the
population of cells (Fig. A), allowing removal of cells with
high heteroplasmy and retention of cells with low
heteroplasmy. In-tense and sustained debate exists as to the
mechanism by which this increase of heteroplasmy variance
occurs. Several experi-mental results in mice suggest that,
during development, the copy number of mtDNA per cell in
the germ cell line drops

dramatically to ⇠ 102, reducing the e↵ective population size
of mitochondrial genomes [11, 12]. One postulated bottleneck-
ing mechanism is that this low population size accelerates ge-
netic drift and so increases the cell-to-cell heteroplasmy variance
[11, 13, 14, 15], which was first observed to generally increase
from primordial germ cells through primary oocytes to mature
oocytes [16]. However, independent experimental evidence [12]
suggests that heteroplasmy variance increases negligibly dur-
ing this copy number reduction, though this interpretation has
been debated [17]. Ref. [12] shows heteroplasmy variance ris-
ing during folliculogenesis, after the mtDNA copy number min-
imum has been passed. In yet another picture, supported by
conflicting experimental results [18, 19], heteroplasmy variance
increases with a less pronounced decrease in mtDNA copy num-
ber (a minimum copy number > 103 in mice), solely through
random e↵ects associated with partitioning at cell divisions.
Clearly a consensus on this important mechanism is yet to be
reached.

Important existing theoretical work on modelling the bottle-
neck has assumed a particular underlying mechanism [13, 20] or
derived statistics of mtDNA populations [21, 14, 22, 23] without
explicitly considering changing mtDNA population size, or the
discrete nature of the mtDNA population: e↵ects which may
powerfully a↵ect mtDNA statistics. To capture these e↵ects
it is necessary to employ a ‘bottom-up’ physical description
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of mtDNA as populations of individual, discrete elements sub-
ject to replication and degradation, as in, for example, Refs.
[21] and [24]. Exploring the bottleneck also requires explic-
itly modelling partitioning dynamics throughout a series of cell
divisions, over which population size can change dramatically.
While previous simulation work [11, 25] has taken such a phi-
losophy with specific model assumptions, we are not aware of
such a study allowing for the wide variety of replication and
partitioning dynamics proposed in the literature; we further
not that replication-degradation-partitioning mtDNA models
are yet to be fully described analytically. Nor is there a general
quantitative framework under which di↵erent proposed bottle-
neck mechanisms can be statistically compared given extant
data (although statistical analyses focusing on particular mech-
anisms and individual sets of experimental results have been
used throughout the literature, for example, using a Bayesian
approach under a particular bottleneck model to infer model
bottleneck size [26]). Combined developments in theory and
inference are therefore required to make progress on this im-
portant question.

We remedy this situation by constructing a general model
(features and parameters described in Fig. ) for the population
dynamics of the bottleneck, able to describe the range of pro-
posed mechanisms existing in the literature. Using experimen-
tal data on mtDNA statistics through development [16, 11, 12,
18], we use approximate Bayesian computation [27, 28, 29, 30]
to rigorously explore the statistical support for each mechanism,
showing that random mtDNA turnover coupled with binomial
partitioning of mtDNAs at cell divisions is highly likely, and
that the debated magnitude of mtDNA copy number reduction
is somewhat flexible. Subsequently, we confirm the predictions
of this model by performing new experimental measurements
of heteroplasmy statistics in mice with an mtDNA admixture,
including a wild-derived haplotype, that is genetically distinct
from previous studies. We then analytically solve the equations
describing mtDNA population dynamics under this mechanism
and show that these results allow us to investigate potential
interventions to modulate the bottleneck (suggesting that up-
regulation of mtDNA degradation may increase the power of
the bottleneck to avoid inherited disease; we discuss potential
strategies for such an intervention) and yield quantitative re-
sults for clinical questions including the timescales and proba-
bilities of disease onset, and the e�cacy of strategies to sample
heteroplasmy in clinical planning.

Results

A general mathematical model encompass-
ing proposed bottlenecking mechanisms

We will consider three di↵erent classes of proposed generat-
ing mechanisms for the mtDNA mechanisms: namely, those
proposed in Cree et al. [11]; Cao et al. [18] and Wai et al.
[12]. We will refer to these mechanisms by their leading author
name. The Cree mechanism involves random replication and
degradation of mtDNAs throughout development, and binomial
partitioning of mtDNAs at cell divisions. The Cao mechanism

involves partitioning of clusters of mtDNA at each cell division,
thus providing strong stochastic e↵ects associated with each di-
vision. We consider a general set of dynamics through which
this cluster inheritance may be manifest, including the possi-
bility of heteroplasmic ‘nucleoids’ of constant internal structure
[31], sets of molecules or nucleoids within an organelle, homo-
plasmic clusters, and di↵erent possible cluster sizes (see Ap-
pendix 1). The Wai mechanism involves the replication of a
subset of mtDNAs during folliculogenesis. We note that this
latter mechanism can be manifest in several ways: (a) through
slow random replication of mtDNAs (so that, in any given time
window, only a subset of mtDNAs will be actively replicating)
or (b) through the restriction of replication to a specific subset
of mtDNAs at some point during development. We will refer
to these di↵erent manifestations as Wai (a) and Wai (b) re-
spectively. The Wai (a) mechanism and the Cree model can
both be addressed in the same mechanistic framework (with
potentially di↵erent parameterisations): if the rate of random
replication in the Cree model is su�ciently low during folliculo-
genesis, only a subset of mtDNAs will be actively replicating at
any given time during this period, thus recapitulating the Wai
(a) mechanism (see Appendix 1). We will henceforth combine
discussion of the Wai (a) and Cree mechanisms into what we
term the birth-death-partition (BDP) mechanism.

We seek a physically motivated mathematical model for the
bottleneck that is capable of reproducing each of these mecha-
nisms. Our general model for the bottleneck (detailed descrip-
tion in Methods) involves a ‘bottom-up’ representation of mtD-
NAs as individual intracellular elements capable of replication
and degradation (Fig. B) with rates � and ⌫ respectively. A
parameter S determines whether these processes are determinis-
tic (specific rates of proliferation) or stochastic (replication and
degradation of each mtDNA is a random event). These rates of
replication and degradation of mtDNA are likely strongly linked
to mitochondrial dynamics within cells, through the action of
mitochondrial quality control [32, 33] modulated by mitochon-
drial fission and fusion [34, 35, 36], which can act to recycle
weakly-perfoming mitochondria [37, 38]. This quality control
can be represented through the degradation rates assigned to
each mtDNA species, which may di↵er (for selective quality
control) or be identical (for non-selective turnover).

The proportion of mtDNAs capable of replication is con-
trolled by a parameter ↵ in our model, dictating the proportion
of mtDNAs that may replicate after a cuto↵ time T . Thus, if
↵ = 1, all mtDNAs may replicate; if ↵ < 1, replication of a
subset proportion ↵ of mtDNAs is enforced at this cuto↵ time.
At cell divisions, mtDNAs may be partitioned either determin-
istically, binomially, or in clusters according to a parameter c
(Fig. C).

The copy number of mtDNA per cell is observed to vary
dramatically during development, with dynamic phases of copy
number depletion and di↵erent rates of subsequent recovery ob-
served. Additionally, cell divisions occur in the germline at dif-
ferent rates during development, with cells becoming largely
quiescent after primary oocytes develop. To explicitly model
these di↵erent dynamic regimes, and the behaviour of mtDNA
copy number during each, we include six di↵erent dynamic
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phases throughout development, each with di↵erent rates of
replication and degradation (labelled with subscript i labelling
the dynamic phase: hence �1, ⌫1, ...,�6, ⌫6), and allowing for
di↵erent rates of cell division or quiescence. This protocol en-
ables us to explicitly model e↵ects of changing population size
throughout development rather than assuming dependence on
a single, coarse-grained e↵ective population size; and to include
the e↵ects of specific and varying cell doubling times. A sum-
mary of symbols used in our model and throughout this article
is presented in Fig. D.

Our model, with suitable parameterisation, can thus mirror
the dynamics of the Cree and Wai (a) mechanisms (stochas-
tic dynamics and binomial partitioning, which we refer to as
the BDP mechanism); the Cao mechanism (clustered parti-
tioning); and Wai (b) mechanism (deterministic dynamics, re-
stricted subset of replicating mtDNAs). The Cao mechanism,
partitioning of clusters of mtDNA molecules, represents the ex-
pected case if mtDNA is partitioned in colocalised ‘nucleoids’
within each organelle (or in other sub-organellar groupings).
The size of mtDNA nucleoids is debated in the literature [1, 39,
40] (although recent evidence from high-resolution microscopy
suggests that nucleoid size is generally < 2 [41], consonant with
recent evidence that individual nucleoids may be homoplasmic
[42]); our model allows for inheritance of homoplasmic or het-
eroplasmic nucleoids of arbitrary characteristic size c, thus al-
lowing for a range of sub-organellar mtDNA structure. We dis-
cuss the impact of mixed or fixed nucleoid content in Appendix
1.

A birth-death-partition model of mtDNA dy-
namics has most statistical support given ex-
perimental measurements

We take data on mtDNA copy number in germ line cells in
mice from three recent experimental studies [11, 18, 12]. We
also use data from two experimental studies on heteroplasmy
variance in the mouse germ line during development [16, 12].
This data, by convention [17], is normalised by heteroplasmy
level h, giving

V0(h) =
V(h)

E(h)(1� E(h)) , (1)

where normalised variance V0(h) is a quantity that will be
often used subsequently. This normalised variance controls for
the e↵ect of di↵erent or changing mean heteroplasmy, and thus
allows a comparison of heteroplasmy variance among samples
with di↵erent mean heteroplasmies and subject to heteroplasmy
change with time. We use a time of 100 dpc to correspond to
mature oocytes (see Methods). These heteroplasmy variance
studies employ intracellular combinations of the same pairing of
mtDNA haplotypes (NZB and BALB/c), modelling two di↵er-
ent mtDNA types within a cellular population. We take data on
cell doubling times from a classical study [43] (see Methods). A
possible summary of these data (although they provoke ongoing
debate; see Discussion) is that, as shown in Fig. A, the existing
data on normalised heteroplasmy variance shows initially low
variance until ⇠ 7.5 dpc (days post conception, which we use

as a unit of time throughout), rising to intermediate values be-
tween 7.5 and 21 dpc, gradually rising further subsequently to
become large in the mature oocytes of the next generation. In
Fig. A, and throughout this article, experimentally measured
data will be depicted as circular points and inferred theoretical
behaviour will be depicted as lines or shaded regions.

Fig. A shows mtDNA population dynamic trajectories re-
sulting from optimised parameterisations of each of the mech-
anisms we consider (see Methods). In Fig B we show posterior
probabilities on each of these mechanisms. These posterior
probabilities give the inferred statistical support for each
mechanism, derived from model selection performed with ap-
proximate Bayesian computation (ABC) [27, 28, 29, 30] us-
ing uniform priors. ABC involves choosing a threshold value
dictating how close a fit to experimental data is required to
accept a particular model parameterisation as reasonable. In
our case, this goodness-of-fit is computed using a comparison
of squared residuals associated with the trajectories of mean
mtDNA copy number and normalised heteroplasmy variance
(see Methods and Appendix 1). Each of the experimental mea-
surements corresponds to a sample variance, derived from a
finite number of samples of an underlying distribution of het-
eroplasmies, and therefore has an associated uncertainty and
sampling error [14]. The reasonably small sample sizes used
in these sample variance measurements are likely to underesti-
mate the underlying heteroplasmy variance (the target of our
inference). Our ABC approach naturally addresses these un-
certainties by using summary statistics derived from sampling
a set of stochastic incarnations of a given model, where the size
of this set is equal to the number of measurements contribut-
ing to the experimentally-determined statistic (see Methods).
Fig. B clearly shows that as the ABC threshold is decreased,
requiring closer agreement between the distributions of sim-
ulated and experimental data, the posterior probability of the
BDP model increases, to dramatically exceed those of the other
models. This increase indicates that the BDP model is the most
statistically supported, and capable of providing the best expla-
nation of experimental data (which can be inutitively seen from
the trajectories in Fig. A). We note that ABC model selection
automatically takes model complexity into account, and con-
clude that the BDP mechanism is the best supported proposed
mechanism for the bottleneck. Briefly, this result arises be-
cause the BDP model produces increasing variance both due
to early cell division stochasticity and later random turnover.
By contrast, the Cao model alone only increases variance in
early development when cell divisions are occurring. Qualita-
tively, this behaviour through time holds regardless of cluster
(nucleoid) size and regardless of whether clusters are heteroplas-
mic or homoplasmic (allowing heteroplasmic clusters decreases
the magnitude of heteroplasmy variance but not its behaviour
through time, see Appendix 1). The Wai (b) model alone simi-
larly only increases variance at a single time point (later, during
folliculogenesis).

In Ref. [12], visualisations of cells after BrU incorporation
show that a subset of mitochondria retain BrU labelling, which
the authors suggest indicates that a subset of mtDNAs are repli-
cating. In Appendix 1, we show that the BDP model also re-

3



sults in the observation of only a subset of replicating mtDNAs
over the timeframe corresponding to these experimental results.
These observations thus correspond to results expected from
the random turnover from the BDP model. We also note the
mathematical observation that the Wai (b) mechanism requires
the replication of < 1% of mtDNAs during folliculogenesis to
yield reasonable heteroplasmy variance increases (Fig. A shows
the optimal case with ↵ = 0.006; optimal fits to data generally
show 0.005 < ↵ < 0.01), and the proportions of loci visible in
Ref. [12] are substantially higher than this required 1% value.

We show in Appendix 1 that the heteroplasmy statistics
corresponding to binomial partitioning also describe the case
where the elements of inheritance are heteroplasmic clusters,
where the mtDNA content of each cluster is randomly sampled
from the population of the cell (either once, as an initial step, or
repeatedly at each division). This similarity holds broadly, re-
gardless of whether the internal structure of clusters is constant
across cell divisions or allowed to mix between divisions. The
BDP model, in addition to describing the partitioning of indi-
vidual mtDNAs, also thus represents the statistics of mtDNA
populations in which heteroplasmic nucleoids are inherited [31],
or individual organelles containing a mixed set of mtDNAs or
nucleoids are inherited, regardless of the size of these nucleoids
(see Discussion).

Parameterisation and interpretation of the
birth-death-partition model

Having used ABC model selection to identify the BDP model as
the most statistically supported, we can also use ABC to infer
the values of the governing parameters of this model given ex-
perimental data. Figs. A and B shows the trajectories of mean
copy number and mean heteroplasmy variance resulting from
model parameterisations identified through this process. Fig. C
shows the inferred behaviour of mtDNA degradation rate ⌫ in
the model, a proxy for mtDNA turnover (as the copy number is
constrained). Turnover is generally low during cell divisions,
allowing heteroplasmy variance to increase due to stochastic
partitioning. Turnover then increases later in germ line devel-
opment, resulting in a gradual increase of heteroplasmy variance
after birth until the mature oocytes form in the next generation.

Fig. D shows posterior distributions on the copy number
minimum and total turnover (see Methods) resulting from this
process; posteriors on all other parameters are shown in Ap-
pendix 1. Substantial flexibility exists in the magnitude of the
copy number minimum, illustrating that observed heteroplasmy
variance can result from a range of bottleneck sizes from ⇠ 200
to > 103; going some way towards reconciling the conflict be-
tween Refs. [18] and [19] and Refs. [11] and [12]. The total
amount of mtDNA turnover (presented as � =

P6
i=3 ⌫i⌧

0
i

, the
product of turnover rate and the time for which this rate ap-
plies, summed over quiescent dynamic phases; for example, a
turnover rate of 0.1 hr�1 for 30 days yields � = 0.1⇥ 24⇥ 30 =
72) is constrained more than the specific trajectory of mtDNA
turnover rates, showing that a variety of time behaviours of
turnover are capable of producing the observed heteroplasmy
behaviour.

Experimental verification of the birth-death-
partition model

The bottleneck mechanism identified through our analysis has
several characteristic features which facilitate experimental ver-
ification. Key among these are the prediction that heteroplasmy
variance acquires an intermediate (nonzero, but not maximal)
value as a result of the copy number bottleneck, then contin-
ues to increase due to mtDNA turnover in later development.
Our theory also produces quantitative predictions regarding the
structure of heteroplasmy distributions at arbitrary times.

The existing data that we used to perform inference and
model selection display a degree of internal heterogeneity, com-
ing from several di↵erent experimental groups. Furthermore,
these data represent statistics resulting from a single pairing of
mtDNA types, and it is thus arguable how conclusions drawn
from them may represent the more genetically diverse reality
of biology. Ref. [44] recently addressed the issue of this limited
number of mtDNA pairings by producing novel mouse models
involving mixtures of standard and several new, unexplored,
wild-derived haplotypes which capture a range of genetic diver-
sity. To test the applicability and generality of our predictions,
we have perfomed new experimental measurements of germline
heteroplasmy variance in these model animals under a consis-
tent experimental protocol (see Methods). We use the ‘HB’
mouse line from Ref. [44] pairing a wild-derived mtDNA hap-
lotype (labelled ‘HB’ after its source in Hohenberg, Germany)
with C57BL/6N; we refer to this model as ‘HB’.

Heteroplasmy measurements were taken in oocytes sampled
from mice at ages 24-61dpc (see Methods and Appendix 1; raw
data in Source data 1). The statistics of these measurements
yielded E(h), V(h) and V0(h) as previously. This age range
was chosen to address the regions with most power to discrimi-
nate between the competing models; the existing V0(h) data is
most heterogeneous around 20-30dpc and the later datapoints
allow us to detect developmental heteroplasmy behaviour after

the copy number minimum. Fig. A shows these V0(h) mea-
surements. The qualitative behaviour predicted by the BDP
mechanism is clearly visible: variance around birth (after the
copy number bottleneck) is low but non-zero, subsequently in-
creasing with time. The ability of the BDP model to account
for the magnitudes and time behaviour of heteroplasmy vari-
ance more satisfactorily than the alternative models is shown by
the model fits in Fig. A. We explored these new data quan-
titatively through the same model selection approach used for
the existing data. As shown in Fig. B, the BDP mechanism
again experiences by far the strongest statistical support in this
genetically di↵erent system.

Fig. C shows the result of our parameteric inference ap-
proach using these V0(h) measurements coupled with the E(m)
measurements used previously (employing our assumption that
modulation of copy number by heteroplasmy in this non-pathological
haplotype is small). Strikingly, the quantitative behaviour of
V0(h) with time inferred from the HB model (red) matches
the previous behaviour inferred from the NZB/BALB/c sys-
tem (blue) very well, suggesting that our theory is applicable
across a range of genetically distinct pairings. We note that
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the shaded region in Fig. C corresponds to credibility intervals

around the mean behaviour of V0(h), and the fact that indi-
vidual V0(h) datapoints (subject to fluctuations and sampling
e↵ects) do not all lie within these intervals is not a signal of
poor model choice. An analogous situation is the observation
of a scatter of datapoints outside the range of the standard er-
ror on the mean (s.e.m.), which does not imply a mistake in the
s.e.m. estimate. The di↵erence between the trace in Fig. A and
the mean curve in Fig. C arises because Fig. A shows the
behaviour of the model under a single, optimised parameterisa-
tion, whereas Fig. C shows the distribution of model behaviours
over the posterior distributions on parameters: the mean V0(h)
trace of this distribution is comparable but not equivalent to
that from the single best-fit parameterisation.

To confirm more detailed predictions of our model, we also
examined the specific distributions of heteroplasmy in our new
measurements. Given a mean heteroplasmy and an organis-
mal age, the parameterised BDP model predicts the structure
of the heteroplasmy distribution (see Methods and next sec-

tion). We parameterised the model using V0(h) values from a
subset of half of the new measurements (chosen by omitting
every other sampled set when ordered by time). Fig. D shows a
comparison of measured heteroplasmy distributions with a 95 %
bound from the parameterised BDP model. We then tested the
predictions of the parameterised model against the other half of
new measurements. 8 of the test measurements (2.4%) fell
outside the inferred 95% bound from the training dataset,
illustrating a good agreement with distributional predictions.
The Anderson-Darling test was used to compare the distribu-
tion of heteroplasmy in sampled oocytes with distributions pre-
dicted by our theory (given age and mean heteroplasmy); no
set of samples showed significant (p < 0.05) departures from
the hypothesis that the two distributions were identical. Some
example distributions are presented in Fig. D (i), (ii), (iii).

The birth-death-partition model is analyti-
cally tractable

Importantly, the birth-death-partitioning model yields analytic
solutions for the values of all genetic properties of interest, us-
ing tools from stochastic processes (detail in Methods and Ap-
pendix 1). These results facilitate straightforward further study
and fast predictions of timescales and probabilities of interest.
The full theoretical approach is detailed in Appendix 1, and
equations for the mean and variance of mtDNA populations and
heteroplasmy are given in the Methods. In Fig. A we
illustrate that these analytic results exactly match the numeric
results of stochastic simulation, a result that holds across all
BDP model parameterisations. It is also straightforward to
calculate thefixation probability P(m = 0), which allows us to characterise
all heteroplasmy distributions that arise from the bottlenecking
process, even when highly skewed (see Methods and Appendix
1). We have thus obtained analytic solutions for the time be-
haviour of mtDNA copy number and heteroplasmy throughout
the bottleneck with no assumptions of continuous population
densities or fixed population size, under a physical model with
the most statistical support given experimental data.

Mitochondrial turnover, degradation, and se-
lective pressures exert quantifiable influence on
heteroplasmy variance

We can use our theory to explore the dependence of bottleneck
dynamics on specific biological parameters. We first explore the
e↵ects of modulating mtDNA turnover by varying � and ⌫ in
concert, corresponding to an increase in mtDNA degradation
balanced by a corresponding increase in mtDNA replication.
This increased mtDNA turnover increases the heteroplasmy
variance due to bottlenecking (see Fig. A). This result arises
due to the increased variability in mtDNA copy number from
the underlying random processes occurring at increased rates.
Additionally, we find that increasing mtDNA degradation ⌫
without increasing � also increases heteroplasmy variance, in
addition to decreasing the overall mtDNA copy number (Fig.
B). Applying this unbalanced increase in mtDNA degradation
without a matching change in replication has a strong e↵ect
on mtDNA dynamics as it corresponds to a universal change
in the ‘control’ applied to the system, analogous, for example,
to changing target copy numbers in manifestations of relaxed
replication [21]. The simple model we use does not include
feedback and controls mtDNA dynamics solely through kinetic
parameters. Perturbing the balance of these parameters thus
strongly a↵ects the expected behaviour of the system. As we
discuss later, elucidation of the specific mechanisms by which
control is manifest in mtDNA populations will require further
research, but these numerical experiments attempt to repre-
sent the cases where a perturbation is naturally compensated
for (matched changes, Fig. A) and where it is not
(unbalanced change, Fig. B).

These results suggest that an artificial intervention increas-
ing mitochondrial degradation may generally be expected to in-
crease heteroplasmy variance during development. An increase
in mtDNA degradation is expected to either directly increase
heteroplasmy variance (Fig. B) if mtDNA populations are
weakly controlled, or to provoke a compensatory, population-
maintaining increase in mtDNA replication, thus increasing mtDNA
turnover, which also acts to increase variance (Fig. C) if mtDNA
populations are subject to feedback control. The increase in
variance through either of these pathways will increase the
power of cell-level selection to remove cells with high hetero-
plasmy and thus purify the population. For this reason, we
speculate that mitochondrial degradation may represent a po-
tential clinical target to address the inheritance of mtDNA dis-
ease (more detail in Appendix 1).

Our model also allows us to explore the e↵ect of di↵erent
mtDNA types experiencing di↵erent selective pressures, by set-
ting �1 6= �2 (mutant mtDNA experiences a proliferative ad-
vantage or disadvantage). Such a selective di↵erence causes
changes in both mean heteroplasmy and heteroplasmy variance,
as shown in Fig. C (for example, if heteroplasmy decreases to-
wards zero, heteroplasmy variance will also decrease, as the wild
type is increasingly likely to become fixed). We do not focus
further on selection in this study, noting that selective pressures
are likely to be specific to a given pair or set of mtDNA types
and are not generally characterised well enough to perform sat-
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isfactory inference. However, we do note that our theory gives
a straightforward prediction for the functional form of mean
heteroplasmy when nonzero selection is present, a sigmoid with
slope set by the fitness di↵erence (see Methods).

Probabilities of exceeding threshold hetero-
plasmy values

A key feature of mtDNA diseases is that pathological symp-
toms usually manifest when heteroplasmy in a tissue exceeds a
certain threshold value, with few or no symptoms manifested
below this threshold [45]. The probability and timescale as-
sociated with which cellular heteroplasmy may be expected to
exceed a given value is thus a quantity of key interest in clinical
planning of mtDNA disease strategies.

In our model, the probability, as a function of time, of a
cell containing m1 wildtype and m2 mutant mtDNAs can be
straightforwardly derived. The resultant analytic expression
involves a hypergeometric function, also an important math-
ematical element in expressions describing mtDNA statistics
based on classical population genetics [23, 46]. The probability
of obtaining a given heteroplasmy can therefore be computed
as a sum over all copy number states that correspond to that
heteroplasmy. However, as hypergeometric functions are com-
paratively unintuitive and computationally expensive, we here
employ an approximation to the distribution of heteroplasmy
based upon the above moments that are straightforwardly cal-
culable from our model. This approximation involves fixation
probabilities for each mtDNA type and a truncated Normal
distribution for intermediate heteroplasmies (see Methods). In
Appendix 1 we show that this approximation corresponds well
to the exact distributions calculated using the hypergeometric
function. We underline that exact heteroplasmy distributions
are straightfoward to compute using our approach: we use the
truncated Normal approximation as it represents the exact dis-
tribution well, is more intuitively interpretable, and is compu-
tationally very inexpensive.

Using this approach, the probability with time of a cell ex-
ceeding a threshold heteroplasmy h⇤ can be straightforwardly
computed for any initial heteroplasmy, allowing rigorous quanti-
tative elucidation of this important clinical quantity (see Meth-
ods). Fig. D illustrates this computation by showing the an-
alytic probability with which thresholds h⇤ = 0.4, 0.5, 0.6 are
exceeded at a time t, given the example initial heteroplasmy h =
0.3. These results serve as a simple example of the power of our
modelling approach: any other specific case can read-ily be
addressed. Our theory thus allows general quantitative
calculation of the probability (and timescale) that any given
heteroplasmy threshold will be exceeded, given knowledge of
the initial (or early) heteroplasmy.

Developmental sampling of embryonic het-
eroplasmy

We next turn to the question of estimating heteroplasmy levels
in a developed organism by sampling cells during development.
This principle, clinically termed preimplantation genetic diag-

nosis [5, 47], assists in clinical planning by allowing inference
of the specific heteroplasmic nature of the embryo itself rather
than a population average of an a↵ected mother’s oocytes [48].
However, the complicated and stochastic nature of the bottle-
neck makes this inference a challenging problem.

Given a heteroplasmy measurement from sampling h
m

, ac-
curate preimplantation diagnosis is contingent on knowledge of

the distribution P(h|h
m

), that is, the probability that the em-
bryonic heteroplasmy is h given that a measurement h

m

has
been made. We can use our modelling framework and Bayes’
theorem (see Methods) to obtain a formula for this conditional
probability, allowing a rigorous probability to be assigned to
inferences from preimplantation sampling. Here, as above, we
employ the truncated Normal approximation for the hetero-
plasmy distribution, noting that the exact treatment using hy-
pergeometric functions is straightforward but more computa-
tionally expensive. Fig. E illustrates this process by showing
the probability distributions on embryonic heteroplasmy when
measurements h

m

= 0.1 or 0.4 have been taken at di↵erent
times during development. The increasing heteroplasmy vari-
ance through development means that substantially greater un-
certainty is associated with heteroplasmy values inferred using
measurements taken at later times. In conclusion, although care
must be taken in applying this reasoning to cell types in which,
for example, mitochondrial and cell turnover rates di↵er from
those assumed here, or di↵erentiation leads to tissue-specific
selective factors acting on the mtDNA population, this formal-
ism provides a general means of rigorously inferring embryonic
heteroplasmy through genetic diagnosis sampling.

Discussion

We have used a general stochastic model and approximate Bayesian
computation with the available experimental data on develop-
mental mtDNA dynamics to show that the bottleneck is most
likely manifest through stochastic mtDNA dynamics and par-
titioning, with increased random turnover later during devel-
opment, a mechanism which we can describe exactly and ana-
lytically (Fig. ). We emphasise that the bottom-up construc-
tion of our model from physical first principles both increases the
flexibility and generality of our model, allowing di↵erent
mechanisms to be compared together, and providing informa-
tion on mtDNA dynamics throughout development rather than
estimating an overall e↵ect. We note that even though our
model cannot represent the full microscopic truth underlying
the mtDNA bottleneck, its ability to recapitulate the wide range
of extant experimental measurements suggest that its study
may yield useful insights into the e↵ects of di↵erent treatments
and perturbations on the bottleneck.

A key debate in the literature has focussed on the magni-
tude of the bottleneck. Some studies [11, 15] have observed
a depletion of mtDNA copy number during the bottleneck to
minima around several hundred; other studies [18, 19] have ob-
served that mtDNA copy number remains > 103. Our study
shows that observed increases in heteroplasmy variance [16, 12]
can be achieved across this range of potential minimal mtDNA
copy numbers, meaning that the much-debated magnitude of
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mtDNA copy number reduction is not the sole critical fea-
ture of the bottleneck, in agreement with arguments from Refs.
[18, 19, 12]. We find that the role of stochastic mtDNA dy-
namics can play a key role in determining heteroplasmy vari-
ance without additional mechanistic details, in keeping with
approaches proposed by Ref. [11]. The mechanism with the
most statistical support is thus consistent with aspects from all
existing proposals in the literature.

We have shown that, of the models proposed in the litera-
ture, a birth-death-partitioning model, proposed after Ref. [11]
and compatible with an interpretation of Ref. [12], is the in-
dividually most likely mechanism, and capable of producing
experimentally observed heteroplasmy behaviour. We cannot,
given current experimental evidence, discount hybrid mecha-
nisms, where birth-death-partitioning dominates the popula-
tion dynamics but small contributions from other mechanisms
provide perturbations to this behaviour, and propose experi-
ments to conclusively distinguish between these cases (see Ap-
pendix 1). As the expected statistics of mtDNA populations
undergoing inheritance of heteroplasmic mtDNA clusters is very
similar to those undergoing binomial partitioning of mtDNAs
(see Appendix 1), the inheritance of heteroplasmic nucleoids
(as opposed to individual mtDNAs) is not excluded by our find-
ings, though other recent experimental evidence suggests that
this situation may be unlikely [42, 41]. We contend that the
most likely situation may involve the partitioning of individual
organelles, containing a mixture of homoplasmic nucleoids of
characteristic size < 2. Notably, this case (inheritance of het-
eroplasmic groups, likely with fluid structure due to mixing of
organellar content and mitochondrial dynamics), gives rise to
statistics which our binomial model reproduces (see Appendix
1).

As mentioned in the model description, it is likely that mi-
tochondrial dynamics (fission and fusion of mitochondria) [35]
play a role in determining natural mtDNA turnover, and par-
ticularly mtDNA turnover in the presence of pathological mu-
tations [49], through the mechanism of mitochondrial quality
control [32, 37]. Mitochondrial dynamics may also influence
the elements of partitioning, through changes in the connectiv-
ity of the mitochondrial network. In our current model, these
influences are coarse-grained into descriptions of the dynamic
rates of mtDNA replication and degradation, and the character-
istic elements that are partitioned at divisions. These physical
parameters, as opposed to the more microscopic details of mito-
chondrial dynamics, are expected to be the key determinants of
heteroplasmy statistics through development. Accounting for
how these parameters, which summarize the relevant outputs
of mitochondrial dynamics, connect to details of microscopic
models of mitochondrial dynamics is an important future re-
search direction to be addressed when more quantitative data
is available.

The experimental data used to parameterise the first part
of our study was taken from four studies in mice. Observation
of similar dynamics in salmon [20] points towards the bottle-
neck being a conserved mechanism in vertebrates. We also note
that our results in mice are broadly consistent with findings
from recent experiments in other organisms, suggesting that in

primates and humans, heteroplasmy variance may increase at
early developmental stages [50, 51], and that partitioning of
mitochondria is binomial in HeLa cells [52]. As more studies
become available on human mtDNA behaviour during develop-
ment we will test our model’s applicability and its clinical pre-
dictions. We note that the results of a recent study of human
preimplantation sampling [48] found that earlier measurements
provided strong predictive power of mean heteroplasmy, about
which substantial variation was recorded in the o↵spring – both
of which results are consistent with the application of our model
to theoretical sampling considerations. In addition, recent ob-
servations that the m.3243A > G mutation in humans both
increases mtDNA copy number during development [53], and
displays a less pronounced increase of heteroplasmy variance
[51] than other mutations, are consistent with the link between
heteroplasmy variance and mtDNA copy number in our theory.

The combination of modern stochastic and statistical treat-
ments that we have employed provides a generalisable and pow-
erful way to recapitulate experimental data and rigorously de-
duce underlying biological mechanisms. We have used this com-
bination to explore pertinent questions regarding the mtDNA
bottleneck (and others have used a similar philosophy to nu-
merically explore mtDNA point mutations [25]): we hope to
convince the reader that such methodology may be appropriate
to explore other problems involving stochastic biological sys-
tems. We have used new experimental measurements to confirm
our theoretical findings, illustrating the beneficial and power-
ful coupling of mathematical and experimental approaches to
address competing hypotheses in the literature. Our detailed
elucidation of the bottleneck allows us to propose further exper-
imental methodology to address the current unknowns in our
theory, including the specifics of mtDNA partitioning at cell
division and the roles of selective di↵erences between mtDNA
types; importantly, we also propose a strategy to investigate
our claim that our most supported model is compatible with
the subset-replication picture of mtDNA dynamics. We list
these experiments in full in Appendix 1. Finally, we believe
that the theoretical foundation for mtDNA dynamics that we
have produced allows increased quantitative rigour in the pre-
dictions and strategies involved in mtDNA disease therapies,
illustrated by the above application of our theory to problems
in mtDNA sampling strategies, disease onset timescales, and
interventions to increase the power of the bottleneck.

Methods

General model for mtDNA dynamics. Our ‘bottom-up’
model represents individual mtDNAs as elements which repli-
cate and degrade either randomly or deterministically according
to the model parameterisation. Consonant with experimental
studies showing that it is often a single mutant genotype that
dominates the non-wildtype mtDNA population of a cell [54],
we consider two mtDNA types (wildtype and mutant), though
our model can readily be extended to more mtDNA types. We
denote the number of ‘wild-type’ mtDNAs in a cell as m1 and
the number of ‘mutant’ mtDNAs as m2. The heteroplasmy of
a cell is then h = m2

m1+m2
, that is, the population proportion of
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mutant mtDNA.
MtDNA dynamics within a cell cycle. Individual mtD-

NAs are capable of replication and degradation, with rates de-
noted � and ⌫ respectively. According to a binary categorical
parameter S, these events may be deterministic (S = 0; the
mtDNA population replicates and degrades by a fixed amount
per unit time) or Poisson processes (S = 1; each individual
mtDNA randomly replicates and degrades with average rates
� and ⌫). A parameter ↵ controls the proportion of mtDNAs
capable of replication: ↵ = 1 allows all mtDNAs to replicate
throughout development, ↵ < 1 enforces a subset proportion ↵
of replicating mtDNAs a time cuto↵ T after conception.

MtDNA dynamics at cell divisions. A parameter c
(cluster size; a non-negative integer) dictates the partitioning
of mtDNAs at cell divisions. When c = 0, partitioning is de-
terministic, so each daughter cell receives exactly half of its
parent’s mtDNA. For c > 0, partitioning is stochastic. When
c = 1, partitioning is binomial: each mtDNA has a 50% chance
of being inherited by either daughter cell. When c > 1, the
parent cell’s mtDNAs are grouped in clusters of size c before
division. Each cluster is then partitioned binomially, with a
50% chance of being inherited by either daughter cell.

Di↵erent dynamic phases through development. The
mtDNA population changes in di↵erent ways as development
progresses, first decreasing, then recovering, then slowly grow-
ing. We include the possibility of di↵erent ‘phases’ of mtDNA
dynamics in our model to capture this behaviour. Each phase
j has its own associated pairs of �

j

, ⌫
j

parameters and may
either be quiescent (involving no cell divisions) or cycling (en-
compassing n

j

cell divisions). Thus, we may have an initial
cycling phase with low mtDNA replication rates, so that copy
number falls for several cell divisions, then a subsequent ‘recov-
ery’ cycling phase with higher replication rates so that mtDNA
levels are amplified, then quiescent phases as cell lineages are
identified. We allow six di↵erent phases, with the first two fixed
as cycling phases with the above doubling times, and the final
phase fixed to include no mtDNA replication (representing the
stable, final occyte state).

Initial conditions. The initial conditions of our model
involve an initial mtDNA copy number m0 (the total number
of mtDNAs in the fertilised oocyte) and an initial heteroplasmy
h0 (the fraction of these mtDNAs that are mutated).

Data acquisition. We used three datasets for mtDNA
copy number during mouse development: Cree [11]; Cao [18];
and Wai [12]. We use two datasets for heteroplasmy variance
during development: Wai [12] and Jenuth [16]. By convention,
we use the normalised versions of heteroplasmy variance (that
is, measured variance divided by a factor h(1 � h)). Where
the measurements were not given explicitly in these publica-
tions, we manually analysed the appropriate figures to extract
the numerical data. For these values, we used data from cor-
respondence regarding the Wai study (reply to Ref. [17]), and
manually normalise the Jenuth dataset. The Jenuth dataset
contains measurements taken in ‘mature oocytes’ with no time
given; we assume a time of 100 dpc for these measurements,
though this time is generalisable and does not qualitatively af-
fect our results. All values are presented in Appendix 1. Data

on cell doubling times in the mouse germ line is taken from
Ref. [43], suggesting that doubling times start with an interval
of every 7h, then after around 8.5 days post conception (dpc)
increase to 16h, before the onset of a quiescent regime around
13.5 dpc (roughly consistent with the estimate of ⇠ 25 divisions
between generations in the female mouse germ line [55]).

Simulation, model selection, and parametric infer-
ence. We use Gillespie algorithms, also known as stochas-
tic simulation algorithms [56], to explore the behaviour of our
model of the bottlenecking process for a given parameterisation.
For a given model parameterisation, the Gillespie algorithm is
used to simulate an ensemble of 103 possible realisations of the
time evolution of mtDNA content, and the statistics of this en-
semble are recorded. The experimental data we use is derived
from sets of measurements of di↵erent sizes; to compare simula-
tion data with an experimental datapoint i corresponding to a
statistic derived from n

i

measurements, we sampled a random
subset of n

i

of the 103 simulated trajectories (all datapoints but
one have n ⌧ 103), and used this subset to derive the simulated
statistic for comparison to datapoint i [29].

To fit the di↵erent models to experimental data we define a
distance measure, a sum-of-squares residual between the E(m)
(in log space) and V(h) dynamics produced by our model and
observed in the data, weighted to facilitate comparison of these
di↵erent quantities [29]. We also constrain copy number to be
< 5 ⇥ 105 at all points throughout development, rejecting pa-
rameterisation that disobey this criterion. Metropolis MCMC
was used to identify the best-fit parameterisation according to
this distance function. For statistical inference, we use approxi-
mate Bayesian computation (ABC), a statistical approach that
has successfully been applied to parametric inference and model
selection in dynamical systems [30] to infer posterior probabil-
ity distributions both for individual models and the parameters
of the models given experimental data. ABC samples poste-
rior probability distributions on parameters that lead to be-
haviour within a certain threshold distance of the given data;
these posteriors are shown to converge on the true posteriors as
the threshold value decreases to zero (see Appendix 1). We em-
ployed an MCMC sampler with randomly-selected initial condi-
tions. For further details, including priors, thresholds and step
sizes used in ABC, see Appendix 1. Minimum copy number was
recorded directly from the resulting trajectories; our measure
of total turnover � is defined as � =

P6
i=3 ⌧

0
i

⌫
i

, the sum over
quiescent dynamic phases of the product of degradation rate
and phase length.

Creation of heteroplasmic mice. Heteroplasmic mice
were obtained from a heteroplasmic mouse line (HB) we cre-
ated previously by ooplasmic transfer [44]. This mouse line
contains the nuclear DNA of the C57BL/6N mouse, and mtD-
NAs both of C57BL/6N and a wild-derived house mouse. Both
mtDNA variants belong to the same subspecies, Mus musculus
domesticus. For details on sequence divergence see Ref. [44].

Isolation and lysis of oocytes. Mice were sacrificed at
the indicated ages by cervical dislocation. Ovaries were ex-
tracted and immediately placed in cryo-bu↵er containing 50%
PBS, 25% ethylene glycol and 25% DMSO (Sigma-Aldrich, Aus-
tria) and stored at -80oC. For oocyte extraction, ovaries were
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placed into a drop of cryo-bu↵er and disrupted using scalpel
and forceps. Oocytes were collected and remaining cumulus
cells were removed mechanically by repeated careful suction
through glass capillaries. Prepared oocytes were then washed
in PBS before they were individually placed into compartments
of 96-well PCR plates (Life Technologies, Austria) containing 10
µl of oocyte-lysis bu↵er [50] [50 mM Tris-HCl, (p.H 8.5), 1 mM
EDTA, 0.5% tween-20 (Sigma-Aldrich, Austria) and 200 µg/mL
ProteinaseK (Macherey-Nagel, Germany)]. Samples covered
stages from primary oocytes of 3 day-old mice up to mature
oocytes of 40 day-old mice. Samples were lysed at 55oC for 2
h, and incubated at 95oC for 10 min to inactivate Proteinase
K. The cellular DNA extract was finally diluted in 190 µl Tris-
EDTA bu↵er, pH 8.0 (Sigma-Aldrich, Austria). 3µL were used
per qPCR reaction.

Heteroplasmy quantification by Amplification Re-
fractory Mutation System (ARMS)-qPCR.Heteroplasmy
quantification was performed by Amplification Refractory Mu-
tation System (ARMS)-qPCR, an established method in the
field [57, 58, 59], as described in Ref. [44]. The study was
conducted according to MIQE (minimum information for pub-
lication of quantitative real-time PCR experiments) guidelines
[44, 60]. The proportion between HB derived and C57BL/6N
mtDNA was determined by ARMS-qPCR assays based on a
SNP in mt-rnr2 [44]. These assays were normalised to changes
in the input mtDNA amount by consensus assays, located in
conserved regions of mt-Co2 and mt-Co3 (see Appendix 1). For
the calculation of mtDNA heteroplasmy, the assay detecting the
minor allele (C57BL/6N or wild-derived < 50%) was always
used. If both specific assays gave values > 50% (which can
happen around 50% heteroplasmy), the mean value of both as-
says was taken. All qPCR runs contained no template controls
(NTCs) for all assays; these were negative in 100%. Further
experimental details available in Appendix 1.

Analytic model. In the birth-death-partitioning model,
processes within a cell cycle constitute a birth-death process
which can be solved using generating functions [61]. For bino-
mial partitioning, the generating function for the system after
an arbitrary number of divisions has a recursive structure [62]
and an analytic solution can be obtained through solving a Ric-
cati recurrence relation. This reasoning also extends to the dif-
ferent phases of replication and degradation, allowing an exact
generating function to be constructed for an arbitrary point in
the bottleneck. Derivatives of this generating function are then
used to obtain moments of the distributions of interest. The
full procedure is given in Appendix 1. Recall that we assume
that the bottlenecking process consists of a series of dynamic
phases, which may either involve cycling cells (and hence cell
divisions) or quiescent cells. The expression for mean mtDNA
copy number E(m, t) at time t is:

E(m, t) = m0e
(t�⌧

⇤)
Y

phases i

e(ni⌧i+⌧

0
i)(�i�⌫i)

2ni
, (2)

where n
i

is the number of cell divisions in phase i (0 for
quiescent phases), ⌧

i

is the length of a cell cycle in cycling phase
i, ⌧ 0

i

is the time spent in quiescent phase i (0 for cycling phases),

and ⌧⇤ = ⌃
i

(n
i

⌧
i

+⌧ 0
i

), so that t�⌧⇤ is the time since the last cell
division. E(m, t) is thus intuitively interpretable as a product
of the initial copy number with the e↵ects of halving at each
cell division, and the copy number evolution through past and
current cell cycles and quiescent phases.

The expression for the variance is lengthier, taking the form

V(m, t) =
�E(m, t)Q

phases i 4
ni(e(�i�⌫i)⌧i � 2)2(�

i

� ⌫
i

)2

+E(m, t)� E(m, t)2, (3)

where � is a lengthy, though algebraically simple, function
of all physical parameters, which we derive and present in Ap-
pendix 1. Once the means and variances associated with mu-
tant and wild-type mtDNAs have been determined (for brevity,
we write these as µ1 ⌘ E(m1, t),�2

1 ⌘ V(m1, t) and µ2 ⌘
E(m2, t),�2

2 ⌘ V(m2, t)), the relations below can be used to
compute heteroplasmy statistics:

E(h) = µ2

µ1 + µ2
⌘ µ

h

(4)

V(h) = µ2
h

 
�2
2

µ2
2

� 2�2
2

µ2(µ1 + µ2)
+

�2
1 + �2

2

(µ1 + µ2)
2

!
(5)

Selection. The predicted mean heteroplasmy at time t as-
suming a constant selective pressure (though this assumption
can straightforwardly be relaxed) is given by Eqn. 4, which,
given Eqn. 2, straightforwardly reduces to

E(h) = 1

1 + 1�h0
h0

e���t

, (6)

where h0 is initial heteroplasmy and �� is the increase (or
decrease, if negative) in replication rate of mutant over wild-
type mtDNA. Eqn. 6 predicts that mean heteroplasmy in the
presence of selection will follow a sigmoidal form (as expected
from population dynamics [63], by the constraint that h0 must
lie between 0 and 1, and by the intuitive fact that heteroplasmy
changes slow down as these limits are approached).

Threshold crossing. The probability of heteroplasmy ex-
ceeding a certain threshold h⇤ is simply given by integrating
the probability distribution of heteroplasmy between h⇤ and 1.
The exact distribution of heteroplasmy can be written as a sum
over hypergeometric functions; however, for computational ef-
ficiency and interpretability, we employ an approximation to
this distribution involving the truncated Normal distribution
and fixation probabilities. As shown in Appendix 1, the distri-
bution of heteroplasmy, taking possible fixation into account,
can be well approximated by

P(h) = (1� ⇣1 � ⇣2)N 0(h|µ,�2) + ⇣1�(h) + ⇣2�(h� 1) (7)

where N 0 is the truncated Normal distribution (truncated
at 0 and 1), µ and �2 are found numerically given our model
results for E(h) and V(h), and ⇣1 ⌘ P(h = 0) and ⇣2 ⌘ P(h = 1)
are fixation probabilities, also straightforwardly calculable from
our model. The probability of threshold crossing for 0 < h⇤ < 1
is then
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P(h > h⇤) = (1� ⇣1 � ⇣2)

✓
1�

1

2

⇣
1 + erf

⇣
(h⇤ � E(h))/

p
2V(h)

⌘⌘◆
+ ⇣2.

(8)

Inference from heteroplasmy measurements. Given a
sampled measurement heteroplasmy h

m

, the probability P(h0|hm

)
that embryonic heteroplasmy is h0 is given by Bayes’ theo-
rem P(h0|hm

) = P(h
m

|h0)P(h0)/P(hm

). Assuming a uniform
prior distribution on embryonic heteroplasmy (though this can
be straightforwardly generalised), we thus obtain P(h0|hm

) =

P(h
m

|h0)/
R 1

0
P(h

m

|h0
0)dh

0
0, and using the above expression for

the heteroplasmy,

P(h0|hm) =
(1� ⇣1 � ⇣2)N 0(hm|µ,�2) + ⇣1�(hm) + ⇣2�(hm � 1)

R 1
0 dh0

0(1� ⇣1 � ⇣2)N 0(hm|µ,�2) + ⇣1�(hm) + ⇣2�(hm � 1)
,

(9)

where µ,�2, ⇣1, ⇣2 are functions of h0: µ,�2 may be found
numerically and the ⇣ values are analytically calculable (see
Appendix 1).
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Figure Captions & Other Titles

Figure 1. The mitochondrial bottleneck, and ele-
ments of a general model for bottlenecking mechanisms.
(A) The mtDNA bottleneck acts to produce a population of
oocytes with varying heteroplasmies from a single initial oocyte
with a specific heteroplasmy value. During development, mtDNA
copy number per cell decreases (by a debated amount, which we
address; see Main Text) then recovers, suggesting a ‘bottleneck’
of cellular mtDNA populations. (B) Cellular mtDNA popula-
tions during the bottleneck are modelled as containing wild-
type and mutant mtDNAs. MtDNAs can replicate and degrade
within a cell cycle, with rates � and ⌫ respectively. (C) At cell
divisions, the mtDNA population is partitioned between two
daughter cells either deterministically, binomially, or through
the binomial partitioning of mtDNA clusters. (D) Symbols used
to represent quantities and model parameters used in the main
text, and their biological interpretations.

Figure 2. Di↵erent mechanisms for the mtDNA bot-
tleneck. (A) Trajectories of mean copy number E(m) and nor-
malised heteroplasmy variance V(h) arising from the models de-
scribed in the text, optimised with respect to data from exper-
imental studies. BDP denotes the birth-death-partition model,

encompassing Cree and Wai (a) mechanisms. Left plots show
trajectories during development; right plots show behaviour
in mature oocytes in the next generation. * denotes mea-
surements in mature oocytes, modelled as 100 dpc (see Meth-
ods). (B) Statistical support for di↵erent mechanisms from ap-
proximate Bayesian computation (ABC) model selection with
thresholds ✏1,2,3,4 = 75, 60, 50, 45. As the threshold decreases,
forcing a stricter agreement with experiment (thinner, darker
columns), support converges on the birth-death-partitioning
(BDP) model.

Figure 3. Parameterisation of the BDP model and
inferred details of bottleneck mechanism. Trajectories of
(A) mean copy number E(m) and (B) normalised heteroplasmy
variance V0(h) resulting from BDP model parameterisations
sampled using ABC with a threshold ✏ = 40. * denotes mea-
surements in mature oocytes, modelled as 100 dpc (see Meth-
ods). Note: the range in (B) does not correspond to a credibility
interval on individual measurements, but rather on an expected
underlying (population) variance, from which individual vari-
ance measurements are sampled. We thus expect to see, for
example, several measurements lower than this range due to
sampling limitations (see text). (C) Posterior distributions on
mtDNA turnover ⌫ with time. (D) Posterior distribution on
min E(m), the minimum mtDNA copy number reached during
development. (E) Posterior distribution on � =

P6
i=3 ⌧

0
i

⌫
i

, a
measure of the total amount of mtDNA turnover.

Figure 4. Predictions and experimental verification of
the BDP model. (A) New V0(h) measurements from the HB
mouse system, with optimised fits for the BDP, Wai (b) and
Cao models. (B) Posterior probabilities of each model given
this data under decreasing ABC threshold: ✏ = {50, 40, 30, 25}.
(C) All V0(h) measurements from the HB model (points) with
inferred V0(h) behaviour from ABC applied to the BDP model
(red curves). As in Fig. , this range does not correspond to a
credibility interval on individual measurements, but rather on
an expected underlying (population) variance, from which indi-
vidual variance measurements are sampled. The inferred be-
haviour strongly overlaps with the inferred behaviour for the
BALB/c system (blue curves), suggesting that the BDP model
applies to a genetically diverse range of systems. (D) Hetero-
plasmy distributions. The transformation h0 = � ln

��(h�1 � 1)E(h)/(1� E(h))
��

[44] is used to compare distributions with di↵erent mean hetero-
plasmy. Red jitter points are samples from sets used to parame-
terise the BDP model; red curvesshow the 95 % range on trans-
formed heteroplasmy with time inferred from these samples.
Blue jitter points are samples withheld independent from this
parameterisation; their distributuions fall within the indepen-
dently inferred range. Insets show, in untransformed space, dis-
tributions of the withheld heteroplasmy measurements (blue)
compared to parameterised predictions (red); no withheld datasets
show significant support against the predicted distribution (Anderson-
Darling test, p < 0.05).
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Figure 5. Quantitative influences and clinical results
from our bottlenecking model. (A-C) Trajectories of copy
number E(m) and normalised heteroplasmy variance V0(h) re-
sulting from perturbing di↵erent physical parameters. Trajec-
tory C labels the ‘control’ trajectory resulting from a fixed pa-
rameterisation; black dots show experimental data; * denotes
measurements from primary oocytes, modelled at 100 dpc. (A)
Increasing (T+) and decreasing (T�) mtDNA turnover (both
mtDNA replication and degradation) by 20%. (B) Increasing
(M+) and decreasing (M�) mtDNA degradation throughout
development by a constant value (2⇥ 10�4, in units of day�1),
while keeping replication constant. (C) Applying a positive
(S+) and negative (S�) selective pressure to mutant mtDNA
by 5 ⇥ 10�6 day�1. (D) Probability of crossing di↵erent het-
eroplasmy thresholds h⇤ with time, starting with initial hetero-
plasmy h0 = 0.3. (E) Probability distributions over embryonic
heteroplasmy h0 given a measurement h

m

from preimplantation
sampling (** h

m

= 0.1; *** h
m

= 0.4) at di↵erent times.

Figure 6. Model for the mtDNA bottleneck. A sum-
mary of our findings. (A) There is most statistical support for a
bottlenecking mechanism whereby mtDNA dynamics is stochas-
tic within a cell cycle, involving random replication and degra-
dation of mtDNA, and mtDNAs are binomially partitioned at
cell divisions. (B) This mechanism results in heteroplasmy vari-
ance increasing both due to stochastic partitioning at divisions
and due to random turnover. The absolute magnitude of the
copy number bottleneck is not critical: a range of bottleneck
sizes can give rise to observed dynamics. Random turnover of
mtDNA increases heteroplasmy variance through folliculogene-
sis and germline development.

Appendix 1. Detailed derivations involved in the mathe-
matical analysis and inference approach; numerical descriptions
of the source data giving rise to existing and new heteroplasmy
variance measurements; experimental details of these new mea-
surements; and details on proposed experimental strategies for
further elucidation.

Figure 4 – Source data 1. Individual heteroplasmy mea-
surements in the HB mouse model contributing to the new het-
eroplasmy variance data used to test our theory.
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1 Data from experimental studies

Table 1 contains the datapoints used in this study. These data are taken from Tables 1 and 2 of Ref. [1] (labelled ‘Cao’);
Tables 1 and 2 of Ref. [2]; Fig. 1 of Ref. [3] and Fig. 1 of the following correspondence (reply to Ref. [4]) (labelled ‘Wai’);
and Table 2 of Ref. [5] (labelled ‘Jenuth’). Convention in the literature suggests that normalisation of measured heteroplasmy
variance values, performed by division by a factor h(1�h), allows comparison of variance values from lines with diverse absolute
heteroplasmies: the Wai data from correspondence is already normalised, and we manually normalised the Jenuth data using
the h values present.

Where data in the original studies were presented as a function of number of cells in a developing organism, as opposed to
an explicit function of time, we have assigned times using the 7h ! 16h doubling times from Ref. [6]. Other sources assume a
15h doubling time throughout early development: using the data interpreted in this way did not lead to a qualitative di↵erence
in our conclusions and very little quantitative change in posterior distributions (data not shown). Some datapoints did not have
associated or readily available sample sizes N : for these datapoints we estimated N using available evidence in the publication.
To check for dependence on these values of N we performed our inference process with a range of alternative N values and with
a test case where N was set to 100 for every datapoint: all results and posteriors were qualitatively similar, showing a lack of
strong dependence of our conclusions on the specific numbers of samples involved in deriving the experimental measurements
(data not shown).

2 Heteroplasmic and homoplasmic clusters

The specific units of inheritance of mtDNA have been debated in the literature for decades. The smallest possible unit of
inheritance is a single mtDNA molecule; some studies have hypothesised that the unit of inheritance consists of groups of
mtDNA molecules. Within this picture, debate exists as to whether these groups are semi-permanent associations of molecules
(which we will refer to as ‘quenched’ sets) or more fluid transient colocalisations of molecules (which we refer to as ‘unquenched’).
Furthermore, the size of these units is debated, with estimates ranging from an average size of 1.4 to 10 mtDNA molecules [7, 8],
and it is unknown whether the mtDNAs within a group are strictly homoplasmic or if heteroplasmic groups are possible, although
current evidence, at the finest resolution, points towards homoplasmic groups of size < 2 [9, 10, 11, 12].

We will classify these di↵erent pictures with three parameters. First, the characteristic size c of an mtDNA group. Second,
a classifier denoting whether these groups are quenched (in the sense that the individual constituents of a group remain the
same over many cell divisions) or unquenched (in the sense that the individual constituents of a group may change between cell
divisions). Third, a classifier denoting whether groups are necessarily homoplasmic, or if heteroplasmy is permitted.
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7,8

29.0 0.013 20 Wai

7,8

29.0 0.027 20 Wai

7,8

32.0 0.016 20 Wai

7,8

32.0 0.023 20 Wai

7,8

35.0 0.026 20 Wai

7,8

35.0 0.029 20 Wai

7,8

50.0 0.039 20 Wai

7,8

51.1 0.043 20 Wai

7,8

65.0 0.026 20 Wai

7,8

Table 1: Source data used in this study. 1 Data referenced by number of cells post-conception is assigned a time measurement
assuming the 7h ! 16h doubling times from Ref. [6]. 2 Mean copy number taken directly from tabulated data. 3 (Weighted)
average over germline cell classes presented at this time point. 4 Extracted from data in figures; n not explicitly available so
estimated as n = 20 from accompanying histograms and discussion. 5 Manually normalised from given data. 6 Data from mature
oocytes in next generation: time in dpc not available. 7 Extracted from data in figures in correspondence following study. 8

n

not explicitly available so estimated as n = 20 from accompanying histograms and discussion in original paper.
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An early hypothesis from Jacobs et al. [13] considered ‘nucleoids’ which correspond to quenched heteroplasmic groups with
c > 1, retaining their internal structure across cell divisions and containing di↵erent mtDNA types. If the mitochondrial organelle
is the unit of inheritance, we may expect unquenched heteroplasmic groups with c > 1, as mitochondrial dynamics act to mix the
content of the mitochondrial system between cell divisions, but organelles are likely to contain more than one mtDNA molecule.
If nucleoids are the units of inheritance and, as current understanding suggests, nucleoids are small and homoplasmic (if mtDNA
indeed exists in groups at all), the appropriate picture is c ' 1, homoplasmic groups.

Here we show that the heteroplasmy statistics resulting from these di↵erent pictures of grouped inheritance collapse onto
two representative cases: first, that corresponding to homoplasmic clusters with c > 1, and second, that corresponding to c = 1
(binomial inheritance). Quenching – whether mtDNA content can remix within nucleoids – is shown to be unimportant in
determining heteroplasmy statistics. Our model for these di↵erent situations is as follows. We consider a cellular population
as consisting of a set of mtDNA molecules, existing in groups of size c. During a cell cycle, the population of groups doubles
deterministically (we ignore random birth-death dynamics in this model, in order to focus on partitioning dynamics), so that
every group produces one exact copy of itself. For unquenched simulations, a new set of groups is then formed by resampling
the individual mtDNA constituents of the cell. For quenched simulations (representing the situation postulated in Ref. [13]),
the existing groups remain intact. At cell divisions, groups are binomially partitioned between the two daughter cells.

The model is initialised with a cell containing m0 mtDNAs, split into (1�h)m0 wild-type and hm0 mutant molecules. These
mtDNAs are clustered into m0/c groups, according to the cluster picture under consideration (i.e. homoplasmic or heteroplasmic
clusters). We simulate the subsequent doubling then partitioning of this system through cell divisions many times, assuming a
constant cell cycle length, and record the cell-to-cell heteroplasmy variance with time.

Fig. 1 shows the resultant heteroplasmy variance trajectories for di↵erent cases (with h0 = 0.1; other initial heteroplasmies
showed similar behaviour). The first striking result is that the inheritance of heteroplasmic groups produces the same hetero-
plasmy variance as binomial partitioning, regardless of cluster size. This behaviour is due to the balance between stochasticity
associated with the makeup of, and partitioning of, groups. A small number of large groups will experience substantial parti-
tioning noise, but larger heteroplasmic groups are more likely to faithfully represent the overall cell heteroplasmy. As identified
in Ref. [13], the inheritance of heteroplasmic groups thus provides a means to facilitate local mtDNA complementation while
provoking no increase in heteroplasmy variance beyond that associated with binomial partitioning of elements at divisions.

We also observe that quenched populations behave in the same way as unquenched populations. In the case of homoplasmic
groups, this result is obvious, as a set of homoplasmic nucleoids of a given size can only be constructed in one way for a
given number of mtDNA molecules of di↵erent types. For heteroplasmic groups, this result implies that resampling the cellular
population to produce a new group produces a negligible amount of additional stochasticity compared to that already present
in the random makeup and inheritance of groups. Thus, the only determinant factors of heteroplasmy variance related to the
inheritance of groups are whether groups are homoplasmic or heteroplasmic, and, if the former, the characteristic size of groups.

These results illustrate that the binomial inheritance model can also describe the statistics associated with heteroplasmic
nucleoids of arbitrary size, over a timescale of several dozen cell divisions (suitable to describe the developmental process). The
theoretical long-term behaviour of these systems involves some more subtleties. At much longer times, the probability that all
mtDNA types become extinct in a cell is not negligible. When complete extinction cannot be ignored, heteroplasmy statistics
become poorly defined. This extinction timescale is shorter for cluster inheritance than for binomial inheritance, as a greater
variability in copy number (though not in heteroplasmy) results from each division for larger clusters. However, our simulations
indicate that as long as the heteroplasmy variance associated with heteroplasmic clusters remains well defined, it matches that
resulting from binomial inheritance.

We propose that a reasonable view may be that individual mitochondrial fragments, including several small, homoplasmic
nucleoids, are the likely elements of inheritance at partitioning. Furthermore, there is likely some movement of these nucleoids
within the mitochondrial network, and fission and fusion likely mean that a given mtDNA will not be associated with the
same static mitochondrial element in perpetuity. In this case, the picture of an unquenched, heteroplasmic group of mtDNAs
– those contained within a discrete element of the mitochondrial system – seems most reasonable. We can thus speculate that,
as demonstrated by the previous results, the precise size of mitochondrial fragments at partitioning is not important for the
heteroplasmy dynamics (nor indeed is whether they are quenched or unquenched). Our simple binomial partitioning model is
thus consistent with what one might consider the most physiologically plausible model, and indeed with any models not involving
large and strictly homoplasmic groups as the elements of mitochondrial inheritance.

3 Parametric inference for bottlenecking dynamics

Our model is a function of the parameter set1 ✓ = {⌫
i

,�

i

, n

i

, ⌧

i

, S,↵, T, c, h0,m0, ��}. For the following parameters we use
uninformative uniform priors on the given interval: �

i

, ⌫

i

2 [0, 1]hr�1;S 2 {0, 1};↵ 2 [0.005, 1];T 2 [0, 100]day; c 2 [0, 100];h0 2
1For reference, the meanings of these parameters are (as in Fig. 1D in the Main Text): replication (�i) and degradation (⌫i) rates; number of cell

divisions (ni) and cell cycle length (⌧i) in each dynamic phase i; deterministic or stochastic dynamics label (S = 0, 1 respectively); a proportion ↵ of
mtDNAs capable of replication after threshold time T ; deterministic (c = 0), binomial (c = 1) or clustered (c > 1) partitioning at divisions; initial
heteroplasmy h0 and initial copy number m0; �� is an additional parameter allowing a possible di↵erence in replicative rates between mutant and
wildtype mtDNA: this is zero unless otherwise stated.
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Figure 1: Heteroplasmy variance in a model system under several di↵erent group-inheritance regimes. V(h) over
many cell divisions when the elements of inheritance are heteroplasmic or homoplasmic groups of di↵erent size. Groups may
be quenched (Q; constituents remain the same across cell divisions) or unquenched (UQ; constituents are randomly resampled
from the cellular population each cell cycle); for homoplasmic clusters, an unquenched protocol yields identical results to the
quenched protocol. V(h) behaviour di↵ering from binomial partitioning (c = 1) is only observed for homoplasmic groups with
c � 2. Points for heteroplasmic groups are slightly o↵set in the x-direction for clarity.

[0, 1];m0 2 [0, 106]. The following values are fixed from experimental studies [6, 14]: n1 = 29;n2 = 7; ⌧1 = 7hr; ⌧2 = 16hr.
�6 = 0hr�1 is fixed to avoid mtDNA proliferation after development; h0 = 0.2 is fixed as an intermediate value as heteroplasmy
variance measurements are generally normalised; ��, a parameter allowing a di↵erence in replicative rates between mutant and
wildtype mtDNAs, is fixed at zero throughout as we ignore selective pressure. The parameter ⌧

i

for i > 2 is used to determine
the length of time spent in di↵erent quiescent phases and is subject to the uniform prior ⌧

i

2 [0, 50]day.
Given these priors, we use an approximate Bayesian computation (ABC) approach to build a posterior distribution over the

parameters in our bottlenecking model [15]. ABC involves using a summary statistic ⇢(✓,D) to compare the available data D to
the predictions of a model given parameters ✓. If parameter sets are sampled from the set for which ⇢  ✏, where ✏ is a threshold
di↵erence between the resulting model behaviour and experimental data, the posterior distribution P (✓|⇢(✓,D  ✏)) is sampled,
which is argued to su�ciently approximate P (✓|D) for suitably small ✏ [16].

We define a residual sum-of-squares di↵erence between the results of a simulated model and experimental data [17]:

⇢(✓,D) =
N

mX

i=0

⇣
logE

✓

(m|t = t

(i)
D,m

)� logED(m|t = t

(i)
D,m

)
⌘2

+
N

hX

i=0

A1

⇣
V

✓

(h|t = t

(i)
D,h

)� VD(h|t(i)D,h

)
⌘2

(1)

where D denotes experimental data. We thus amalgamate experimental results of two types: mean mtDNA copy number

(with N

m

data points measuring ED(m) at times t(i)D,m

), and mean and variance of heteroplasmy (with N

h

data points measuring

VD(h) at times t

(i)
D,h

). The sets of data for E(m) and V(h) contain di↵erent numbers of points and are of di↵erent absolute
magnitudes. We compensate for these di↵erences by using the logarithms of copy number measurements (as these values span
several orders of magnitude), and weighting parameter A1 = 103. This weighting parameter compensates for the di↵erent
magnitudes and number of datapoints in each class of measurement, ensuring that the contribution to the total residual from
each set of data is of comparable magnitude. Our summary statistic thus records a residual sum-of-squares di↵erence between
experiment and simulation values for logE(m) and V(h) at each time point where an experimental measurement exists.

We performed our model selection process using several di↵erent alternative protocols, including comparing logarithms of
V(h) measurements (in contrast to the raw values) and varying A1 over orders of magnitude from 102 � 104 (corresponding to
unbalanced weighting, favouring E(m) and V(h) data respectively). In all cases, the BDP model identified in the Main Text
experienced substantially more support than any alternative. For inference involving the new dataset from the HB model system,
we use the default protocol above and set A1 = 3⇥ 103 to account for the threefold decrease in available V0(h) datapoints.

We use an MCMC implementation of ABC, whereby we construct a Markov chain ✓

i

, where each state consists of a set of
trial parameters to be assessed. We create ✓

i+1 by perturbing each parameter within ✓

i

with a perturbation kernel consisting of a
Normal distribution on each parameter with standard deviations between 0.1�1% of the width of the prior (varied as the model
depends more sensitively on some parameters than others). In the case of discrete parameter c, a continuous representation c

0 is
used and varied in the MCMC approach, with c = b100c0c. We accept ✓

i+1 as the new state of the chain if ⇢(✓
i+1,D)  ✏. We

ran 106 MCMC iterations for ABC model selections and checked convergence by running five instances of each simulation for
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Figure 2: Residual distributions at di↵erent ABC thresholds ✏. The distribution of individual squared residuals between
an ensemble of simulated trajectories and experimental datapoints for (top) logE(m) (bottom) V(h). The V(h) residuals are
scaled by A1 = 103 to ensure that the two sets of measurements are compared on a quantitatively equal footing. As ✏ is decreased
(✏1,2,3,4 = 40, 50, 75, 100), distributions of residuals from accepted trajectories tighten around zero.

di↵erent random number seeds.
For the initial optimisation of model fitting, we ran 106 MCMC steps using the protocol above but accepting a move according

to the Metropolis-Hastings protocol [18], recording the parameterisation leading to the lowest recorded residual. In this case we
used uninformative initial conditions, with identical choices for all rate parameters, corresponding to an inaccurate trajectory of
copy number and heteroplasmy variance. For model selection, we used the protocol above, with a di↵erent set of parameters ✓M

for each model M , with each MCMC step proposing a random model from the Cao alone, Wai alone, and BDP set described
in the text, as in the SMC ABC model selection protocol proposed in Ref. [15]. We record the proportion of accepted steps
involving each model type. The parameterisations found through initial optimisation were used as initial conditions in the ABC
model selection and inference simulations.

Initial optimisation identified parameterisations all displaying residuals under ✏ = 50. We chose ✏ = {45, 50, 60, 75} for the
ABC model selection simulations to display the varying degrees of support for each model as stricter agreement with experiment
was enforced. We chose ✏ = 40 for the ABC inference of BDP model parameterisation to ensure these models all displayed better
fits to data than the alternative models. In Fig. 2 we illustrate the distribution of squared residuals for the BDP model under a
range of ✏ values.

4 Posteriors for all variables and datasets

In Fig. 3 we display all posterior distributions for all parameters resulting from our ABC approach assuming the BDP model.
There is substantial variability in the possible timescales and magnitudes of random turnover associated with each random
dynamic phase i > 2, exemplified by the complicated and bimodal structure of the posteriors on these parameters. This
variability reflects the fact that an increase in heteroplasmy variance can be achieved through a variety of specific mtDNA
trajectories, and current experimental data is insu�cient to distinguish specific time behaviours within this variety. However,
the total contribution of each random phase to the overall dynamics is more constrained, as shown in the posterior distribution
on a measure of total random turnover � =

P6
i=3 ⌧

0
i

⌫

i

. This quantity is the sum over all later phases of the product of the length
of that phase and the rate of random turnover, thus giving a measure of total random turnover. The fact that this posterior is
more tightly constrained than the posteriors on individual t

i

, ⌫
i

parameters suggests that the required mtDNA turnover can be
achieved through a range of specific dynamic trajectories from the inferred mechanism: for example, the exact time at which
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Figure 3: Posterior distributions on model parameters. The posterior distributions on individual model parameters,
assuming the inferred BDP bottlenecking mechanism. Replication rates are presented as  = � � ⌫, thus representing overall
proliferation rates of mtDNA. Units are omitted for clarity. Pale, single-values distributions correspond to parameter values
fixed within the model (6 = 0 to prevent mtDNA proliferation after development; ⌧1 = 7hr, ⌧2 = 16hr fixed by data on cell
doubling times; h0 = 0.2 fixed for simplicity as heteroplasmy variances are normalised; �� = 0 fixed to avoid varying selective
pressure). The ‘turnover’ parameter, described in the text, is

P6
i=3 ⌧

0
i

⌫

i

, a measure of the total random turnover in the mtDNA
population.
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random mtDNA turnover sharply increases is currently flexible (though constrained to lie around 25 dpc) without more detailed
data. This flexibility is also observed in the trajectories of posterior distributions in the main text.

5 Experimental measurements

Table 2 contains the measurements of heteroplasmy h, mean heteroplasmy E(h), raw and normalised heteroplasmy variance V(h)
and V0(h), and number of datapoints n, from the HB model system. Experimental procedures are described in Methods; further
specifics follow.

Consensus assays:
Co2-f:GCCAATAGAACTTCCAATCCGTATAT,
Co2-r:TGGTCGGTTTGATGTTACTGTTG,
Co2-FAM:CTGATGCCATCCCAGGCCGACTAA-BHQ1 (Amplicon length: 136bp);
Co3-f:TCTTATATGGCCTACCCATTCCAA,
Co3-r:GGAAAACAATTATTAGTGTGTGATCATG,
Co3-FAM: TTGGTCTACAAGACGCCACATCCCCT-BHQ1 (Amplicon length: 103bp).
ARMS-assays:
16SrRNA2340(3)G-f: AATCAACATATCTTATTGACCaAG (haplotype C57BL/6N),
16SrRNA2340(3)A-f: AATCAACATATCTTATTGACCgAA (haplotype HB);
16SrRNA2458-r: CAC CAT TGG GAT GTC CTG ATC,
16SrRNA-FAM: FAM-CAA TTA GGG TTT ACG ACC TCG ATG TT-BHQ-1. (Amplicon length: 142bp).
Every qPCR run consisted of one consensus and an ARMS assay.

Master-mixes for triplicate qPCR reactions contained 1x bu↵er B (Solis BioDyne, Estonia); 4.5 MgCl2 for the ARMS and
the Co3 consensus assays, and 3.5 mM MgCl2 for the Co2 consensus assay; 200 M of each of the four deoxynucleotides (dNTPs,
Solis BioDyne, Estonia), HOT FIREPol DNA polymerase according to the manufacturers instructions (Solis BioDyne, Estonia),
300 nM of each primer and 100 nM hydroloysis probe (Sigma-Aldrich, Austria). Per reaction 12 µL of master-mix and 3 µL
DNA were transferred in triplicates to 384-well PCR plates (Life Technologies, Austria) using the automated pipetting system
epMotion 5075TMX (Eppendorf, Germany). Amplification was performed on the ViiA 7 Real-Time PCR System using the
ViiATM 7 Software v1.1 (Life Technologies, USA). DNA denaturation and enzyme activation were performed for 15 min at
95oC. DNA was amplified over 40 cycles consisting of 95oC for 20 sec, 58oC for 20 sec and 72 oC for 40 sec for both assays.

The standard curve method was applied. Amplification e�ciencies were determined for each run separately by DNA dilution
series consisting of DNA from wild-derived mice, harbouring the respective analysed mtDNA. Typical results: slope = -3.665,
-3.562, -3.461, -3.576; mean e�ciency = 0.87, 0.9, 0.94, 0.90; and Y-intercept = 32.2, 28.3, 33.8, 34.5; for the consensus Co2,
consensus Co3, C57BL/6N and HB assays respectively. Coe�cient of correlation was > 0.99 in all assays in all runs. All target
samples lay within the linear interval of the standard curves. To test for specificity, in each run a negative control sample, i.e.
a DNA sample of a mouse harbouring the mtDNA of the non-analysed type in the heteroplasmic mouse (i.e. C57BL/6N or HB
mtDNA) was measured. All assays could discriminate between C57BL/6N and HB mtDNA at a minimum level of 0.2%. Target
sample DNA was tested for inhibition by dilution in Tris-EDTA bu↵er (Sigma-Aldrich, Austria), pH 8.0.

6 Bottlenecking mechanisms and further experimental elucidation

Here we summarise potential mechanisms for the bottleneck that conflict with our statistical interpretation, highlighting the
reasons for the conflict. We also propose further experiments that would e�ciently provide more evidence to distinguish these
hypotheses.

6.1 Other proposed mechanisms

Random partitioning of homoplasmic mtDNA clusters. Ref. [2] suggests a less powerful depletion of mtDNA copy number
during early development than assumed by other studies, with heteroplasmy variance increase instead being explained by the
partitioning of clusters of mtDNA at cell divisions. However, the time period over which Refs. [3] and [5] observe increasing
heteroplasmy variance corresponds to a situation in which germ line cells are largely quiescent, immediately suggesting that
partitioning at cell divisions cannot explain increasing variance (as cell divisions do not occur). Furthermore, results from our
model suggest that, unless these clusters are very small, this mechanism would immediately lead to a rather higher and sharper
increase in heteroplasmy variance than observed.

Replication of a specific subset of mtDNAs during folliculogenesis. Ref. [3] proposes a mechanism in which only a
subset of mtDNAs replicate during folliculogenesis. There are several specific dynamic schemes by which this mechanism could
be manifest. The first that we consider involves the following scenario: at some point during development, around the start of
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Age 3 3 4 4 4 4 8 8 9 9 9 24 37 37 40

n 25 30 21 13 13 11 30 34 20 17 36 25 24 20 20

E(h) 0.501 0.419 0.183 0.337 0.382 0.354 0.301 0.559 0.193 0.245 0.049 0.457 0.566 0.276 0.238

V(h) 0.00256 0.00359 0.00824 0.01308 0.00913 0.00461 0.00350 0.00631 0.00408 0.00301 0.00097 0.00625 0.01000 0.00913 0.00662

V0(h) 0.0102 0.0147 0.0551 0.0585 0.0387 0.0202 0.0167 0.0256 0.0262 0.0163 0.0210 0.0252 0.0407 0.0457 0.0364

h ⇥ 100 40.8 26.5 7.4 16.7 26.9 25.1 18.2 38.7 8.3 13.3 1.7 32.5 38.0 12.8 8.9

43.4 30.6 7.6 23.1 28.8 25.7 22.0 41.7 9.3 16.9 1.7 32.6 39.2 13.8 12.1

44.1 31.8 7.9 24.0 29.4 29.1 23.7 43.9 10.8 20.1 1.8 37.1 45.9 15.9 13.9

44.2 33.2 9.6 24.4 29.8 30.8 23.9 46.4 13.5 20.2 1.9 37.1 50.9 16.6 15.7

46.6 36.4 9.7 26.8 30.2 36.5 24.6 47.5 13.5 20.2 2.0 38.0 51.0 20.3 18.8

46.7 37.7 10.3 27.0 36.7 36.7 25.9 47.9 15.8 21.3 2.8 39.5 51.7 20.6 19.1

46.9 37.9 12.4 28.6 37.1 38.2 26.0 49.5 16.3 23.7 2.8 40.0 51.7 21.8 19.5

47.4 38.7 14.3 39.8 40.2 38.3 26.2 51.4 16.4 24.9 2.9 41.1 51.8 23.6 20.8

48.0 39.2 14.8 40.4 40.5 40.4 26.3 51.5 18.4 25.2 2.9 43.0 52.0 23.8 22.5

48.4 39.5 16.0 41.9 43.6 43.6 26.9 52.8 18.7 26.2 3.0 43.7 54.1 26.2 22.7

48.5 39.7 17.0 42.9 45.8 44.8 26.9 52.8 20.7 27.0 3.0 43.7 54.2 28.3 23.2

48.7 41.4 17.1 50.1 46.7 27.8 52.9 20.7 27.3 3.0 44.2 54.4 29.6 23.4

49.3 42.1 18.6 52.8 60.5 28.9 53.2 21.3 27.6 3.0 44.5 54.9 32.6 27.8

50.3 42.6 19.7 29.1 53.2 21.8 27.8 3.3 46.3 55.3 33.1 28.9

50.5 42.7 20.8 29.7 53.5 23.8 28.2 3.3 46.6 55.7 33.1 29.4

50.6 42.7 25.7 29.9 53.9 24.2 30.0 3.5 47.0 57.2 34.5 30.1

50.8 42.9 25.7 30.1 54.2 26.5 36.7 3.5 49.1 57.5 38.4 30.9

51.2 43.8 26.4 30.7 55.2 26.5 3.7 49.8 59.9 40.5 34.8

53.7 44.5 28.3 31.3 56.0 26.8 3.8 50.1 61.1 42.2 35.2

54.5 44.7 35.6 31.7 56.2 32.1 3.8 51.8 64.8 43.9 39.4

55.0 44.8 39.3 32.6 57.1 4.0 53.0 69.9

56.2 45.9 33.0 57.3 4.0 54.3 74.1

56.6 47.0 33.4 59.8 4.9 55.7 76.1

59.0 47.6 33.6 60.0 5.5 55.7 76.5

62.0 48.7 34.7 60.1 5.8 66.2

48.7 34.9 61.3 5.9

48.8 35.3 61.3 6.0

48.9 35.8 62.1 6.1

49.1 41.2 65.6 6.7

49.7 48.5 67.1 7.9

68.3 8.2

69.2 8.3

69.4 8.5

70.1 8.8

11.6

16.6

Table 2: New heteroplasmy measurements from the HB model system. Heteroplasmy measurements and statistics
from the HB model system. Ages are given in days after birth.
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folliculogenesis, a specific subset of mtDNAs in each cell is ‘marked’ as able to replicate (we next consider the case in which this
subset is more plastic with time). In this case, the e↵ect of ‘switching o↵’ replication of a subset of mtDNAs depends on the
balance of replication and degradation rates of the mtDNA population:

• Low replication, low degradation. In this case, the population stays largely static; the switching o↵ of replication has little
e↵ect, and the heteroplasmy variance cannot increase to the levels observed in experiment.

• Low replication, high degradation. In this case, the high degradation rate ensures that the non-replicating mtDNAs are
removed from the cell, providing a ‘bottleneck’ as only the replicating mtDNAs remain. However, this regime yields
a transient period of mtDNA copy number depletion, while the non-replicating mtDNAs are degrading but the (small)
population of replicating agents remains low. This copy number depletion is not observed.

• High replication, high degradation. In this case, non-replicating mtDNAs are removed and replicating mtDNAs are capable
of fast enough replication to survive the transient drop in copy number. However, the rates associated with this mechanism
are necessarily high enough such that the increase in heteroplasmy variance is very sharp, notably more so than the smooth
increase with time observed in experiment (see, for example, Fig. 2A in the Main Text).

• Combined subset replication, and/or heteroplasmic cluster inheritance, with and random dynamics. Our
approach does not provide support against a model combining our inferred mechanism (increased random turnover of
mtDNAs) with some other dynamic schemes, namely (a) that in which only a subset of mtDNAs may replicate during
folliculogenesis, and/or (b) where heteroplasmic mtDNA clusters, rather than individual mtDNAs, are the units of inheri-
tance. A combination with (a) would allow the reduction of the key parameters associated with each: so the rate of random
turnover could be lower, and the proportion of replicating genomes larger, than in the case of the pure incarnations of those
respective mechanisms. This scheme may thus provide a viable alternative – however, it requires an introduction of two
coupled mechanisms, which experimental data currently cannot disambiguate. For this reason and for parsimony, we report
the case where random dynamics alone are responsible, and below suggest experimental protocols to further elucidate this
possible link or its absence. A combination with (b) is possible and cannot be discounted using the available data, as the
trajectories of heteroplasmy variance under (b) and under binomial inheritance are the same. We propose observations of
mitochondrial ultrastructure and mtDNA localisation during development to resolve this remaining mechanistic question.

6.2 Observation of a subset of replicating genomes

Ref. [3] performs BrU labelling to observe the proportion of mitochondria replicating in primary oocytes between P1-4 (21-25 dpc
on our time axis). The observations contained therein (Fig. 2 in Ref. [3]) show a small subset of BrU-labelled mitochondrial foci
compared to the overall population of mitochondria labelled with another dye. Here we show that this observation is compatible
with (and expected from) our proposed model of random mtDNA turnover.

Consider a population of mtDNAs replicating with rate � and degrading with rate ⌫. We model the BrU labelling assay as
follows. At time t = 0, we begin the BrU labelling, which we conservatively model as a perfect process, so that every mtDNA
that replicates becomes labelled. We continue this labelling until t = t

⇤, when we observe the proportion of labelled mtDNAs.
For simplicity, we will consider a fixed population of mtDNAs of size N , though this reasoning extends to changing population

size. We denote by l the number of labelled mtDNAs. After BrU exposure, this number may change in three ways: (A) a
replication event involving a previously unlabelled mtDNA will produce two new labelled mtDNAs; (B) a replication event
involving a previously labelled mtDNA will produce one new labelled mtDNA; (C) a degradation event involving a labelled
mtDNA will remove one labelled mtDNA. The dynamics of labelled mtDNA number during BrU exposure are given by

dl

dt

= (A) + (B) + (C) (2)

= 2�(N � l) + �l � ⌫l (3)

Assuming that l = 0 at t = 0, the solution of this equation, for the number of labelled mtDNAs at time t

⇤, is

l =
2N�

�+ ⌫

⇣
1� e

�(�+⌫)t⇤
⌘

(4)

Assuming a constant population size requires � = ⌫. The conclusions of this illustrative study do not substantially change if
we allow (� 6= ⌫) and hence an increasing or decreasing population. We consider the values of � and ⌫ required to yield values
of l comparable with those found in Ref. [3]. We will roughly estimate these values, based on the proportion of labelled foci
observable, as l = 0.5N for 24h BrU exposure (half of observed mtDNAs being labelled) and l = 0.05N for 2h BrU exposure (5%
of observed mtDNAs being labelled). A value of � = ⌫ = 0.014 hr�1 yields l = 0.49N at t⇤ = 24hr and l = 0.055N at t⇤ = 2hr.
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Measurement Purpose

MtDNA copy number before and after cell divisions and/or
variance of copy number between daughter cells

To elucidate mechanism of mtDNA partitioning and whether
this partitioning is deterministic or stochastic.

Copy number trajectories with di↵erent mtDNA heteroplas-
mies

To assess the modulation of copy number dynamics by
mtDNA heteroplasmy via retrograde signalling.

Measurement of mean heteroplasmy through development,
with a variety of mtDNA type pairings

To assess and quantify to what extent selection modulates
mtDNA dynamics during germline development

Copy number measurements after upregulation of mitophagy To assess the presence and strength of compensatory mech-
anisms that may act to preserve mtDNA copy number – and
hence whether upregulating mitophagy will act to increase
mtDNA turnover or simply lower copy number.

Heteroplasmy variance after upregulation of mitophagy To assess the e�cacy of mitophagy for increasing the power
of the bottleneck.

Heteroplasmy distribution in cells after the bottleneck from
sampled/known initial heteroplasmy

To confirm predictions for threshold crossing and statistics
between generations.

BrU incorporation in oocytes between 30 and 40 dpc To confirm the random turnover mechanism: we expect a
large proportion of BrU incorporation subset of mtDNAs to
be observed in this time period (see Section 6.2).

Mitochondrial ultrastructure and mtDNA localisation during
development

To assess and characterise any potential modulation of the
size of units of mitochondrial inheritance by mitochondrial
dynamics through development, in particular, investigating
whether there is time-varying modulation of cluster size at
points of division.

Table 3: Experiments for further elucidation of the mtDNA bottleneck.

Fig. 3D in our Main Text gives the posterior distribution on ⌫, characterising the rate of random mtDNA turnover in our
model, at di↵erent times. It can be seen that a value of ⌫ = 0.35 day�1 comfortably falls within the region of high posterior
density during the time range 21-25 d.p.c – lying immediately before the strong increase in random turnover that our model
subsequently predicts. Our inferred mechanism of random mtDNA turnover is thus compatible with the observations of a labelled
subset of mtDNAs in the BrU incorporation assay in Ref. [3] – we would expect to see roughly the observed labelling proportion
simply due to the likely rates of random mtDNA turnover inferred at that stage of development. Furthermore, we can use this
line of reasoning to produce a testable prediction: similar experiments carried out several days later – when random mtDNA
turnover is inferred to increase substantially – should show a larger subset of labelled mtDNAs for the same BrU exposure.

6.3 Experimental elucidation

In Table 3 we list several classes of potential experimental protocols that would assist in further elucidation of the bottlenecking
mechanism and our predictions. Potentially useful results include further characterisation of the microscopic detail underlying
mtDNA dynamics during development, confirmation of our random turnover model, assessing degree to which heteroplasmy
modulates copy number dynamics and exploring our predictions relating mitophagy and bottlenecking power.

7 Mitophagy regulation

The results from our model suggest a potential clinical pathway for increasing heteroplasmy variance, and thus the power of
the bottleneck to remove heteroplasmic cells. We have shown that upregulation of mtDNA degradation (for example, through
increasing mitophagy) leads to lower mtDNA copy numbers and greater heteroplasmy variance. It is unclear whether a given
treatment will have the sole e↵ect of upregulating mitophagy: it seems likely that compensatory mechanisms (which we do
not explicitly model, but may include retrograde signalling [19]) will engage to stabilise mtDNA copy number. However, such
mechanisms would most straightforwardly be expected to act through increasing mtDNA proliferation, thus having the net
e↵ect of increasing mtDNA turnover. We have shown that such an increase in turnover also increases the heteroplasmy variance
in a population. We therefore propose that upregulating mitophagy may be a fruitful pathway of investigation for increasing
bottlenecking power, either as a standalone e↵ect or due to the action of compensatory mechanisms it may invoke.

Speculatively, potential strategies to upregulate mitophagy may include the limited use of uncouplers to accelerate the
mitophagy normally involved in quality control [20]; targetted chemical treatments with agents that have been identified as
regulating mitophagy, including glutathione in yeast [21] and C18-pyridium ceramide in human cancer cells [22]; modulation of
mitochondrial ultrastructure and dynamics to upregulate fission, intrinsically linked to the process of mitophagy [23, 24]; or the
use of existing drugs which have been found to modulate mitophagy, such as Efavirenz [25].
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8 Heteroplasmy statistics

We have defined heteroplasmy by

h =
M2

M1 +M2
. (5)

To find statistics for this quantity we consider the Taylor expansion of a function f(X1, X2) of two random variables X1, X2

about a point (µ1, µ2), where µ

i

= E(X
i

). We assume that the moments of X
i

are well-defined and both have zero probability
mass at X

i

= 0. The Taylor expansion is:

f(X1, X2) = f(µ1, µ2) + f1(µ1, µ2)(X1 � µ1) + f2(µ1, µ2)(X2 � µ2) + higher order terms, (6)

where f
i

denotes the derivative of f with respect to X

i

. We truncate the expansion at first order for later algebraic simplicity,
noting that even with this level of precision, the agreement between the resulting analysis and numerical simulation is excellent.
Then

E(f(X1, X2)) = E(f(µ1, µ2) + f1(µ1, µ2)(X1 � µ1) + f2(µ1, µ2)(X2 � µ2) + ...). (7)

We note that E(X
i

� µ

i

) = 0, so

E(f(X1, X2)) ' f(µ1, µ2). (8)

Similarly,

V(f(X1, X2)) = E((f(X1, X2)� E(f(X1, X2)))
2) (9)

' E((f(X1, X2)� f(µ1, µ2))
2) (10)

= E((f1(µ1, µ2)(X1 � µ1) + f2(µ1, µ2)(X2 � µ2))
2), (11)

and noting that E((X
i

� µ

i

)2) = V(X
i

) we obtain

V(f(X1, X2)) ' (f1(µ1, µ2))
2V(X1) + (f2(µ1, µ2))

2V(X2) + 2f1(µi

, µ2)f2(µ1, µ2)C(X1, X2), (12)

where C(X1, X2) is the covariance of X1 and X2. If we now use f(X1, X2) =
X

1

X

2

, we have f1 = X

�1
2 , f2 = �X1X

�2
2 ; so

E(X1/X2) ' E(X1)/E(X2) (13)

V(X1/X2) ' V(X1)/E(X2)
2 + E(X1)

2V(X2)/E(X2)
4 � 2E(X1)C(X1, X2)/E(X2)

3
. (14)

If X1 = M2 and X2 = M1 +M2, and M1 and M2 are independent (due to the lack of coupling between the mtDNA species),
C(X1, X2) = V(M2), and so

E(h) = E(M2)

E(M1) + E(M2)
(15)

V(h) =
✓

E(M2)

E(M1) + E(M2)

◆2

⇥
 

V(M2)

E(M2)2
� 2V(M2)

E(M2)(E(M1) + E(M2))
+

V(M1) + V(M2)

(E(M1) + E(M2))
2

!
, (16)

9 Derivation of analytic results for binomial model

Generating function within a cell cycle. To make analytic progress describing the mitochondrial content of quiescent cells,
and within a single cell cycle of dividing cells, we use a birth and death model to describe mitochondrial evolution. Without cell
divisions, the dynamics of a population of replicating and degrading entities is given by the master equation

dP (m, t)

dt

= ⌫(m+ 1)P (m+ 1, t) + �(m� 1)P (m� 1, t)� (⌫ + �)mP (m, t), (17)

P (m, 0) = �

mm

0

, (18)
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with P (m) the probability of observing the system with a copy number m at time t, and m0 the initial copy number. The
corresponding generating function, using the transformation G(z, t) =

P
m

z

m

P (m, t), obeys

@G(z, t)

dt

= (⌫(1� z) + �(z2 � z))
@G(z, t)

@z

(19)

G(z, 0) = z

m

0

, (20)

which is straightforwardly solved by

G0(z, t|m0) =

✓
(z � 1)⌫e(��⌫)t � �z + ⌫

(z � 1)�e(��⌫)t � �z + ⌫

◆
m

0

(21)

⌘ [g(z, t)]m0

, (22)

where the 0 subscript signifies that no divisions have occurred, and we have specifically labelled the base of G0 as g0 for later
convenience.

Generating function over cell divisions. We now consider a system undergoing cell divisions. Now, we have a population
of organelles with time evolution described by a generating functionG = [g]m0 and subject to binomial partitioning at cell division.
The probability distribution of m after a single cell division is:

P1(m, t|m0) =
1X

m

1,b

=0

m

1,bX

m

1,a

=0

P0(m, t|m1,a)

✓
m1,b

m1,a

◆
2�m

1,b

P0(m1,b, ⌧ |m0), (23)

where m

i,a

,m

i,b

mean respectively the number of individuals after and before the ith cell division, and the subscript in P0

denotes the fact that this function refers to time evolution within a cell cycle (with no division). The sum takes into account all
possible configurations of the system up to the cell division then all possible configurations afterwards, with weighting according
to a binomial partitioning. This line of reasoning can straightforwardly be extended to n cell divisions [26]:

P

n

(m, t|m0) =
1X

m

n,b

=0

m

n,bX

m

n,a

=0

...

1X

m

1,b

=0

m

1,bX

m

1,a

=0

P0(m, t|m
n,a

)
n�1Y

i=1

�
i

, (24)

where �
i

is a ‘probability propagator’ of the form

�
i

=

✓
m

i,b

m

i,a

◆
2�m

i,b

P0(mi,b

, ⌧ |m
i+1,a), (25)

and m

n+1,a ⌘ m0. For clarity, we introduce the nomenclature:

0X

i,j

⌘
1X

m

i,b

=0

m

i,bX

m

i,a

=0

...

1X

m

j,b

=0

m

j,bX

m

j,a

=0

(26)

Now consider the generating function of P
n

:
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G

n

(z, t|m0) =
X

m

z

m

P

n

(m, t|m0) (27)

=
X

m

0X

n,1

z

m

P0(m, t|m
n,a

)
n�1Y

i=1

�
i

(28)

=
0X

n,1

G0(z, t|mn,a

)
n�1Y

i=1

�
i

(29)

=
0X

n�1,1

1X

m

n,b

=0

m

n,bX

m

n,a

=0

[g0(z, t)]
m

n,a

✓
m

n,b

m

n,a

◆
2�m

n,b

| {z }
binomial term

P0(mn,b

, ⌧ |m
n�1,a)

n�2Y

i=1

�
i

(30)

=
0X

n�1,1

1X

m

n,b

=0

z }| {✓
1

2
+

g0(z, t)

2

◆
m

n,b

P0(mn,b

, ⌧ |m
n�1,a)

| {z }
generating function with transformed variable

n�1Y

i=1

�
i

(31)

⌘
0X

n�1,1

z }| {
G0(z

0
, ⌧ |m

n�1,a)
n�2Y

i=1

�
i

, (32)

where we have used the identity
P

b

a=0 x
a

�
b

a

�
2�b ⌘

�
1
2 + x

2

�
b

and changed variables z0 = 1
2 +

g

0

(z,t)
2 . Comparing Eqns. 29 and

32 and following this process by induction we can see that the overall generating function is G
n

= h

m

0

0 , where h is the solution
to the recursive system

h

i

= g0

✓
1

2
+

h

i+1

2
, ⌧

◆
(33)

h

n

= g0(z, t). (34)

h

i

is of the form ah

i+1

+b

ch

i+1

+d

(from Eqn. 21). This expression takes the form of a Riccati di↵erence equation and can be solved

exactly after Ref. [27]. The solution is straightforward but algebraically lengthy, and we defer presentation of the full procedure
to a future technical publication. The overall solution is:

G

C

(z, t, n) = h0 =
2n(l � 2)(�z � ⌫) + l

0(z � 1)((�(2n � l

n)� ⌫l

n(l � 2)))

�l

0(z � 1)(2n + l

n � l

n+1) + 2n(l � 2)(�z � ⌫)
(35)

where the C subscript denotes cycling cells, and

l = e

(��⌫)⌧ (36)

l

0 = e

(��⌫)t (37)

Generating function for di↵erent phases. We now consider how to extend this reasoning to the overall bottlenecking
process, which in general may involve several phases of quiescent and cycling dynamics with di↵erent kinetic parameters. We
begin with the generating function bases g

i

(z, t) for each regime i. For consistency with the above approach, we label phases
starting from a zero index, so the first phase corresponds to i = 0, and we use i

max

to denote the label of the final phase. Then
we use

h

i

max

= g

i

(z, t) (38)

h

i

= g

i

(h
i+1, 0) (39)

G

overall

= h

m

0

0 , (40)

using induction over the di↵erent phases in the way we used induction over di↵erent cell cycles above. Here we consider the
changeover between regimes by using the generating function at the start of the incoming phase.

The appropriate generating function bases for quiescent (Eqn. 21) and cycling (Eqn. 35) cells can be written as
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g

Q

(z, t|m0) =

✓
A

Q

z +B

Q

C

Q

z +D

Q

◆
, (41)

g

C

(z, t, n|m0) =

✓
A

C

z +B

C

C

C

z +D

C

◆
, (42)

with coe�cients

A

Q

= ⌫l

0 � � (43)

B

Q

= ⌫ � ⌫l

0 (44)

C

Q

= �l

0 � l

0 (45)

D

Q

= ⌫ � �l

0 (46)

A

C

= 2n�(l + l

0 � 2)� l

n

l

0(�+ ⌫(l � 2)) (47)

B

C

= l

n

l

0(�+ ⌫(l � 2))� 2n(�l0 + ⌫(l � 2)) (48)

C

C

= ��l

n

l

0(l � 1) + 2n�(l + l

0 � 2) (49)

D

C

= �l

n

l

0(l � 1)� 2n(�l0 + ⌫(l � 2)), (50)

using, as before, l = e

(��⌫)⌧ and l

0 = e

(��⌫)t. Note that the cycling coe�cients reduce to the quiescent coe�cients when
n ! 0 and ⌧ ! 0. The values of the appropriate A,B,C,D coe�cients for a given dynamic phase thus follow straightforwardly
from the kinetic parameters of that phase, with the appropriate choice between quiescent and cycling parameters being made.

If we now label these coe�cients with a subscript denoting the appropriate phase of bottlenecking, so that, for example, A
i

is Eqn. 47 with �

i

, ⌫

i

, n

i

replacing �, ⌫, n, we can write:

h

i

max

=
A

i

max

z +B

i

max

C

i

max

z +D

i

max

(51)

h

i

=
A

i

h

i+1 +B

i

C

i

h

i+1 +D

i

(52)

g

overall

= h0. (53)

Following this recursion for n phases of bottlenecking and simplifying the resultant multi-layer fraction gives rise to the
solution

g

overall

= h0 =
A

0
z +B

0

C

0
z +D

0 , (54)

where

"
A

0
B

0

C

0
D

0

#
=

nY

i=1

"
A

i

B

i

C

i

D

i

#
(55)

from which G

overall

= g

m

0

overall

follows straightforwardly. The following results will be of assistance:

E(m) =
d

dz

✓
A

0
z +B

0

C

0
z +D

0

◆
m

0

����
z=1

=
m0(A0

D

0 �B

0
C

0)
⇣

A

0+B

0

C

0+D

0

⌘
m

0

�1

(C 0 +D

0)2
(56)

d

2

dz

2

✓
A

0
z +B

0

C

0
z +D

0

◆
m

0

����
z=1

=
m0(B0

C

0 �A

0
D

0)
⇣

A

0+B

0

C

0+D

0

⌘
m

0

(B0
C

0(m0 + 1) +A

0(2C 0 +D

0(1�m0)))

(A0 +B

0)2(C 0 +D

0)2
(57)

= �

⇣
A

0+B

0

C

0+D

0

⌘

(A0 +B

0)2
(B0

C

0(m0 + 1) +A

0(2C 0 +D

0(1�m0)))E(m). (58)

As Eqns. 43-46 can be thought of as special cases of Eqns. 47-50, we combine Eqns. 47-50 into Eqn. 55, and, simplifying,
we find the following relations:
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A

0 +B

0 = C

0 +D

0 =
Y

phase i

2ni(l
i

� 2)(�
i

� ⌫

i

) (59)

A

0
D

0 �B

0
C

0 =
Y

phase i

2ni(l
i

� 2)2lni

i

l

0
i

(�
i

� ⌫

i

)2; (60)

we then immediately obtain

E(m) = m0

Y

i

✓
2ni(l

i

� 2)2lni

i

l

0
i

(�
i

� ⌫

i

)2

4ni(l
i

� 2)2(�
i

� ⌫

i

)2

◆
(61)

= m0

Y

i

2�n

i

l

n

i

i

l

0
i

(62)

V(m) =
�(B0

C

0(m0 + 1) +A

0(2C 0 +D

0(1�m0)))Q
i

4ni(l
i

� 2)2(�
i

� ⌫

i

)2
E(m) + E(m)� E(m)2 (63)

leaving us only with the problem of calculating the expression (B0
C

0(m0 + 1) + A

0(2C 0 + D

0(1 � m0))) in the variance
calculation. We were not able to dramatically simplify this expression and so, for clarity, write:

� = �(B0
C

0(m0 + 1) +A

0(2C 0 +D

0(1�m0))), (64)

which gives us:

V(m) =
�E(m)Q

i

4ni(l
i

� 2)2(�
i

� ⌫

i

)2
+ E(m)� E(m)2. (65)

We note that � is just a notational simplification and is straightforwardly calculable by inserting Eqns. 47-50 into Eqn. 55
then computing Eqn. 64.

Constant population size. For generality, we consider enforcing a constant population size in post-mitotic cells (not
undergoing divisions). This process involves setting � = ⌫, so the net gain in mtDNA is zero. If we write � = ⌫ + ✏ and take the
limit ✏ ! 0, Eqn. 21 becomes

G

c,post

(z, t) =

✓
⌫tz � z � ⌫t

⌫tz � 1� ⌫t

◆
m

0

. (66)

To enforce a constant mean population size in mitotic cells, it is necessary to balance the expected loss of mtDNA through
repeated divisions with an expected increase during the cell cycle. This balance can be accomplished by setting � = ⌫ + ln 2

⌧

.
Writing � = ⌫ + ln 2

⌧

+ ✏ and taking the ✏ ! 0 limit we obtain

G

c,mito

(z, t) =

✓
2⌫⌧(z � 1)� 2t/⌧ (z � 1) ((n1 + 2)⌫⌧ + n1 ln 2) + z ln 4

2⌫⌧(z � 1)� 2t/⌧ (z � 1)(n1 + 2)(⌫⌧ + ln 2) + z ln 4

◆
m

0

. (67)

In both these cases, the same approach as above can be used to derive moments of the resulting probability distributions.
Explicit distributions. The probability of observing exactly m mtDNAs of a given type can be found from the generating

function with

P(m, t) =
1

m!

@

m

@z

m

G(z, t)

����
z=0

. (68)

We can use Leibniz’ rule on a generating function of form G =
⇣

A

0
z+B

0

C

0
z+D

0

⌘
m

0

by setting f ⌘ (A0
z +B

0)m0 , g ⌘ (C 0
z +D

0)m0

and writing
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=
mX

k=0
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m

k
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(A0)k(A0

z +B

0)m0

�k

m0!
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(C 0)m�k(C 0

z +D

0)(�m

0

�m�k)(�1)m�k

(m0 +m� k � 1)!

(m0 � 1)!
. (70)
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Enforcing z = 0 and rewriting in terms of a hypergeometric function gives

P(m, t) =
1

m!

(�1)m(B0)m0(C 0)m(D0)�m�m

0(m0 +m� 1)!

(m0 � 1)!
2F1

✓
�m,�m0; 1�m�m0;

A

0
D

0

B

0
C

0

◆
. (71)

The distribution of heteroplasmy is then given by

P(h) =
1X

m

1

=0

1X

m

2

=0

P(m1, t|(1� h0)m0)P(m2, t|h0m0)I
✓

m2

m1 +m2
, h

◆
, (72)

where I(h0
, h) is an indicator function returning 1 if h0 = h and 0 otherwise. Computing the probability of observing a given

heteroplasmy thus involves a sum, over all mtDNA states that correspond to that heteroplasmy, of the probability of that state.
The evaluation of hypergeometric functions is more computationally demanding than that of more common mathematical

functions, and the infinite sums at first glance seem intractable. However, in practise and using parameterisations from our
inferential approach, vanishingly little probability density exists at m1,m2 > 5⇥105, corresponding to the biological observation
that mtDNA copy number is very unlikely to exceed this value. Dynamic programming then allows these sums to be performed
straightforwardly.

Finally, the computation of P(m = 0, t) is important in our analysis of the characterisation of key distributions using the first
two moments (see below), where it appears as P(m2 = 0, t), the probability of wildtype fixation. This is relatively straightforward
to address analytically as when m = 0, Eqn. 68 reduces to P(0, t) = G

overall

|
z=0, which in the notation above is simply:

⇣ ⌘ P(0, t) =
✓
B

0

D

0

◆
m

0

, (73)

where we introduce the notation ⇣ for fixation probability for later brevity. We could not dramatically simplify the full
expression so we leave it in this form and note that it can be readily calculated (as above) by inserting Eqns. 47-50 into Eqn.
55 then computing Eqn. 73.

Multiple species and heteroplasmy. The heteroplasmy h = m2/(m1+m2) is straightforwardly addressable by considering
the above solutions for m1 and m2. We can also consider a more general case, in which we have four species of mtDNA in our
model: wildtype reproducing (m1), mutant reproducing (m2), wildtype sterile (m3) and mutant sterile (m4). We assume that
these species evolve in an uncoupled way with time. The parameter h0, initial heteroplasmy, determines the initial proportion of
mutant genomes: h0 = m

20

+m

40

m

0

, where m0 = m10+m20+m30+m40 is the total initial copy number of mtDNA. The parameter
↵ determines the proportion of genomes capable of reproducing: ↵ = m

10

m

10

+m

30

= m

20

m

20

+m

40

. We compute the time trajectories
for all m

i

then calculate heteroplasmy by setting M1 = m1 + m3, M2 = m2 + m4, respectively the total numbers of wildtype
and mutant mtDNAs, and using Eqns. 15 and 16, where all means and variances are straightforwardly extracted from the above
analysis.

10 Characterisation of distributions of important quantities with moments

We are interested in the probability with which heteroplasmy h exceeds a certain threshold value h

⇤. This probability can be
computed using Eqn. 72 above, but the large sums of hypergeometric functions suggest that a simpler approximation of the
heteroplasmy distribution may be desirable, both for computational simplicity and intuitive interpretability. We here explore
how well distributions of copy number and, importantly, heteroplasmy are characterised by quantities that are easily obtained
from our analytic approaches without large summations: specifically, low-order moments E(m),V(m), and fixation probabilities
P(m = 0).

For moderate initial heteroplasmy 0.7 > h0 > 0.3, all distributions are well matched by the Normal distributions computed
using the first two moments E(m) and V(m). This match begins to fail as initial heteroplasmy decreases or increases to the
extent where fixation of one mtDNA type becomes likely. The resultant non-negligible probability density at h = 0 and/or h = 1
represents a truncation point which forces skew on the distributions (particularly P(h)) and weakens the Normal approximation.

We can make progress by considering P(h) to be a weighted sum of a truncated Normal distribution N 0(µ,�2) (truncated at
0, 1; and with currently unknown parameters µ,�) and two �-functions at h = 0 and h = 1 representing the fixation probability
of wildtype and mutant mtDNA respectively. If we write PN 0(h) for the probability density at h of such a truncated Normal
distribution, we have:

P(h) = (1� ⇣1 � ⇣2)PN 0(h) + ⇣1�(h) + ⇣2�(h� 1), (74)

where ⇣1 = P(m2 = 0, t) is the fixation probability of the wildtype and ⇣2 = P(m1 = 0, t) is the fixation probability of
the mutant, expressions for which were computed previously in Eqn. 73. Knowledge of the parameters µ,� that describe the
truncated Normal part of this distribution will then provide us with a better estimate of P(h).
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We can use the relations E(h) =
R
hP(h) dh and V(h) =

R
h

2P(h) dh � E(h)2. As �(h) provides a nonzero contribution to
these integrals only when h = 0, the contribution from this part of P(h) is always zero; then,

E(h) =
Z

h ((1� ⇣1 � ⇣2)PN 0(h) + ⇣2�(h� 1)) dh (75)

= (1� ⇣1 � ⇣2)E(N 0) + ⇣2 (76)

V(h) =
Z

h

2 ((1� ⇣1 � ⇣2)PN 0(h) + ⇣2�(h� 1)) dh� E(h)2 (77)

= (1� ⇣1 � ⇣2)
�
V(N

h>0) + E(N
h>0)

2
�
� E(h)2 + ⇣2 (78)

where E(N 0), V(N 0) are respectively the mean and variance of the truncated Normal distribution, and in the final line we
have used the fact that V(N 0) =

R
h

2PN 0(h) dh� E(N 0)2.
Results are known [28] for moments of the truncated Normal distribution:

E(N 0) = µ+ �

f(↵1)� f(↵2)

F (↵2)� F (↵1)
(79)

V(N 0) = �

2

 
1� ↵1f(↵1)� ↵2f(↵2)

F (↵2)� F (↵1)
�
✓

f(↵1)� f(↵2)

F (↵2)� F (↵1)

◆2
!

(80)

where, in our case (with truncations at h = 0 and h = 1) ↵1 = �µ/�, ↵2 = (1� µ)/� and f(x) = (
p
2⇡)�1 exp(�x

2
/2) and

F (x) = 1
2 (1 + erf(x/

p
2)) are respectively the p.d.f. and c.d.f. of the standard Normal distribution. Given these expressions,

we wish to invert these Eqns. 76 and 78 to find µ and �, the parameters underlying the truncated Normal distribution, given
E(h), V(h) and ⇣1,2 = P(m2,1 = 0), which we can compute (see below). We have not been able to find an analytic solution
for these equations; however, numerically solving these equations is computationally far cheaper than performing the numeric
simulations required to better characterise the real distribution. We then obtain an expression for P(h), which well matches the
exact distribution derived using Eqn. 72 (see Fig. 4).

Threshold crossing. The probability of crossing a threshold heteroplasmy h

⇤ with time is simply given by the probability
density in the region h > h

⇤. We can then use the result

P(h > h

⇤) = (1� ⇣1 � ⇣2)

✓
1� 1

2

⇣
1 + erf

⇣
(h⇤ � µ)/

p
2�2
⌘⌘◆

+ ⇣1(1� �(h⇤)) + ⇣2(1� �(h⇤ � 1)), (81)

for threshold crossing, which follows straightforwardly from considering the integrated density of the model distribution
(Eqn. 74) of h above h

⇤, with parts from the error function representing the definite integral of the truncated Normal part of
the distribution, with additional terms from wildtype fixation (if h⇤ 6= 0) and mutant fixation (if h⇤ 6= 1).

Inferring embryonic heteroplasmy. The probability that a sample measurement h
m

came from an embryo with hetero-
plasmy h0 can be found from Bayes’ Theorem:

P(h0|hm

) =
P(h

m

|h0)P(h0)

P(h
m

)
. (82)

We assume a uniform prior distribution P(h0) = ⇢ on embryonic heteroplasmy (though this can be straightforwardly gener-
alised). P(h

m

) is given by the integral over all possible embryonic heteroplasmies of making observation h

m

, so we obtain

P(h0|hm

) =
⇢P(h

m

|h0)R 1

0
dh

0
0⇢P(hm

|h0
0)dh

0
0

(83)

=
(1� ⇣1 � ⇣2)N 0(h

m

|µ,�2) + ⇣1�(hm

) + ⇣2�(hm

� 1)
R 1

0
dh

0
0 ((1� ⇣1 � ⇣2)N 0(h

m

|µ,�2) + ⇣1�(hm

) + ⇣2�(hm

� 1))
, (84)

where the µ,�

2 moments characterising the truncated Normal distribution are found numerically as above (for each h

0
0 value

in the integrand, which is performed numerically); and ⇣1, ⇣2 are also functions of h0.
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Figure 4: Comparison of truncated Normal approximation with exact heteroplasmy distribution. Representations
of heteroplasmy distributions at a time t = 21dpc, with various starting heteroplasmies, using (as an example) the maximum
likelihood parameterisation emerging from the inference procedure in the main text. Dark lines and bars show exact distributions
from Eqn. 72; pale lines and bars show distributions arising from the truncated Normal distribution described in the text.
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[16] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without likelihoods. Proceedings Of The
National Academy Of Sciences Of The United States Of America, 100:15324, 2003.

[17] I. Johnston. E�cient parametric inference for stochastic biological systems with measured variability. Stat. Appl. Genet.
Molec. Biol., 13:379, 2014.

[18] W. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97, 1970.

[19] S. Chae, B. Ahn, K. Byun, Y. Cho, M. Yu, B. Lee, D. Hwang, and K. Park. A Systems Approach for Decoding Mitochondrial
Retrograde Signaling Pathways. Science Signaling, 6:rs4, 2013.

[20] R. de Vries, R. Gilkerson, S. Przedborski, and E. Schon. Mitophagy in cells with mtDNA mutations: Being sick is not
enough. Autophagy, 8:699, 2012.
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