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Abstract 28 
Dengue and chikungunya are increasing global public health concerns due to their rapid geographical 29 
spread and increasing disease burden. Knowledge of the contemporary distribution of their shared 30 
vectors, Aedes aegypti and Ae. albopictus remains incomplete and is complicated by an ongoing 31 
range expansion fuelled by increased global trade and travel. Mapping the global distribution of 32 
these vectors and the geographical determinants of their ranges is essential for public health 33 
planning. Here we compile the largest contemporary database for both species and pair it with 34 
relevant environmental variables predicting their global distribution. We show Aedes distributions to 35 
be the widest ever recorded; now extensive in all continents, including North America and Europe. 36 
These maps will help define the spatial limits of current autochthonous transmission of dengue and 37 
chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to 38 
project future health impacts of these viruses. 39 
 40 
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Introduction 44 
The mosquitoes Aedes aegypti [=Stegomyia aegypti] and Aedes albopictus [=Stegomyia albopicta] 45 
(Reinert et al. 2009) are vectors of several globally important arboviruses, including dengue virus 46 
(DENV) (Simmons et al. 2012), yellow fever virus (Jentes et al. 2011), and chikungunya virus (CHIKV) 47 
(Leparc-Goffart et al. 2014). The public health impact of DENV and CHIKV has increased dramatically 48 
over the last fifty years, with both diseases spreading to new geographic locations and increasing in 49 
incidence within their range (Weaver 2014). The remaining burden of vaccine-preventable yellow 50 
fever is similarly likely to be dramatically underestimated (Garske et al. 2014). DENV, with a nearly 51 
ubiquitous distribution in the tropics and more recently introduced to Europe (ECDC 2014; Schaffner 52 
& Mathis 2014), is the most prevalent human arboviral infection causing 100 million apparent 53 
annual infections world-wide with almost half of the world’s population at risk of infection (Brady et 54 
al. 2012; Bhatt et al. 2013). CHIKV recently received considerable public health attention due to the 55 
outbreaks in Réunion in 2005-2006 (225,000 infections) (Borgherini et al. 2007), Italy in 2007 (205 56 
infections) (Rezza et al. 2007), and France in 2010 and 2014 (2 and 11 locally transmitted cases, 57 
respectively) (La Ruche et al. 2010; Grandadam et al. 2011; Paty et al. 2014) as well as its recent 58 
invasion into the Americas with over one million cases recorded to date (Cauchemez et al. 2014; 59 
Johansson et al. 2014; Morens & Fauci 2014). Increases in distribution and intensity of transmission 60 
are compounded by the lack of commercially available antivirals or vaccines for either disease 61 
(Simmons et al. 2012; Roy et al. 2014), although new therapeutics and vaccines are in development 62 
(McArthur et al. 2013; Powers 2014; Villar et al. 2015). Similarly, while yellow fever infections have 63 
been on the decline due to extensive vector control and an effective vaccine developed more than 64 
70 years ago, it still causes a significant disease burden in Africa and South America (Poland et al. 65 
1981; World Health Organization 1990; Garske et al. 2014). Given the public health impact of these 66 
diseases and their rapid global spread, understanding the current and future distribution, and 67 
determining the geographic limits of transmission and transmission intensity, will enable more 68 
efficient planning for disease control (Carrington & Simmons 2014; Semenza et al. 2014; Messina et 69 
al. 2015). Because these diseases can only persist where their mosquito vectors, Ae. aegypti and Ae. 70 
albopictus are present, understanding the distributions of these two species underpins this strategy. 71 
The global expansion of these arboviruses was preceded by the global spread of their vectors 72 
(Charrel et al. 2014). Aedes aegypti originated in Africa where its ancestral form was a zoophilic 73 
treehole mosquito named Ae. aegypti formosus (Brown et al. 2014). The domestic form Ae. aegypti 74 
is genetically distinct with discrete geographic niches (Brown et al. 2011). It was hypothesised that 75 
due to harsh conditions coupled with the onset of the slave trade, Ae. aegypti were introduced into 76 
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the New World from Africa, from where it subsequently spread globally to tropical and sub-tropical 77 
regions of the world (Brown et al. 2014). Aedes albopictus, originally a zoophilic forest species from 78 
Asia, spread to islands in the Indian and Pacific Oceans (Delatte et al. 2009). During the 1980s it 79 
rapidly expanded its range to Europe, the United States and Brazil (Medlock et al. 2012; Carvalho et 80 
al. 2014). Today both Ae. aegypti and Ae. albopictus are present in most Asian cities and large parts 81 
of the Americas (Lambrechts et al. 2011). Aedes aegypti feed almost exclusively on humans in 82 
daylight hours and typically rest indoors (Scott & Takken 2012). In contrast Ae. albopictus is usually 83 
exophagic and bites humans and animals opportunistically (Paupy et al. 2009) but has also been 84 
shown to exhibit strongly anthropophilic behavior similar to Ae. aegypti in specific contexts 85 
(Ponlawat & Harrington 2005; Delatte et al. 2010). 86 
A number of previous studies have mapped the global or regional distributions of Ae. aegypti and 87 
Ae. albopictus by focusing on different aspects of their ecology. The majority of studies examined 88 
the impacts of climatic conditions, often with an exclusive focus on temperature. Kobayashi et al. 89 
(2002) and Nawrocki & Hawley (1987) used results from laboratory studies to identify potential 90 
limits of establishment in Japan and Asia suggesting a minimum mean temperature in the coldest 91 
months of -2°C and -5°C respectively. Brady et al. (2013) extended that work by modeling the adult 92 
survival of both species under laboratory and field conditions, indicating that Ae. aegypti has higher 93 
survival rates than Ae. albopictus, though the latter can tolerate a wider range of temperatures. 94 
Applying these results to global temperature data, Brady et al. (2014) produced maps indicating 95 
areas where the temperature is suitable for these vectors to persist. Whilst temperature is clearly a 96 
crucial factor constraining the distribution of the two species, these results alone are not sufficient 97 
to discriminate between areas where the species can and cannot persist. Other studies went further 98 
using statistical models, predicting the distributions of both species (though particularly Ae. 99 
albopictus) using a broader range of climatic variables including precipitation (Benedict et al. 2007; 100 
Medley 2010; Fischer et al. 2011; Caminade et al. 2012; Khormi & Kumar 2014; Campbell et al. 101 
2015). 102 
Whilst these studies incorporated several generic climatic factors to predict the current and future 103 
distribution of the species, we were able to integrate a bespoke species-specific temperature 104 
suitability covariate and account for anthropogenic factors that are known to influence Ae. aegypti 105 
and Ae. albopictus distributions (Reiter et al. 2003). Both species are container-inhabiting but differ 106 
in their behaviour and biology so that they occupy different niches (Eisen & Moore 2013). A few local 107 
studies showed, however, that local spread of Ae. albopictus and declining Ae. aegypti populations 108 
might be linked to inter-species competition (O’Meara et al. 1995; Daugherty et al. 2000; Juliano et 109 
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al. 2007) and/or non-reciprocal cross-species inseminations (Bargielowski et al. 2013). Socio-110 
economic factors affecting the distribution of the Aedes mosquitoes other than the use of containers 111 
to store water, include the use of air-conditioning, housing quality, and the rate of urbanisation 112 
(Ramos et al. 2008; Aström et al. 2012). In addition to exclusively focusing on meteorological factors 113 
in determining the spatial extent of the Aedes mosquitoes, many models used small sets of input 114 
occurrence data, which were biased towards particular countries with well-developed surveillance 115 
systems, such as, Brazil and Taiwan (Benedict et al. 2007; Medley 2010; Fischer et al. 2011; Campbell 116 
et al. 2015). 117 
In this context, we set out to model the global distribution of these two important vector species, 118 
compiling the most comprehensive occurrence dataset to date from published literature and 119 
national entomological surveys. To overcome previous modelling limitations, a probabilistic species 120 
distribution model using Boosted Regression Trees (BRT) was produced for each vector. Our models 121 
combine environmental and, for the first time, land-cover variables to predict the global distribution 122 
of both species at high spatial resolution. Importantly, the models quantify prediction uncertainty 123 
and aim at identifying key contributing factors and inter-species differences in their environmental 124 
niches. 125 
Results 126 
In total, data collection yielded 19,930 and 22,137 spatially unique occurrence records for Ae. 127 
aegypti and Ae. albopictus respectively, which were used to train the distribution models. This 128 
includes up-to date records from national entomological surveys from Brazil and Taiwan for both 129 
species (Carvalho et al. 2014; Yang et al. 2014). For Ae. aegypti, >60% of all occurrence records are 130 
from Asia and Oceania, 35% are from the Americas and only 575 unique occurrences are available 131 
for Africa and Europe (Table 1a). Similarly for Ae. albopictus, most of the occurrences are from Asia 132 
(75%), 23% are from the Americas and only 542 records are available from Europe and Africa (Table 133 
1b). For each continent the top ten countries in terms of occurrences recorded are shown for both 134 
species (Table 1). The geographic distribution of the occurrence records is the widest ever recorded 135 
with high spatial and temporal resolution in Taiwan and Brazil for both species and in the United 136 
States for Ae. albopictus. All occurrence data have been made openly available through an online 137 
data repository to ensure consistency and reproducibility (Pigott & Kraemer 2014, Kraemer et al. 138 
under review). 139 
Maps showing the predicted global distribution for Ae. aegypti and Ae. albopictus are presented in 140 
Figures 1 and 2, respectively. The distributions of the two species differ markedly in a number of 141 
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places. Aedes aegypti is predicted to occur primarily in the tropics and sub-tropics, with 142 
concentrations in northern Brazil and southeast Asia including all of India, but with relatively few 143 
areas of suitability in Europe (only Spain and Greece) and temperate North America. In Australia, 144 
however, Ae. aegypti shows a wider geographic distribution than Ae. albopictus, which is confined to 145 
the east coast, largely reflecting the known historic distribution of Ae. aegypti. By contrast, the 146 
distribution of Ae. albopictus extends into southern Europe (Figure 3a), northern China, southern 147 
Brazil, northern United States (3b), and Japan. Again, this reflects the current and historic 148 
distribution of Ae. albopictus and the ability of the species to tolerate lower temperatures (Tsuda & 149 
Takagi 2001; Lounibos et al. 2002; Thomas et al. 2012; Brady et al. 2014). 150 
In Europe, the predicted potential distribution of Ae. albopictus contains most of the known 151 
occurrence points, but suitability is also predicted in Portugal and the west of Spain, and in much of 152 
south-eastern Europe and the Balkans, where the species has yet to be reported. Similarly, in China 153 
Ae. albopictus has yet to be reported from much of the area predicted to be environmentally 154 
suitable. By contrast, in the United States the species has been reported from almost all of the 155 
predicted suitable areas, with the exception of a small band of predicted suitability on the western 156 
slope of the Sierra Nevada. Due to the relatively sparse reporting from Africa it remains uncertain 157 
whether areas predicted to be highly suitable are already infested or have yet to be colonized by the 158 
species. Aedes albopictus for example has only been reported from some West African countries 159 
(Nigeria, Cameroon, Gabon, the Central African Republic, Congo, Cote d’Ivoire) and Madagascar, and 160 
South Africa (as well as some islands in the Indian Ocean). The distribution of Ae. aegypti in Africa 161 
seems to be much wider, with reports of species occurrence in over 30 countries of the continent. 162 
For both species, the most important predictor was temperature. Temperature suitability indices 163 
had high relative influence statistics for both species; this variable was selected in approximately half 164 
of regression tree decisions for Ae. aegypti (54.9%, CI = 53.7 – 56%) and Ae. albopictus (44.3%, CI = 165 
42.7 – 45.6%). The full definition of a relative influence statistic is given in the Materials and 166 
Methods section under the heading Predictive performance and relative influence of covariates. 167 
Precipitation and vegetation indices made up the remainder of predictors. Urban land cover made 168 
very little contribution to either model (Table 2). Model evaluation statistics under cross-validation 169 
were high (AUC: 0.87 and 0.9 respectively) for both model ensembles, indicating high predictive 170 
performance of the model. Effect plots for each covariate are shown in Figure 1 – figure supplement 171 
2. Maps of uncertainty associated with these predictions are presented in Figure 1 – figure 172 
supplement 3. 173 
Discussion 174 
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By combining the most comprehensive dataset of occurrence records with an advanced modelling 175 
approach and a bespoke set of environmental and land-cover correlates, we have produced 176 
contemporary high-resolution probability of occurrence maps for Ae. aegypti and Ae. albopictus, two 177 
of the most important disease vectors globally. Dengue and chikungunya, pathogens transmitted by 178 
these vectors and rapidly expanding in their distributions, are increasingly prominent in public health 179 
agendas and pose significant health threats to humans (Staples et al. 2009; Gardner et al. 2012; 180 
Bhatt et al. 2013; Weaver & Lecuit 2015). In common with previous work to map the global 181 
distributions of the dominant vectors of malaria (Sinka et al. 2010; Sinka et al. 2011; Sinka et al. 182 
2010), the maps will improve efforts to understand the spatial epidemiology of associated 183 
arboviruses, and to predict how these could change in the future. Specifically, these maps may be 184 
used to prioritize surveillance for these vector species and the diseases caused by the viruses they 185 
transmit in areas where disease and entomological reporting remains poor. For example, in parts of 186 
Asia and Africa where there is a mismatch between predicted environmental suitability and reported 187 
occurrences, these maps could be used to determine whether the vector has yet to fill its niche or if 188 
it is present but has not been reported due to limited entomological surveillance. They may also be 189 
used to identify areas where the species could persist but have yet to be reported, in order to 190 
proactively prevent vector establishment. 191 
The relative contributions of each of the environmental covariates to the global models concur with 192 
our theoretical and experimental understanding of each species’ biology. Both species’ distributions 193 
are highly dependent on the limiting factor temperature places on survival of the adult mosquitoes 194 
and on the gonotrophic cycle (Brady et al. 2013) (Table 2). The inclusion of a bespoke temperature 195 
suitability index (Brady et al. 2014), both in defining the pseudo-absences and as a covariate, 196 
allowed us to capture both geographic and temporal variations in the species-specific effects of 197 
temperature in a single variable, leading to improved predictive skill of the models. As both Ae. 198 
aegypti and Ae. albopictus lay their eggs in small water-filled containers (Morrison et al. 2004), it is 199 
encouraging that precipitation also has a strong influence on the model’s predictions. The stronger 200 
influence of minimum precipitation for Ae. albopictus than for Ae. aegypti (16.1% vs 9.1%, Table 2) 201 
may reflect the former species’ preference for environmental juvenile habitats, which are solely 202 
reliant on filling via precipitation. By contrast, Ae. aegypti primarily inhabits domestic water-holding 203 
containers (Scott et al. 2000) that are maintained in low-precipitation environments by water 204 
storage activities. The greater importance of enhanced vegetation index (EVI) for Ae. albopictus than 205 
for Ae. aegypti (15.3% vs 12.1%, Table 2) also supports the hypothesis that Ae. albopictus tends to 206 
prefer non-domestic juvenile sites (Morrison et al. 2004). This does not, however, rule out the 207 
possibility that the two species can overlap. Additional finer scale studies need to be conducted to 208 
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investigate if competitive exclusion for hosts and/or habitat occurs between the Ae. aegypti and Ae. 209 
albopictus. The effect of urbanicity was surprisingly low for both species (2% and 1.1% for Ae. 210 
albopictus and Ae. aegypti, respectively). As both species have been shown to inhabit a wide variety 211 
of urban and peri-urban settings with various degrees of intensity (Powell & Tabachnick 2013; Li et 212 
al. 2014), it is likely that the simple urban/rural distinction of our urbanicity covariate did not 213 
sufficiently capture this variation and instead continuous covariates such as EVI allow to better 214 
distinguish the respective habitat types and were thus chosen more frequently by the model. 215 
Incorporating a larger set of covariates allowed us to investigate not only the effect of temperature 216 
on survival but for additional variance as shown in the relative influence plots (Figure 1 figure - 1). 217 
Future Aedes species distribution models could be improved by including a comprehensive global 218 
covariate that distinguishes human settlements using complex satellite imagery processing tools 219 
(Schneider 2012). 220 
Our maps are based on covariates where each 5 km x 5 km pixel represents yearly mean average 221 
values. We therefore produce maps that represent the long-term average distribution of both 222 
species. However, this does not allow us to directly infer seasonal patterns of distributions which 223 
might be of importance on the periphery of the species distributions. With a more temporally 224 
resolved dataset it may be possible to capture the effects of intra-annual seasonality on the species’ 225 
distributions. Adding mechanistic determinants, such as survival, have previously been used to 226 
combine seasonal patterns with global distribution maps (Johansson et al. 2014). To make best use 227 
of the comprehensive set of data collected, we construct models and maps at a global scale, 228 
allowing the model to share information across the whole spectrum of environmental regions. 229 
However, given the scale at which this study was performed, there is always the possibility that 230 
variation in microclimate or local adaptive strategies of both species may have a significant impact in 231 
some locations. 232 
Previous studies have discussed the risk of pathogen importation and autochthonous transmission of 233 
DENV and CHIKV in Europe and the Americas without comprehensively accounting for the 234 
distribution of the vectors (Bogoch et al. 2014; Schaffner & Mathis 2014). These freely available 235 
vector distributions maps (http://goo.gl/Zl2P7J) can now be used as covariates to refine these 236 
studies and to generate high-resolution maps of the risk of possible local DENV and CHIKV 237 
transmission in currently non-endemic settings. Such maps would be useful for prioritizing 238 
surveillance in areas where there is a risk of disease importation. This will be especially important in 239 
areas where sporadic cases of related viruses have been reported, such as Europe, the United States, 240 
Argentina, and China (Rezza et al. 2007; Otero & Solari 2010; Wu et al. 2010; Johansson 2015). 241 
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Both Ae. aegypti and Ae. albopictus have a history of global expansion associated with trade and 242 
travel (Tatem et al. 2006; Brown et al. 2014; Gloria-Soria et al. 2014). Introductions of the species 243 
over long distances and between continents has been associated with international trade routes via 244 
shipping and overland spread driven by human movement and transport routes, both facilitated by 245 
the endophilic behavior of the two species (Nawrocki & Hawley 1987; Tatem et al. 2006; Hofhuis et 246 
al. 2009). The global spread of the associated pathogens has undoubtedly been a consequence of 247 
increasing global connectedness. As these processes continue and the world becomes increasingly 248 
connected and urbanized, risk of importation and subsequent autochthonous transmission of DENV 249 
and CHIKV will continue to increase (Allwinn et al. 2008; Tomasello & Schlagenhauf 2013; Khan et al. 250 
2014; Messina et al. 2015). The true distribution of both species is influenced by a variety of factors, 251 
not just the ones presented here. Nevertheless, this study represents an important baseline for 252 
further refinements. For instance, our maps can be used to indicate areas where the species are 253 
likely to become established if introduced. Accurately predicting the future distributions of these 254 
species will also require model-based estimates of the rate at which these species colonize new 255 
areas. Such predictions can be informed by human and trade mobility patterns between endemic 256 
and non-endemic regions as well as data on the past spread of the vectors. Improving our ability to 257 
predict rates of vector importation will therefore be crucial to inferring future risk (Seebens et al. 258 
2013). 259 
Previous studies have provided crucial information on genetic variation both within and between 260 
populations of these two vector species (Brown et al. 2011). As the volume of georeferenced 261 
information on the population genetics of Ae. aegypti and Ae. albopictus increases, the potential to 262 
incorporate this information into mapping analyses to understand the current and future 263 
distribution of disease risk also increases. Phylogeographic analyses offer a unique way to infer the 264 
recent patterns of vector spread and to identify the major routes of importation (Allicock et al. 265 
2012). This information is crucial to inform models to predict the risk of vector introductions. 266 
Phylogenetic information could also be used to inform future iterations of the species distribution 267 
models used here by enabling the model to characterize and map environmental suitability for 268 
different vector subspecies. This could be particularly useful in the case of Ae. albopictus where 269 
genetic variation is known to underlie the ability to undergo diapause and therefore to overwinter in 270 
colder locations (Takumi et al. 2009). Mapping the distributions of distinct genetic subgroups could 271 
also improve our understanding of the complex interactions between mosquito vector populations 272 
and virus strains and how this relates to spatial variation in transmission intensity (Tsetsarkin et al. 273 
2007; Vazeille et al. 2007; Tsetsarkin & Weaver 2011; Zouache et al. 2014). 274 
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The maps presented comprise a contemporary estimate of the current and potential future 275 
distribution of Ae. aegypti and Ae. albopictus. As more occurrence data become available, these 276 
maps can be refined to incorporate recent importation and establishment events and corresponding 277 
improvements in predictions. By disseminating both the occurrence data and the predictive maps on 278 
an open-access basis we hope to facilitate both the future development of these maps and their 279 
uptake by the global public health community. 280 
Materials and methods 281 
A boosted regression tree (BRT) modelling approach was applied to derive probabilistic global 282 
environmental risk maps for Ae. aegypti and Ae. albopictus. BRT models are machine-learning model 283 
ensembles commonly used in species distribution modelling (SDM) and show strong predictive 284 
performance due to their ability to handle complex non-linear relationships between probability of 285 
species occurrence and multiple environmental correlates (Elith et al. 2006, 2008). Our model 286 
required the following sets of input data in order to make accurate predictions of the distribution of 287 
these two species: (i) a temperature suitability mask defining the fundamental limits of both species; 288 
(ii) a globally comprehensive dataset of geo-positioned occurrence points for both species; (iii) 289 
appropriate land-cover and environmental covariate datasets that help explain the current 290 
distribution of the species; and (iv) a set of species absence records that further refine the species 291 
range and reduce sampling bias. Details regarding the specific attributes of the model and data 292 
generation are outlined below and maps of each of the covariates are shown in Figure 1 – figure 293 
supplement 2. 294 
Temperature suitability mask: 295 
While the niche of a species is determined by a host of environmental, ecological and socio-296 
economic factors of unknown influence and interaction strength, it is possible to exclude parts of the 297 
niche if the direct effects of one factor on a step rate-limiting to population persistence are well 298 
known. One such example for mosquito population persistence is whether temperature permits 299 
adult females to survive long enough to complete their first gonotrophic cycle and thus oviposit. 300 
Both adult female longevity and length of first gonotrophic cycle are temperature dependent. 301 
Combining these two relationships with a dynamic population-level simulation, Brady et al. (2013, 302 
2014) evaluated the thermal limits to persistence of Ae. aegypti and Ae. albopictus populations on a 303 
global scale. The binary outputs of this model are used as a mask to sample pseudo-absence points 304 
in locations known to be unsuitable – thereby informing the statistical model using mechanistic 305 
outputs. The temperature suitability index developed by Brady et al. is also used in a continuous 306 
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variable form (i.e., the relative number of ovipositions of parous females permitted by temperature) 307 
as a covariate in the BRT model. 308 
Occurrence records: 309 
The database used for this study contains information on the known global occurrences of the 310 
adults, pupae, larvae or eggs of Ae. aegypti and Ae. albopictus globally from 1960-2014. We included 311 
data from a variety of sources, including (1) directly sourced from published literature and (2) 312 
primary and unpublished occurrence data from national and international entomological surveys. To 313 
our knowledge this is the largest, most comprehensive global dataset for both Ae. aegypti and Ae. 314 
albopictus. Confirmed Aedes occurrences were entered in the database after a comprehensive 315 
literature search using methods described elsewhere (Kraemer et al. under review: 316 
http://datadryad.org/review?doi=doi:10.5061/dryad.47v3c). In short, this included extracting all 317 
available location (latitude and longitude) information from the relevant articles, primarily using 318 
Google Maps (http://www.google.com/maps) so that it matched the spatial resolution of our 319 
covariate datasets of approximately 5 km x 5 km pixel. Primary and unpublished data sources were 320 
obtained from Brazil, Europe, Indonesia, Taiwan, and the United States. After consolidating all data 321 
into two large databases for each species, independently they underwent spatial and temporal 322 
standardization. An occurrence record was defined as a single occurrence at a given unique location 323 
within one calendar year. This was important to avoid over-representation in regions where multiple 324 
surveys per year were performed, such as Taiwan or Brazil. To ensure the accuracy of the data we 325 
overlaid the geolocated occurrence points with a raster that distinguished land from water. Any 326 
records that were positioned outside the land area were subsequently removed. In total we 327 
assembled 19,930 and 22,137 occurrence records for Ae. aegypti and Ae. albopictus respectively. 328 
The distribution of occurrence points are plotted in Figure 1 - figure supplement 4. 329 
Land-cover and environmental variables: 330 
The distribution of both species considered in this study are known to be influenced by 331 
environmental factors such as temperature and demographic factors such as urbanisation (Lounibos 332 
2002; Brown et al. 2014). Global gridded maps of such variables are becoming ever more available 333 
and have been commonly applied in SDM and disease mapping (Hijmans et al. 2005; Hay et al. 2006; 334 
Gething et al. 2011; Bhatt et al. 2013; Pigott et al. 2014a, 2014b). The rationale for the inclusion of 335 
each variable we used is described below. 336 
Enhanced Vegetation Index (EVI) 337 
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Survival of Ae. aegypti and Ae. albopictus is highly dependent on temperature and water availability 338 
(Luz et al. 2008). EVI measures vegetation canopy greenness and can be used as a proxy for soil 339 
surface-level moisture that are associated with the availability of mosquito larval development sites 340 
(Estallo et al. 2008; Nihei et al. 2014). Eggs and adults require moisture to survive, with low dry 341 
season moisture levels affecting adult mortality (Sota & Mogi 1992; Russell et al. 2001). Vegetation 342 
canopy cover reduces evaporation and wind speed in the sub-canopy, which protects mosquito 343 
development sites (Linthicum 1999; Fuller et al. 2009; Hahn et al. 2014). We used range and mean 344 
values of MODIS EVI after processing through a gap-filling algorithm described elsewhere (Weiss et 345 
al. 2014). 346 
Precipitation 347 
The principal larval habitats of both species are man-made containers that are used for water 348 
storage or accumulate rain (Morrison et al. 2004). Some local studies have shown that there is a 349 
relationship between precipitation and vector abundance (Scott et al. 2000; Romero-Vivas & 350 
Falconar 2005). To account for the availability of water-filled containers a maximum and minimum 351 
annual precipitation layer was extracted from the WorldClim database for the year 2015 352 
(http://www.worldclim.org). 353 
Urbanisation 354 
Aedes aegypti adults are highly domesticated mosquitoes feeding almost exclusively on humans 355 
(Bargielowski et al. 2013), larvae develop preferentially in artificial containers in close association 356 
with human habitation, often in urban settings (Lounibos 2002; Honório et al. 2003; Brown et al. 357 
2011, 2014; Powell & Tabachnick 2013). Aedes albopictus are more commonly found in rural and 358 
peri-urban settings, feeding readily on a variety of mammalian and avian species, although Ae. 359 
albopictus shows similar larval development behavior in artificial containers (Reiter 2001; Gratz 360 
2004; Juliano & Philip Lounibos 2005; Li et al. 2014). To account for differences in urban, peri-urban 361 
and rural environments we built a categorical variable by supplementing the projected 2010 Global 362 
Rural Urban Mapping Project (GRUMP) urban and rural categories with land-cover classes using 363 
night-time light satellite imagery and population density, using the most up-to-date national 364 
censuses available to the smallest available administrative unit available (Balk et al. 2006). A gridded 365 
surface of 5 km x 5 km cells was generated with each pixel representing either urban, peri-urban, or 366 
rural areas. 367 
Modelling approach 368 
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BRT models consistently outperform other species distribution models such as maximum entropy 369 
(Maxent), GARP, and BIOCLIM in their predictive performance (Elith et al. 2006; Leathwick et al. 370 
2006). BRT combines the strengths of regression trees (i.e., the omission of irrelevant variables and 371 
the ability to model complex interactions) with machine learning techniques (i.e., the building of an 372 
ensemble of models that approximate the true response surface (Elith & Leathwick 2009)). To 373 
prevent overfitting, the model used a penalized forward stepwise search and cross-validation 374 
method to identify the optimal number of decision trees (Elith et al. 2008). Modelling was 375 
performed using the gbm, dismo, raster and seegSDM R packages using the R v 3.1.1 environment 376 
(Ridgeway 2013; Golding 2014; Hijmans 2014; R Core Team 2014). 377 
Removing sample selection bias 378 
Pseudo-absence (also referred to as background) records provide a sample of the set of conditions 379 
available to the species in the region rather than actual absences (Phillips et al. 2009). These records 380 
are needed because true absences are generally unavailable in large composite datasets such as the 381 
one used in this study. To account for reporting bias in presence data, a common problem with 382 
presence-only SDM, which if not accounted for can lead to biases in the resulting predictions, we 383 
follow Philips et al. (2009) in sampling pseudo-absence points according to the same reporting bias 384 
likely to be present in occurrence records (namely spatial variation in reporting of mosquito 385 
occurrence). Firstly, we selected 10,000 occurrence records of Aedes species from the Global 386 
Biodiversity Information Facility (http://www.gbif.org), omitting all records of Ae. aegypti and Ae. 387 
albopictus. This dataset is intended to reflect biases in mosquito reporting in areas which are 388 
suitable for Aedes mosquitoes. Secondly, to reflect areas where habitats are biologically not suitable 389 
for Aedes occurrence we sampled an additional 10,000 pseudo-absence points at random locations, 390 
with sampling probability greatest in areas that the biologically-based temperature suitability index 391 
to be unsuitable. Thirdly, sampling of occurrence points was also biased towards oversampled 392 
regions such as Brazil and Taiwan in which there were a large number of reported occurrence 393 
records due to the inclusion of results of large national entomological surveys (Table 1). Therefore, 394 
we weighted occurrence records from these locations so that the density of occurrence records per 395 
country matched the density of all other records globally by dividing the number of occurrence 396 
points by the size of the respective countries. 397 
Modelling 398 
An ensemble BRT was constructed using 120 sub-models to derive uncertainty distributions of the 399 
prediction map. Each of the 120 sub-models was fitted to a separate bootstrap resampling of the 400 
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dataset and used to generate a probability map for each individual species on a 5 km x 5 km 401 
resolution. The mean of these 120 sub-models was used as the final Aedes risk map. Pixel based 402 
uncertainty was estimated by calculating the 95% confidence interval from the 120 sub-models. 403 
Predictive performance and relative influence of covariates 404 
The variables used as land-cover and environmental correlates used in this study are quantified 405 
based on their relative influence (0-100) explaining the variance in the models; i.e., the sum of the 406 
number of times a particular variable is selected for splitting the decision tree, weighted by the 407 
squared improvement to the overall model averaged over all trees (Friedman 2001; Friedman & 408 
Meulman 2003). Note that in a BRT, non-informative predictors are largely ignored (Elith et al. 409 
2008). Predictive performance of each sub-model was evaluated using the area under curve (AUC) 410 
statistic calculated as the mean AUC for each of the ten cross-validation folds evaluated against the 411 
other 90% of the data under the pairwise distance sampling procedure of Hijmans (2012). The 412 
overall predictive accuracy of the model was measured as the mean and standard deviation of these 413 
AUCs across all 120 sub-models (Merckx et al. 2010; Hijmans 2012). 414 
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Figure 1: Global map of the predicted distribution of Ae. aegypti. The map depicts the probability of 864 
occurrence (from 0 blue to 1 red) at a spatial resolution of 5 km x 5 km. 865 
Figure 2: Global map of the predicted distribution of Ae. albopictus. The map depicts the probability 866 
of occurrence (from 0 blue to 1 red) at a spatial resolution of 5 km x 5 km. 867 
Figure 3. Predicted probability of occurrence of Ae. albopictus in Europe (a) and the United 868 
States (b), regions in which Ae. albopictus is rapidly expanding its range. Points represent known 869 
occurrences (transient (triangles) or established (circles)) until the end of 2013. 870 
Table 1: The geographic distribution of occurrence records for the Americas, Europe/Africa, 871 
and Asia/Oceania. Top ten countries in terms of occurrence records for each continent are 872 
shown for Ae. aegypti (a) and Ae. albopictus (b).  873 
Table 2: Relative contribution of environmental covariates predicting the global distribution 874 
of Ae. aegypti and Ae. albopictus. 875 
Figure 1 – figure supplement 1. Effect plots of covariates used in this study showing the 876 
marginal effect of each covariate on probability of presence for Ae. aegypti (1) and Ae. 877 
albopictus (2): Enhanced vegetation index - mean (a); Enhanced vegetation index - range (b); 878 
Maximum precipitation (c); Minimum precipitation (d); Temperature suitability (e); Urban 879 
areas (f); peri-urban areas (g). 880 
Figure 1 – figure supplement 2. Set of covariate layers used to predict the ecological niche of 881 
Ae. aegypti and Ae. albopictus described in detail in the Materials and Methods section; a) 882 
enhanced vegetation index (EVI) annual mean, b) EVI annual range, c) annual monthly 883 
maximum precipitation, d) annual monthly minimum precipitation, e) temperature 884 
suitability for Ae. albopictus, f) temperature suitability for Ae. aegypti, g) rural, peri-urban 885 
and urban classification layer. 886 
Figure 1 – figure supplement 3. Visualization of pixel level uncertainty calculated using the 887 
upper and lower bounds of the 95% confidence intervals associated with the prediction 888 
maps for Ae. aegypti (a) and Ae. albopictus (b).  889 
Figure 1 – figure supplement 4. The distribution of the occurrence database for Ae. aegypti 890 
(a) and Ae. albopictus (b) plotted on the underlying prediction surface. 891 
Supplementary file 1: List of contributors and their affiliation from TigerMaps & VBORNET 892 
for Ae. albopictus presence records in Europe.893 
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Table 1: The geographic distribution of occurrence records for the Americas, Europe/Africa, and Asia/Oceania. Top ten countries in terms of occurrence 894 
records for each continent are shown for Ae. aegypti (a) and Ae. albopictus (b). 895 

Ae. aegypti Country Occurrences Country Occurrences Country Occurrences 
Americas Brazil 5,044 Europe/Africa Senegal 112 Asia/Oceania China/Taiwan 9,490 

USA 436 Cameroon 55 Indonesia 603 
Mexico 411 Kenya 52 Thailand 495 
Cuba 177 United Republic of Tanzania 44 India 423 
Argentina 170 Cote d'Ivoire 40 Australia 282 
Trinidad and Tobago 152 Nigeria 35 Viet Nam 223 
Venezuela 130 Madagascar 28 Malaysia 112 
Colombia 128 Gabon 27 Singapore 44 
Puerto Rico 120 Mayotte 20 Philippines 36 
Peru 89 Sierra Leone 20 Cambodia 29 

Ae. 
albopictus Country Occurrences Country Occurrences Country Occurrences 
Americas Brazil 3,441 Europe/Africa Italy 203 Asia/Oceania China/Taiwan 15,339 

USA 1,594 Madagascar 58 Malaysia 186 
Mexico 50 Cameroon 42 Indonesia 161 
Cayman Islands 15 France 37 India 150 
Haiti 13 Gabon 27 Japan 97 
Guatemala 12 Albania 22 Thailand 82 
Venezuela 7 Mayotte 21 Singapore 44 
Colombia 3 Greece 18 Lao People's Democratic Republic 26 
Cuba 3 Israel 17 Philippines 22 
Puerto Rico 3 Lebanon 15 Viet Nam 18  896  897   898 
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Table 2: Relative contribution of environmental covariates predicting the global distribution 899 
of Ae. aegypti and Ae. albopictus. 900 
 Mean 

contribution Ae. 

aegypti 

95% confidence 

interval Ae. 

aegypti 

Mean 

contribution Ae. 

albopictus 

95% confidence 

interval Ae. 

albopictus 

Temp. suitability 54.9% 53.7 – 56% 44.3% 42.7 – 45.6% 

Maximum 

precipitation 

13.6% 12.6 – 14.6% 13.9% 12.7 – 14.9% 

Enhanced 

vegetation index 

- mean 

12.1% 11.3 – 12.9% 15.3% 14.5 – 16.3% 

Minimum  

precipitation 

9.1% 8.5 – 10.% 16.1% 15.2 – 16.9% 

Enhanced 

vegetation index 

- range 

8.3% 7.7 – 9% 9.1% 8.3 – 10.1% 

Urbanicity 2% 1.3 – 2.4% 1.1% 0.7 – 1.7%  901  902 








