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Appendix Figure Legends

Appendix Figure 1: Motion transforms spatial correlations into temporal corre-
lations. (a) An example natural image [1]. (b) When a natural image (top face) moves to
the right, streaks in space-time (front face) indicate the direction and speed of the motion.
Alternatively, motion influences the temporal correlation structure of visual signals (side
face). (c) Second-order correlation function between pairs of spatially separated contrast
signals (across the natural image ensemble [1]). (d) For constant velocity motion, the tempo-
ral correlation function between a pair of spatially separated points is shifted and stretched
relative to the spatial correlation function. We separated the two points by Drosophila’s
photoreceptor spacing (5.1◦). (e) Example third-order spatial correlation function involving
two points in space. (f) As with pairwise correlations, higher-order temporal correlations
between spatially separated visual signals are shifted and stretched (relative to higher-order
spatial correlation functions) in a manner that indicates the speed and direction of motion.

Appendix Figure 2: Correlations in binarized natural images. (a) We transformed
each image in the van Hateren natural image database [1] with several binarizing nonlin-
earities. To implement the simplest binarizing nonlinearity, we set all pixels to +1 or -1
depending on whether that pixel exceeded or fell below the median intensity in the image.
For the nonlinearity with two steps, the thresholds were at the 25th and 75th intensity per-
centiles. For the nonlinearity with three steps, the thresholds were at the 25th, 50th, and 75th

intensity percentiles. When a pixel intensity exactly equaled a threshold, we considered its
value below threshold. Binary nonlinearities with a larger number of steps produced grainier
images that indicate a spatial decorrelation of the transformed image. (b) We computed
second-order spatial correlation functions across the nonlinearly transformed natural image
ensemble. This confirmed that each step in the binarizing nonlinearity further decorrelated
the image ensemble. (c) In addition to decreasing the spatial extent of correlations, a larger
number of transitions also the performance of the front-end nonlinearity model.
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Appendix Figure 3: Accuracy of the weighted 4-quadrant model across model
parameters. (a)-(b) We computed the correlation coefficient between the velocity and the
response of the weighted 4-quadrant model for all possible sets of model parameters. Since
rescaling the weight vector does not affect the correlation coefficient, we assumed that all
model parameters satisfy

∑
a,b∈{+,−}(w

(Q)
ab )2 = 1. We color-coded each set of model parame-

ters by its accuracy and projected the parameter space onto various subspaces. (a) We first
examined the quadrant basis by projecting onto the {(−−), (−+)} (left) and {(+−), (++)}
(right) subspaces. (b) We next examined the correlational basis by projecting onto the
{even = 2, odd} (left) and {odd∗, even > 2} (right) subspaces. These project into different
linear combinations of the original quadrant weightings. One of the projections is the pure
HRC (even = 2), while the other projections contain only odd correlations, of two different
types (odd and odd∗), or only even correlations of order greater than 2 (even > 2). This
projection shows that accurate weighted 4-quadrant models always put positive weight into
2-point correlations and negative weight into odd-order correlations. Note that the glider
responses predicted by the weighted 4-quadrant model mirror this pattern (Fig. 3d). See
Appendix VIII for a more detailed interpretation of these plots.

Appendix Figure 4: The weighted 4-quadrant model in the basis of principal
components. (a) We computed the covariance matrix of quadrant responses across the
simulated ensemble of naturalistic motions. (b) The eigenvectors of the covariance matrix
are called principal components (PCs). Signals from the (++) and (+−) quadrants primar-
ily comprised the first two principal components, whereas the (−+) and (−−) components
comprised the third and fourth principal components. (c) The first two principal compo-
nents accounted for the vast majority of the weighted 4-quadrant model’s response variance.
(d) Each member of the ensemble of naturalistic motions comprised a velocity and a natural
image, and both components contributed variance to the model response. Although the first
two principal components accounted for most of the variance, little of that variance was
associated with the velocity of motion. Instead, the third and fourth principal components
best aided motion estimation, because they contributed the vast majority of the velocity-
associated variance. See Appendix IX for a mathematical treatment of these points.
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Appendix Figures

Appendix Figure 1: Motion transforms spatial correlations into temporal corre-
lations.
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Appendix Figure 2: Correlations in binarized natural images.
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Appendix Figure 3: Accuracy of the weighted 4-quadrant model across model
parameters.
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Appendix Figure 4: The weighted 4-quadrant model in the basis of principal
components.
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Appendix I: Visual signatures of motion

The pattern of light that stimulates the retina encodes information about the relative motion
between the retina and its visual environment. The manner in which this information is
encoded depends on the geometry of the photoreceptor array, the statistics of self-motion,
and the statistics of the visual environment. The principal goal of this paper is to illustrate
several ways that the brain’s nonlinear processing of visual motion signals might be tuned
to reflect specific features of the natural visual environment. We thus begin by enumerating
some computational signatures of visual motion in natural environments, thereby exposing
a diversity of stimulus features that visual system nonlinearities might aim to extract.

In the real world, animals encounter visual environments that are intricately structured
and far from random (App. Fig. 1a) [1, 2, 3]. When an animal rotates with constant
angular velocity through the environment, the spatiotemporal response profile of the pho-
toreceptor array encodes the velocity of self-motion through the slope of oriented streaks in
space-time (front face, App. Fig. 1b) [4]. Thus, a visual system with a dense array of
noiseless photoreceptors could extract the angular velocity of an arbitrary image by com-
puting the ratio of temporal and spatial derivatives [5]. The statistics of the image ensemble
become relevant once multiple interpretations of the sensory world become logically consis-
tent with the photoreceptor data. In particular, the optimal motion estimator depends on
the statistics of the image ensemble when photoreceptors have noise [5, 6], and a nonzero
spacing between photoreceptors introduces ambiguity via aliasing [5]. In these cases, the
animal can use prior information regarding the sensory environment and its motion in order
to weigh the plausibility of each sensory interpretation.

Full field motion transforms spatial features (top face, App. Fig. 1b) into temporal
features (side face, App. Fig. 1b) in a manner that depends upon the velocity of mo-
tion. Consequently, one can also think about the visual signatures of motion in terms of
spatiotemporal correlations between photoreceptors. The luminance contrast encoded by
the ith photoreceptor is Ci(t) = (Ii(t) − I0)/I0, where Ii(t) is the luminance intensity seen
by the ith photoreceptor at time t and I0 is the average luminance intensity over the visual
field. Thus, the average contrast is zero, and the simplest correlation function corresponds
to the product of two spatially separated contrast signals. Measured over an ensemble of
natural images, this 2-point correlation function had a global maximum at zero spatial off-
set (App. Fig. 1c). Consequently, the velocity of motion is encoded by the peak of the
temporal cross-correlation function between two neighboring photoreceptors, which occurs
at the temporal offset that equals the photoreceptor spacing (5.1◦ for Drosophila) divided
by the velocity of motion (App. Fig. 1d). Natural images also contain many higher-order
correlations [2, 3]. For instance, the nonzero skewness of natural images implies that the
third-order correlation that multiplies the contrast at one point with the squared contrast at
a neighboring point also has a peak at zero spatial offset (App. Fig. 1e). Correspondingly,
the peak of the temporal 3-point correlation function between neighboring photoreceptors
encodes the velocity of motion (App. Fig. 1f). This argument generalizes to nth-order
correlation functions when the ensemble of natural images has a nonzero nth moment. Note
that this argument does not necessarily imply that a motion estimator would benefit from
the incorporation of all nonzero correlation functions, because the velocity signals provided
by one correlation function could be redundant with those provided by others.
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Importantly, photoreceptor correlation functions also encode velocity information away
from their peaks. For example, the velocity of motion influences the widths of the temporal
cross-correlation functions between pairs of photoreceptors (App Figs. 1d,f). To see
this, note that the values of the temporal correlation functions at zero temporal offsets are
velocity independent, whereas the peak locations are closer to zero for larger speeds (App
Figs. 1d,f). This implies a more rapid falloff for higher speeds. This fundamental effect
occurs because nearby points are more correlated in natural environments and photoreceptors
rapidly survey distant points when the speed of motion is high.

The description above illustrates how visual motion becomes encoded in photoreceptor
correlations. A central goal of research in visual motion estimation is to understand how
neural circuits invert (or decode) that encoding of velocity. Just as a broad class of functions
can be represented as a power series, a broad class of motion estimators can be represented
as a Volterra series [6, 7]. Each term in the Volterra series can be interpreted as a multipoint
correlator that decodes velocity information from a specific correlation function [6]. For ex-
ample, the HRC and the motion energy model are 2-point correlators that decode velocity
from 2-point correlations, whereas the Bayes optimal motion estimator capitalizes on a wider
variety of correlation functions [6]. Because multipoint correlators relate intuitively to mea-
surable properties of the image ensemble, we will find that decomposing a motion estimator
in terms of multipoint correlators is often illuminating. Moreover, we will use multipoint
correlators as a common basis to compare the computations performed by mechanistically
distinct models.

Appendix II: Accuracy of 2-point correlators

In this section we derive an expression for the accuracy of a general 2-point correlator in
terms of the statistics of naturalistic motion.

We consider a general 2-point correlator that temporally correlates visual signals from
the spatial points i and j. Mathematically, this estimator has the form

v(2)
e (t) =

∫
dt1

∫
dt2k

(2)
i,j (t1, t2)Vi(t− t1)Vj(t− t2), (1)

where the 2-point kernel, k
(2)
i,j (t1, t2), defines the correlator by specifying how each 2-point

correlation contributes to the motion estimate. We model the response of the ith photore-
ceptor as

Vi(t) =

∫
dτT (τ)

∫
dθM(θ − θi)c

(
θ −

∫ t−τ

0

dt′v(t′)

)
(2)

where T is a temporal integration kernel, M is the photoreceptor’s spatial acceptance profile,
θi is the location of the ith photoreceptor, c(θ) is the spatial contrast pattern of the visual
world, and v(t) is the time-dependent velocity. This formula simplifies to the formula in
the Methods when v(t) is time-independent. If T is an invertible linear filter, then a more
convenient representation of the photoreceptor signals is

Ui(t) = C
(
θi −

∫ t

0

dt′v(t′)

)
(3)
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where Ui = T−1 ∗ Vi, C = M ∗ c, and ∗ is the convolution operator [5]. We can rewrite the
2-point correlator in this representation as

v(2)
e (t) =

∫
dt1

∫
dt2κ

(2)
i,j (t1, t2)Ui(t− t1)Uj(t− t2), (4)

where

κ
(2)
i,j (t1, t2) ≡

∫
dt3T (t3)

∫
dt4T (t4)k

(2)
i,j (t1 − t3, t2 − t4) (5)

is the 2-point kernel that converts correlations in the U variables to a velocity estimate.
Recall that we quantify the performance of visual motion estimators based on the mean

squared error between the true and estimated velocities

ε ≡
〈
(v(2)
e (t)− v(t))2

〉
= σ2

v − 2
〈
v(t)v(2)

e (t)
〉

+
〈(
v(2)
e (t)

)2
〉
, (6)

where σv = 90◦/s is the standard deviation of the velocity distribution. For estimators that
are scaled to minimize their mean squared error (Methods), this formula can be rewritten
as

ε = σ2
v

(
1− r2

)
, (7)

where

r =

〈
v(t)v

(2)
e (t)

〉
√〈

(v(t))2〉〈(v(2)
e (t)

)2
〉 =

〈
v(t)v

(2)
e (t)

〉
σv

√〈(
v

(2)
e (t)

)2
〉 . (8)

is the correlation coefficient between the estimated and true velocities. Thus, minimizing the
mean squared error is mathematically equivalent to maximizing the correlation coefficient if
all motion estimators are correctly scaled. We find the correlation coefficient to be a more
intuitive error metric than the mean squared error, so many of our results will be presented
in terms of correlation coefficients.

The numerator of the correlation coefficient is determined by the second-order statistics
of the image ensemble,〈

v(t)v(2)
e (t)

〉
=

∫
dt1

∫
dt2κ

(2)
i,j (t1, t2) 〈v(t)Ui(t− t1)Uj(t− t2)〉

=

∫
dt1

∫
dt2κ

(2)
i,j (t1, t2)

〈
v(t)C(2)

(
∆ij +

∫ t2

t1

dt′v(t′)

)〉
v

, (9)

where ∆ij is the angular separation between the ith and jth photoreceptors, and

C(2)(∆) ≡ 〈C(x)C(x+ ∆)〉C (10)

is the 2-point correlation function over the ensemble of spatially filtered natural scenes.
Note that C(2) is independent of x because reasonable image ensembles are translationally
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invariant. Also note that the 2-point correlation function of filtered natural images is related
to the correlation function of unfiltered images by

C(2)(∆) =

∫
dx′M(x′)

∫
dx′′M(x′′) 〈c(x− x′)c(x+ ∆− x′′)〉 =

(
(M ∗M) ∗ C(2)

)
(∆),

(11)

where C(2)(∆) is the correlation function of unfiltered images, and we’ve assumed that M
is a symmetric function. We model M as Gaussian with FWHM of 5.7◦, so M ∗M is also
Gaussian with FWHM of

√
2× 5.7◦ = 8.1◦.

On the other hand, the denominator of the correlation coefficient is determined by fourth-
order statistics of the image ensemble,〈

(v(2)
e (t))2

〉
=

∫
dt1

∫
dt2

∫
dt3

∫
dt4κ

(2)
i,j (t1, t2)κ

(2)
i,j (t3, t4)

× 〈Ui(t− t1)Uj(t− t2)Ui(t− t3)Uj(t− t4)〉

=

∫
dt1

∫
dt2

∫
dt3

∫
dt4κ

(2)
i,j (t1, t2)κ

(2)
i,j (t3, t4)

×
〈
C(4)

(
∆ij +

∫ t2

t1

dt′v(t′),

∫ t3

t1

dt′v(t′),∆ij +

∫ t4

t1

dt′v(t′)

)〉
v

, (12)

where

C(4)(∆1,∆2,∆3) = 〈C(x)C(x+ ∆1)C(x+ ∆2)C(x+ ∆3)〉C (13)

is the 4-point correlation function of the ensemble of filtered natural images. Notice that
the second argument of C(4) in Eq. (12) lacks the additive factor of ∆ij because Ui(t − t1)
and Ui(t − t3) correspond to the same point in space. As above, C(4) is related to the
unfiltered 4-point correlation function through a four-fold application of the photoreceptor
spatial acceptance filter.

The preceding analysis shows that only the second-order and fourth-order statistics of the
natural image ensemble contribute to the correlation coefficient between an arbitrary 2-point
correlator and the true velocity. The same quantities also determine the mean squared error.
Thus, the second-order and fourth-order statistics of the image ensembles are the critical
determinants of a 2-point correlator’s motion estimation accuracy. Note that both the HRC
and the motion energy model fall into this important class of visual motion estimators, so
our analysis is also important for understanding visual motion estimation by vertebrates.

Appendix III: Motion estimation without spatial corre-

lations - the role of kurtosis on the accuracy of 2-point

correlators.

In this section, we apply the results of Appendix II to the special case of normally dis-
tributed velocities and spatially uncorrelated image ensembles. This calculation reveals an
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important role for kurtosis in motion estimation, and we discuss how nonlinearities in the
early visual system could cope with highly kurtotic naturalistic inputs.

In this section, we assume that the velocity is time-independent (i.e. v(t) = v) and
normally distributed

Pv(v) =
1√

2πσ2
v

e−v
2/(2σ2

v). (14)

We also assume that the image ensemble is spatially uncorrelated. By this, we mean that
the luminance contrast at each point in space is statistically independent of the luminance
contrast at all other points in space. Thus, the second-order correlation function is

C(2)(∆) = σ2
Cδ(∆), (15)

where σC is the standard deviation of the luminance contrast, and δ(∆) is the Dirac delta-
function. The fourth-order correlation function is

C(4)(∆1,∆2,∆3) =κ4σ
4
Cδ(∆1)δ(∆2)δ(∆3)

+ σ4
C

(
δ(∆1)δ(∆2 −∆3) + δ(∆2)δ(∆1 −∆3) + δ(∆3)δ(∆1 −∆2)

)
(16)

where κ4 is the excess kurtosis of the contrast distribution. The excess kurtosis is zero
for normally distributed contrasts. It can either be positive or negative for other contrast
distribution. Note that we define the kurtosis of a probability distribution to be its fourth
central moment normalized by the square of its second central moment. Thus, the kurtosis
of a normal distribution is 3. We caution readers that some other sources use “kurtosis” to
refer to the excess kurtosis.

With these assumptions, the signal term represented by Eq (9) is

〈
v(t)v(2)

e (t)
〉

=
σ2
C∆ij√
2πσ2

v

∫
dt1

∫
dt2κ

(2)
i,j (t1, t2)

e−∆2
ij/(2σ

2
v(t2−t1)2)

(t2 − t1)|t2 − t1|
, (17)

and the noise term represented by Eq. (12) is〈(
v(2)
e (t)

)2
〉

=
σ4
C

∆ij

√
2πσ2

v

∫
dt1

∫
dt2

∫
dt3

∫
dt4κ

(2)
i,j (t1, t2)κ

(2)
i,j (t3, t4)

×

(
e−∆2

ij/(2σ
2
v(t1−t4)2)δ((t1 − t4)− (t3 − t2)) + e−∆2

ij/(2σ
2
v(t1−t2)2)δ((t1 − t2)− (t3 − t4))

+ κ4
|t1 − t2|

∆ij

e−∆2
ij/(2σ

2
v(t1−t2)2)δ(t3 − t1)δ(t4 − t2)

)
, (18)

where we’ve assumed that the 2-point correlator is mirror anti-symmetric,

κ
(2)
i,j (t1, t2) = −κ(2)

i,j (t2, t1), (19)

in order to ignore contributions from static signals. This mirror-symmetry assumption holds
for the HRC and the motion energy model. Since the denominator of the correlation coef-

ficient is set by

√〈
(v

(2)
e (t))2

〉
, both the signal and the noise are proportional to σ2

C . Thus,
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the only remaining dependence on the image ensemble is through the excess kurtosis. Note
that

d
〈

(v
(2)
e (t))2

〉
dκ4

=
σ4
C

∆2
ij

√
2πσ2

v

∫
dt1

∫
dt2(κ

(2)
ij (t1, t2))2|t1 − t2|e−∆2

ij/(2σ
2
v(t1−t2)2) > 0. (20)

Thus, the correlation coefficient is maximized by making κ4 as small as possible.
In conclusion, if the image ensemble is spatially uncorrelated (at second and fourth-order),

then the image ensemble only affects the correlation coefficient between the velocity and a
2-point correlator through its kurtosis. The best accuracy is achieved when the kurtosis
is minimized. In reality, the assumption that the image ensemble is spatially uncorrelated
is clearly wrong. Natural images are strongly correlated, and even if they weren’t, they’d
become correlated once they are filtered by the photoreceptors’ spatial acceptance filter.
Nevertheless, Fig. 2e empirically shows that introducing several front-end nonlinearities
that decrease the kurtosis also improve the accuracy of naturalistic motion estimation. Thus,
kurtosis provides a useful guide for the design of neuronal nonlinearities. On the other hand,
Figs. 2d,e demonstrate that it’s too simplistic to assume that the kurtosis is the only
relevant factor for the accuracy of a 2-point correlator. As we’ll discuss in the next section,
spatial correlations in the image ensemble also affect the accuracy of 2-point correlators.

Appendix IV: The HRC benefits from spatially corre-

lated input signals

When we applied a contrast-equalizing or binarizing nonlinearity to naturalistic inputs before
evaluating the HRC, we found that both nonlinearities substantially improved the accuracy
of the HRC (Fig. 2e). Interestingly, contrast equalization improved the accuracy of the HRC
more than binarization (Fig. 2e), even though it produced outputs with greater kurtosis.
The reason for this is that natural images are correlated (App. Fig. 1), and the accuracy
of the HRC over a general image ensemble depends on the ensemble’s spatial correlation
structure (Appendix II). Binarization attenuated spatial correlations more strongly than
contrast equalization over the natural image ensemble (Fig. 2-supp. 1), which leads us to
hypothesize that correlations present in the natural image ensemble might benefit the HRC’s
performance. In Appendix V we will provide theoretical support for this idea. Here we
begin with a less mathematical argument that also supports our hypothesis.

A comparison between the estimation performance of binarizing and equalizing front-end
nonlinearities was complicated by the fact that the models produced outputs that differed in
both their point statistics and their correlation structures. To gain more direct insight into
how spatial correlations affect motion estimation performance, it would be helpful to compare
front-end nonlinearity models that differ only through their output correlation structures.
We implemented this comparison using a family of binarizing front-end nonlinearities that
undergo multiple steps between +1 and -1 (App. Fig. 2a). Although these nonlinearities
are not physiologically realistic, they are conceptually useful because they each produced a
stimulus ensemble that minimized the kurtosis yet achieved distinct correlation structures
(App. Fig. 2b). These nonlinearities thus allow us to assess directly whether spatial
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decorrelation of inputs degrades the motion estimation performance of the HRC. We found
that each binarizing front-end nonlinearity model outperformed the original HRC (App.
Fig. 2c). However, we found that the magnitude of the improvement decreased with the
number of steps (App. Fig. 2c). Since spatial cross-correlations also decreased as a
function of the number of steps (App. Fig. 2b), these results support our hypothesis that
the correlations present in natural visual inputs aid the functionality of the standard HRC.

The HRC correlates two signals that are offset in space and differentially delayed in
time. One intuition that researchers often apply to this computation is that the correlation
operation effectively detects times when two signals that are offset in space and time are
equal. However, a motion estimator that strictly obeyed this intuition would be agnostic
to the spatial correlation structures present in the input signals, and our results show that
the HRC is not (see also Appendix V). Instead, the HRC also generates motion signals
when its two input channels are imperfectly aligned, and these signals depend strongly on
the correlation structure of the inputs (App. Fig. 1d). Our results thus show that the
HRC’s ability to detect imperfect coincidences contributes significantly to its performance
as a motion estimator, as was suggested intuitively in Appendix 1.

Appendix V: Motion estimation with Gaussian image

statistics - the role of spatial correlations on the accu-

racy of 2-point correlators

In this section, we apply the results of Appendix II to the special case of normally dis-
tributed velocities and normally distributed image ensembles. This model formalizes how
spatial correlations in the natural world affect the accuracy of motion estimation by 2-point
correlators and shows how spatial decorrelation can adversely affect estimation accuracy. For
example, we’ll show that the simplest HRC is unable to extract motion signals from high
frequency components of the image ensemble, yet those components still lead to variability in
the motion estimator. Thus, this HRC works best when the image ensemble is correlated in
a manner that avoids high frequency components in the signal, and spatial low-pass filtering
at the photoreceptor level can help to eliminate the high-frequency image components that
hurt the HRC’s accuracy.

Here we use the same velocity distribution that we used in Appendix III (i.e. Eq.
(14)). However, we now allow the two point correlation function to have arbitrary structure

C(2)(∆) =
∞∑
k=0

Sk cos(k∆), (21)

where Sk are the Fourier coefficients for C(2)(∆), and we have noted that the image ensemble
is 2π-periodic. Note that Sk is called the power spectrum of the image ensemble, and
uncorrelated ensembles correspond to the special case where Sk = constant. With these
assumptions〈

v(t)C(2)

(
∆ij +

∫ t2

t1

dt′v(t′)

)〉
v

=
∞∑
k=0

Sk 〈vcos (k (∆i,j + v(t2 − t1)))〉v . (22)
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By evaluating the integral, we find that this velocity expectation is

〈vcos (k (∆i,j + v(t2 − t1)))〉v = k(t1 − t2)σ2
v sin(k∆ij)e

− 1
2
k2(t2−t1)2σ2

v . (23)

Thus, if we define

γk = kσ2
v sin(k∆ij)

∫
dt1

∫
dt2κ

(2)
ij (t1, t2)(t1 − t2)e−

1
2
k2(t2−t1)2σ2

v , (24)

then

〈
v(t)v(2)

e (t)
〉

=
∞∑
k=0

γkSk. (25)

Each frequency component of the image ensemble linearly contributes to the correlation
between the 2-point correlator’s response and the velocity. The weight of each frequency
component is determined by the structure of the 2-point correlator and the width of the
velocity distribution.

We compute the fourth-order moment of the image ensemble using Wick’s theorem for
Gaussian moments, which says

〈C(x1)C(x2)C(x3)C(x4)〉 = 〈C(x1)C(x2)〉 〈C(x3)C(x4)〉+ 〈C(x1)C(x3)〉 〈C(x2)C(x4)〉
+ 〈C(x1)C(x4)〉 〈C(x2)C(x3)〉 . (26)

This immediately implies that

C(4)(∆1,∆2,∆3) =C(2)(∆1)C(2)(∆3 −∆2) + C(2)(∆2)C(2)(∆3 −∆1)

+ C(2)(∆3)C(2)(∆2 −∆1). (27)

Once again, it’s convenient to rewrite this expression in the Fourier domain

C(4)(∆1,∆2,∆3) =
∞∑
k1=0

∞∑
k2=0

Sk1Sk2
(

cos(k1∆1) cos(k2(∆3 −∆2))

+ cos(k1∆2) cos(k2(∆3 −∆1)) + cos(k1∆3) cos(k2(∆2 −∆1))
)

(28)

With these assumptions〈
C(4)
(

∆ij +

∫ t2

t1

dt′v(t′),

∫ t3

t1

dt′v(t′),∆ij +

∫ t4

t1

dt′v(t′)
)〉

v

=
∞∑
k1=0

∞∑
k2=0

Sk1Sk2
〈

cos(k1(∆ij + v(t2 − t1))) cos(k2(∆ij + v(t4 − t3)))

+ cos(k1v(t3 − t1)) cos(k2v(t4 − t2))

+ cos(k1(∆ij + v(t4 − t1))) cos(k2(∆ij + v(t2 − t3)))
〉
v
. (29)
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We evaluate the expectations over velocity by noting that each has the form

〈cos(k1(∆ + vδ1)) cos(k2(∆ + vδ2))〉v =
1

2
e−

1
2

(k1δ1+k2δ2)2σ2
v

(
cos(∆(k1 + k2))

+e2k1k2δ1δ2σ2
v cos(∆(k1 − k2))

)
(30)

for some spatial offset ∆ and temporal offsets {δ1, δ2}. Thus, if we define

Γk1k2 =

∫
dt1

∫
dt2κ

(2)
ij (t1, t2)

∫
dt3

∫
dt4κ

(2)
ij (t3, t4)(

1

2
e−

1
2

(k1(t2−t1)+k2(t4−t3))2σ2
v

(
cos(∆ij(k1 + k2)) + e2k1k2(t2−t1)(t4−t3)σ2

v cos(∆ij(k1 − k2))
)

+
1

2
e−

1
2

(k1(t4−t1)+k2(t2−t3))2σ2
v

(
cos(∆ij(k1 + k2)) + e2k1k2(t4−t1)(t2−t3)σ2

v cos(∆ij(k1 − k2))
)

+
1

2
e−

1
2

(k1(t3−t1)+k2(t4−t2))2σ2
v

(
1 + e2k1k2(t3−t1)(t4−t2)σ2

v

))
, (31)

then 〈
(v(2)
e (t))2

〉
=

∞∑
k1=0

∞∑
k2=0

Γk1k2Sk1Sk2 . (32)

Power spectrum components contribute to the 2-point correlator’s variance quadratically.
Putting these pieces together, the expected squared error achieved by a 2-point correlator

is a quadratic function of the power spectrum

ε = σ2
v − 2

∞∑
k=0

γkSk +
∞∑
k1=0

∞∑
k2=0

Γk1k2Sk1Sk2 . (33)

We’re interested to know whether spatial correlations can enhance the accuracy of the 2-
point correlator. This will be the case unless a uniform power spectrum minimizes ε. Note
that every physically meaningful power spectrum is non-negative

Sk ≥ 0. (34)

Thus, the minimum of ε either occurs at an extremum point or on the boundary of admissible
solutions. If the minimum occurs on the boundary, then a subset of the Sk are exactly equal
to zero. In particular, the power spectrum would not be constant, which implies that the
image ensemble would be spatially correlated. At an extremum point, we must find

0 =
∂ε

∂Sk
= −2γk + 2

∞∑
k′=0

Γkk′Sk′ (35)

for every k. A uniform power spectrum can only satisfy this condition if

γk = β

∞∑
k′=0

Γkk′ , (36)
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where β > 0 is the (constant) value of each power spectrum component. This is generally
not the case, so correlations exist that would help typical 2-point correlators.

For example, the simplest HRC, which replaces the low-pass and high-pass filters with
pure time delays, is

R̃ = A (U1(t− τ)U2(t)− U1(t)U2(t− τ)) , (37)

where A is a constant with units of ◦/s. For this model,

κ
(2)
1,2(t1, t2) = A (δ(t1 − τ)δ(t2)− δ(t1)δ(t2 − τ)) . (38)

Substituting this expression into the above formulas, we find

γk =2Akτσ2
v sin(k∆0)e−

1
2
k2τ2σ2

v (39)

and

Γk1k2 =A2
(

3 sin(k1∆0) sin(k2∆0)(e−
1
2

(k1−k2)2τ2σ2
v − e−

1
2

(k1+k2)2τ2σ2
v)

+ (1− cos(k1∆0) cos(k2∆0))(2− e−
1
2

(k1−k2)2τ2σ2
v − e−

1
2

(k1+k2)2τ2σ2
v)
)
, (40)

where ∆0 is the spacing between adjacent photoreceptors. Note that

lim
k→∞

γk = 0. (41)

On the other hand,

lim
k2�k1

Γk1k2 = 2A2(1− cos(k1∆0) cos(k2∆0)). (42)

This does not approach zero, even for large values of k1. Therefore,
∑∞

k′=0 Γkk′ diverges and
γk 6= β

∑∞
k′=0 Γkk′ . In this model, high frequency components lack signal but contribute noise.

It’s helpful if these frequency components are absent from the image ensemble. Future work
should more fully investigate the role of spatial correlations in naturalistic motion estimation.

Appendix VI: Front-end nonlinearities give the HRC

access to higher-order correlations

The response of the front-end nonlinearity model to a 3-point glider stimulus is determined
by the higher-order correlations that it detects in the stimulus. Furthermore, we argued
in Appendix I and Fig. 1i that higher-order correlations can contribute to the accuracy
of visual motion estimators. We now describe how front-end nonlinearities provide pair-
correlation mechanisms with access to certain types of higher-order correlations.

We suppose that the front-end nonlinearity, denoted h, has a power series expansion:

h(x) =
∞∑
n=0

hnx
n. (43)
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Then the cross-correlation function between two non-linearly transformed input streams,
denoted y1 and y2, is

〈y1(t)y2(t+ τ)〉 = 〈h(V1(t))h(V2(t+ τ))〉 =
∞∑

n,m=0

hnhmV
n

1 (t)V m
2 (t+ τ), (44)

where V1 and V2 are linear photoreceptor signals. This substitution explicitly demonstrates
that the front-end nonlinear transformation enables pair correlation mechanisms to incor-
porate higher-order correlations of the form V n

1 (t)V m
2 (t + τ). The choice of nonlinearity

specifies the expansion coefficients, hn, which in turn determines the pattern of higher-order
correlations that the pair correlator incorporates into its velocity estimate. For example,
sensitivity to odd-ordered correlations demands that hn be large for some even values of n.
These expansion coefficients would manifest themselves in the structure of the front-end non-
linearity as asymmetries between positive and negative contrasts, but strong asymmetries
were not needed to eliminate kurtosis in natural image ensembles (Fig. 2c). Inversely, one
could use this equation to determine whether a set expansion coefficients exist that would
implement a desired series of multipoint correlators. The preceding argument implies that
strongly asymmetric front-end nonlinearities would be needed to account for the 3-point
glider responses.

Appendix VII: Expansion of the weighted 4-quadrant

model

In this Appendix, we rewrite the weighted 4-quadrant in a basis that isolates its dependence
on 2-point correlations, on higher-even-ordered correlations, and on two types of odd-ordered
correlations. In Appendix VIII, we’ll discuss the motion estimation performance of the
weighted 4-quadrant model in this basis in order to gain insight into why performance-
optimized weighted 4-quadrant models also predict 3-point glider responses that resemble
Drosophila behavior.

The weighted 4-quadrant model supposes that the input signals are segregated into four
separate streams:

Q++ = [f ∗ V1]+[g ∗ V2]+ − [g ∗ V1]+[f ∗ V2]+

Q+− = [f ∗ V1]+[g ∗ V2]− − [g ∗ V1]−[f ∗ V2]+ (45)

Q−+ = [f ∗ V1]−[g ∗ V2]+ − [g ∗ V1]+[f ∗ V2]−

Q−− = [f ∗ V1]−[g ∗ V2]− − [g ∗ V1]−[f ∗ V2]−

where Qab denotes the (ab) quadrant for a, b ∈ {+,−}, [x]+ is x for x > 0 and is zero
otherwise, and [x]− is x for x < 0 and is zero otherwise. The HRC is equal to

R = Q++ +Q+− +Q−+ +Q−−. (46)

More generally, we suppose that Drosophila could estimate motion as any linear combination
of these signals, and we define the weighted 4-quadrant model as

Q = w
(Q)
++Q++ + w

(Q)
+−Q+− + w

(Q)
−+Q−+ + w

(Q)
−−Q−−, (47)
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where w
(Q)
++, w

(Q)
+−, w

(Q)
−+, and w

(Q)
−− are linear weighting coefficients that specify the compu-

tation performed by the model. Since this section, and the next two, focus entirely on the
weighted 4-quadrant model, we simplify notation by dropping the superscript (Q).

The weighted 4-quadrant model can be rewritten in an alternate form that facilitates an
understanding of how various correlation types contribute to its motion estimates. We begin
by noting that

[x]+ =
x

2
(1 + sgn(x)), (48)

[x]− =
x

2
(1− sgn(x)), (49)

where sgn(x) is +1 for positive arguments and -1 for negative arguments. We thus see that

Qab =[f ∗ V1]a[g ∗ V2]b − [g ∗ V1]b[f ∗ V2]a

=
(f ∗ V1)(g ∗ V2)

4
(1 + a sgn(f ∗ V1) + b sgn(g ∗ V2) + ab sgn(f ∗ V1)sgn(g ∗ V2))

−(g ∗ V1)(f ∗ V2)

4
(1 + b sgn(g ∗ V1) + a sgn(f ∗ V2) + ab sgn(g ∗ V1)sgn(f ∗ V2)). (50)

Therefore, the complete weighted 4-quadrant model is

Q =
w++ + w+− + w−+ + w−−

4
((f ∗ V1)(g ∗ V2)− (g ∗ V1)(f ∗ V2))

+
w++ + w+− − w−+ − w−−

4
((f ∗ V1)sgn(f ∗ V1)(g ∗ V2)− (g ∗ V1)(f ∗ V2)sgn(f ∗ V2))

+
w++ − w+− + w−+ − w−−

4
((f ∗ V1)(g ∗ V2)sgn(g ∗ V2)− (g ∗ V1)sgn(g ∗ V1)(f ∗ V2))

+
w++ − w+− − w−+ + w−−

4
((f ∗ V1)sgn(f ∗ V1)(g ∗ V2)sgn(g ∗ V2)

−(g ∗ V1)sgn(g ∗ V1)(f ∗ V2)sgn(f ∗ V2)). (51)

This expression for the weighted 4-quadrant model groups the four weighting coefficients
into four alternate terms. The first term is proportional to a standard HRC, which computes
second-order correlations. We denote its associated coefficient as

weven=2 =
1

4
(w++ + w+− + w−+ + w−−) . (52)

The second and third terms invert sign and retain magnitude under contrast inversion.
Therefore, they only compute odd-ordered correlations:

wodd =
1

4
(w++ + w+− − w−+ − w−−) , (53)

wodd∗ =
1

4
(w++ − w+− + w−+ − w−−) . (54)

The fourth term is unaffected by contrast inversion. Thus, it only computes even-ordered
correlations. We’ll soon see that the lowest-order contribution from this term is fourth-order,
so we denote its coefficient as

weven>2 =
1

4
(w++ − w+− − w−+ + w−−) . (55)
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These four coefficients define the correlational basis considered in Fig. 3-supp. 1. For
example, note that Fig. 3-supp. 1a shows the transformation defined by Eqs. (52)-(55).

Because sgn(x) is a non-analytic function, it is still somewhat opaque how the weighted
4-quadrant model relates to specific higher-order correlations in the visual stimulus. We thus
rewrite sgn(x) as the limit of an analytic function:

sgn(x) = lim
β→∞

erf(βx) (56)

where

erf(x) =
2√
π

∫ x

0

dy e−y
2

(57)

is the Gauss error function. The Gauss error function is entire, which means that it has a
power series expansion for any value x. Also note that since real biological nonlinearities
are not infinitely sharp, a more realistic weighted 4-quadrant model would fix β at a finite
value. We thus consider the follow approximation,

sgn(x) ≈ 2√
π

∞∑
n=0

(−1)n(βx)2n+1

n!(2n+ 1)
=

2√
π

(
βx− (βx)3

3
+O

(
(βx)5

))
, (58)

where β ∈ (0,∞). Although high-order terms might not be negligible in this expansion,
the contributions of low-order correlations to visual motion estimation are set by low-order
terms. In particular, the contributions of second, third, and fourth-order correlations to the
weighted four quadrant model are determined by the leading terms in the expansion,

F = weven=2 ((f ∗ V1)(g ∗ V2)− (g ∗ V1)(f ∗ V2))

+ wodd
2β√
π

(
(f ∗ V1)2(g ∗ V2)− (g ∗ V1)(f ∗ V2)2

)
+ wodd∗

2β√
π

(
(f ∗ V1)(g ∗ V2)2 − (g ∗ V1)2(f ∗ V2)

)
+ weven>2

4β2

π

(
(f ∗ V1)2(g ∗ V2)2 − (g ∗ V1)2(f ∗ V2)2

)
+O(β3V 5). (59)

Thus, the third-order term associated with wodd squares the low-pass filtered signal and
might help to account for light-dark asymmetries in the low-pass filtered signal. The third-
order term associated with wodd∗ squares the high-pass filtered signal. Finally, note that this
formula confirms that the lowest-order term associated with weven>2 is fourth-order.

Appendix VIII: The weighted 4-quadrant model im-

proves motion estimation with odd-ordered correlations

In the main text we quantitatively characterized the weighted 4-quadrant model by dis-
cussing its accuracy given various subsets of the four quadrants (Fig. 3c). Here we consider

19



the performance of the weighted 4-quadrant model in the correlational basis defined in Ap-
pendix VII and Fig. 3-supp. 1a. These results lead to a simple interpretation of the
computation performed by performance optimized weighted 4-quadrant models.

Models that oriented all of their weight along the even=2 axis outperformed models
that focused their weight along any other correlational axis (Fig. 3-supp. 1b). This
reinforces the foremost importance of second-order correlations for motion estimation. In
isolation, odd-ordered correlations were weaker predictors of motion than higher even-ordered
correlations (Fig. 3-supp. 1b). Nevertheless, the odd class best complemented the HRC,
and the full accuracy of the weighted 4-quadrant model was obtained by linearly combining
the even=2 and odd correlation classes (best 2 bar, Fig. 3-supp. 1b). This result suggests
that the weighted 4-quadrant model has two relevant dimensions. In particular, accurate
models combine an HRC with odd-ordered correlations that account for statistical light-dark
asymmetries in the HRC’s low-pass filtered branch. Although the even>2 correlation class
predicts motion in isolation, our results indicate that its motion signals are largely redundant
with those better captured by the even=2 and odd correlation classes.

Since the weighted 4-quadrant model only has four parameters, it’s possible to exhaus-
tively study its parameter dependence. We have in mind models that are correctly scaled, in
which case the mean squared error is determined by the correlation coefficient (Appendix
II). Since the value of the correlation coefficient is unchanged when all four weighting co-
efficient are scaled by the same positive factor, it suffices to consider weighting coefficients
drawn from the 3-sphere, such that w2

++ +w2
+−+w2

−+ +w2
−− = 1. Because the 3-sphere has

a finite volume, we were able to densely sample the correlation coefficient for all parameter
values (App. Fig. 3). This function has one global maximum, corresponding to the optimal
weight vector discussed in the main text. Its global minimum occurs on the polar opposite
side of the 3-sphere, where the weighted 4-quadrant model is strongly anti-correlated with
the velocity. More generally, correlation coefficients corresponding to model parameters on
opposite poles of the 3-sphere always have the same magnitude and opposite sign. Both
models explain the same amount of variance about the velocity, and they become equivalent
after they’re correctly scaled. Thus, we henceforth focus our discussion on the hemisphere
where the correlation coefficient was positive.

Weighted 4-quadrant models were most accurate when w−+ and w−− were large (App.
Fig. 3a, left) and w++ and w−+ were small (App. Fig. 3a, right). In the correlational
basis, the HRC is the model with maximum weight in weven=2 and with zero weight in
wodd, wodd∗, and weven>2. Thus, this basis makes it easy to compare the accuracy of the
HRC to other weighted 4-quadrant models (App. Fig. 3b). Furthermore, this basis clearly
sorts the weighted 4-quadrant models according to their accuracy and confirms that that
the accuracy of a weighted 4-quadrant model is largely determined by weven=2 and wodd

(App. Fig. 3b, left). Higher even-ordered correlations and odd-ordered correlations that
account for light-dark asymmetries in the high-pass filtered visual signals did not contribute
prominently to the accuracy of the weighted 4-quadrant model (App. Fig. 3b, right).
Interestingly, App. Fig. 3a shows that there is a diversity of ways to combine the four
quadrants in order to improve the accuracy of the HRC, which translates into a diversity of
correlational responses (App. Fig. 3b). Similarly, the HRC is only one of many models
that achieve a comparable level of accuracy. Every other motion estimator that achieves the
HRC’s performance level incorporates higher-order correlations into its estimate.
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Appendix IX: The weighted 4-quadrant model in the

basis of principal components

Principal components analysis is a popular method to reduce the dimensionality of neural
population recordings. In this section, we conceptualize the four quadrants as a small neural
population and study how each principal component accounts for variance in the system and
contributes to motion estimation. We show that most of the weighted 4-quadrant model’s
variance is due to two of the four principal components. Interestingly, most of this variance
is not velocity-related, and we show that the two low-variance principal components are the
ones that dominate motion estimation.

We began by directly applying principal component analysis to the weighted 4-quadrant
model. We computed the 4× 4 covariance matrix of the four quadrants over the ensemble of
simulated motions (App. Fig. 4a). The eigenvectors of the covariance matrix are called the
principal components (App. Fig. 4b), and the associated eigenvalues specify the amount
of variance accounted for by each principal component (App. Fig. 4c). We found that the
first two principal components accounted for 86.3% of the variance, whereas the third and
fourth principal components each contributed about 7% of the variance (App. Fig. 4c).
The high-variance eigenvectors roughly corresponded to a sum and a difference of the (++)
and (+−) quadrants, whereas the low-variance principal components roughly corresponded
to a sum and a difference of the (−+) and (−−) quadrants (App. Fig. 4b). The (−−)
and (−+) quadrants best facilitated motion estimation (Fig. 3c). Thus, the low-variance
principal components were most important for motion estimation.

This result is counter to one’s usual intuition, but it is a straightforward consequence of
the mathematics of linear regression and principal component analysis. We want to linearly
combine the principal component signals to best predict the velocity:

β = argmin
〈(
v − βTx

)2
〉
, (60)

where β is a four-dimensional column vector of weights, v denotes the velocity, the superscript
T denotes the matrix transpose, and x is the 4-vector of principal component signals. The
solution to this problem is well-known from the theory of linear regression:

β = M−1U, (61)

where Mij = 〈xixj〉 is the covariance matrix of the predictors, and Ui = 〈vxi〉 is the covari-
ance of each predictor with the velocity. In practice, we estimate these expectations from
the empirical data, and principal components are uncorrelated over the naturalistic motion
ensemble by construction

Mij = λiδij, (62)

where λi is the variance associated with ith principal component, and δij is the Kronecker
δ-function. Thus,

βi =
〈vxi〉
〈x2

i 〉
=
σv
√
λiri
λi

=
σvri√
λi

(63)
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where σv is the standard deviation of the velocity signal, and ri is the correlation coefficient
between the velocity and the ith principal component.

It is also easy to calculate the correlation coefficient between the true velocity and the
estimated velocity. First note that

〈vβTx〉 = βT 〈vx〉 =
∑
i

σvri√
λi
σv
√
λiri = σ2

v

∑
i

r2
i (64)

〈(
βTx

)2
〉

=
∑
i,j

βiβj〈xixj〉 =
∑
i

σ2
vr

2
i

λi
λi = σ2

v

∑
i

r2
i . (65)

Thus the squared of the correlation coefficient between the true and estimated velocities is

r2 =

(
〈vβTx〉

)2

〈v2〉
〈
(βTx)2〉 =

∑
i

r2
i . (66)

Because the principal components are uncorrelated, each contributes independently to the
motion estimator’s accuracy. The amount that each principal component contributes to the
estimation accuracy is determined by its correlation with the velocity, and all dependence
on the total amount of variance associated with the principal component has dropped out
entirely. These conclusions are also true when we look at the squared error directly

ε =
〈(
v − βTx

)2
〉

= σ2
v +

〈(
βTx

)2
〉
− 2〈vβTx〉 = σ2

v

(
1−

∑
i

r2
i

)
. (67)

As would be expected from this formula, the third and fourth principal components account
for much more of the velocity-associated variance than the first and second principal com-
ponents (App. Fig. 4d). Nevertheless, the first principal component does account for a
significant portion of the velocity-associated variance (App. Fig. 4d), so the basis of prin-
cipal components does not fully reveal the structure that was apparent in the correlational
basis (Appendix VIII).

Appendix X: Novel use of low-order signatures for mo-

tion estimation

The non-multiplicative nonlinearity model (Fig. 4a) relaxed the assumption that Drosophila’s
motion estimator multiplies its inputs and substantially improved the accuracy of visual mo-
tion estimation (Fig. 4e). Surprisingly, the non-multiplicative nonlinearity model slightly
outperformed the HRC when we parameterized it as a second-order polynomial (Fig. 4-
supp. 2). This indicates that there are useful low-order correlations that the HRC neglects.
In this section, we will explain how visual motion estimators can sometimes productively
incorporate computational signatures that do not nonlinearly combine signals across space.

This section considers computational signatures that clash harshly with our usual intu-
ition for visual motion estimation, and we need to unpack how the motion estimator in Fig.
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4-supp. 2 works before we can understand why it works. The observed improvement results
from a linear combination of the HRC

R = (f ∗ V1)(g ∗ V2)− (g ∗ V1)(f ∗ V2) (68)

with a linear transformation of the photoreceptor signals

L = g ∗ V1 − g ∗ V2. (69)

We thus must consider the motion estimator

v(auto)
e = βRR + βLL, (70)

where βR and βL are the weighting coefficients that minimize the mean-squared error. Note
that L linearly combines signals from multiple points in space. Like the HRC, it is mirror
anti-symmetric:

{V1(t), V2(t)} 7→ {V2(t), V1(t)} =⇒ L 7→ −L. (71)

It is useful to take a detour to abstractly consider how motion estimation performance
depends on the joint statistics of R, L, and the velocity of motion, v. All three of these
quantities are zero mean. We denote their variances as

σ2
R =

〈
R2
〉
, σ2

L =
〈
L2
〉
, σ2

v =
〈
v2
〉

(72)

and their cross-correlation coefficients as

r(R) =
〈vR〉
σvσR

, r(L) =
〈vL〉
σvσL

, c(RL) =
〈RA〉
σRσL

. (73)

The optimal weighting coefficients are determined by these quantities (see Eq. (61)):

βR =
σv
(
r(R) − c(RL)r(L)

)
σR (1− (c(RL))2)

, βL =
σv
(
r(L) − c(RL)r(R)

)
σL (1− (c(RL))2)

; (74)

as is the correlation coefficient between the true velocity and v
(auto)
e :

r(auto) =

√
(r(R))

2
+ (r(L))

2 − 2c(RL)r(R)r(L)

1− (c(RL))
2 . (75)

Across the simulated ensemble of naturalistic motion we empirically found that r(R) ≈ 0.24,
r(L) ≈ −0.0017, and c(RL) ≈ −0.28. Thus, we note that |r(L)| � |r(R)| and approximate the
correlation coefficient as

r(auto)

r(R)
≈
√

1

1− (c(RL))
2 . (76)

Thus, we expect the inclusion of the linear term L to improve the accuracy of motion
estimation by about 4.3% (compare to Fig. 4-supp. 2). Interested readers can find a
complete derivation of these equations in Section V of the Supplemental Materials for [8].
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With this machinery in hand, we can start to understand the utility of the linear term.
First, note that this term was only weakly correlated with the velocity across the simulated
ensemble of motions. Furthermore, the correlation would have been exactly zero if 〈v(g ∗ V1)〉
had been equal to 〈v(g ∗ V2)〉, as would have been the case for an ensemble that was perfectly
translationally invariant. So the small correlation we observed between L and v is nothing
more than residual noise resulting from a finitely sized data sample that did not explicitly
enforce translation invariance. Nevertheless, it’s critical to realize that Eq. (76) treated
r(L) as if it were zero, yet it still managed to account for the results of Fig. 4-supp. 2.
Thus, this residual sampling noise has nothing to do with the improvements offered by the
hybrid estimator. As intuitively expected, the linear term is completely uncorrelated with
the velocity of motion.

Eq. (76) suggests that a linear term, which is itself uncorrelated with the velocity of
motion, can nevertheless help velocity estimation. However, this improvement demands that
it be combined with another motion estimator that: (i) is correlated with the velocity (i.e.
r(R) 6= 0); and (ii) is correlated with the linear term (i.e. c(RL) 6= 0). Our numerical results
indicate that the HRC is an example of such a motion estimator. The HRC obviously satisfies
the first condition. To examine the second condition, we note that correlation between the
HRC and the linear term is nonzero if and only if

〈RL〉 = 〈(f ∗ V1)(g ∗ V1)(g ∗ V2)〉+ 〈(g ∗ V1)(f ∗ V2)(g ∗ V2)〉
−
〈
(f ∗ V1)(g ∗ V2)2

〉
−
〈
(g ∗ V1)2(f ∗ V2)

〉
(77)

is nonzero. As long as the image ensemble is light-dark asymmetric, there are no symmetry
principles that force this number to vanish for a general choice of f and g. Our numerical
results show that the associated correlation coefficient is far from zero for natural inputs and
our choices of filters. Fundamentally, this correlation can be nonzero because the HRC’s
response depends on the pattern that is moving, as does the linear response. Because image-
induced variability is partially shared between the HRC and the linear term, the latter can
help to eliminate image-induced noise from the HRC, thereby improving the motion estimate.

Although our results indicate that a linear term can improve local motion estimation, its
benefits do not sum over space. In particular, imagine an ensemble of elementary motion
detectors that combine a local HRC and a local linear estimator:

v
(auto)
e,i = βR ((f ∗ Vi)(g ∗ Vi+1)− (g ∗ Vi)(f ∗ Vi+1)) + βL (g ∗ Vi − g ∗ Vi+1) , (78)

where i indexes the first point in space surveyed by the ith local estimator. A whole field
motion percept could be found by averaging these local motion signals over space

v(auto)
e =

1

N

N∑
i=1

v
(auto)
e,i , (79)

where N denotes the total number of local motion detectors. However, the second term in
the linear estimator at point i cancels the first term in the linear term at point i+ 1. Thus,
spatial averaging eliminates most of the dependence on the linear term

v(auto)
e =

βR
N

N∑
i=1

((f ∗ Vi)(g ∗ Vi+1)− (g ∗ Vi)(f ∗ Vi+1)) +
βL
N

(g ∗ V1 − g ∗ VN+1) . (80)
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All that remains of the linear term is a boundary term that depends on photoreceptor activ-
ity at the edges of the visual field. Furthermore, the magnitude of this contribution decreases
with N . Thus, linear estimators have little utility for full-field motion estimation. Never-
theless, it’s conceivable that such terms could play a role in Drosophila’s motion estimation
circuit, because the same elementary motion detector is thought to underlie a wide variety of
motion-guided behaviors, and the inclusion of this locally beneficial term is not detrimental
to whole field motion estimation.

Finally we note that the principles discussed in the context of linear motion estimators
also apply in other counterintuitive contexts. For example, consider an autocorrelator,

A = (f ∗ V1)(g ∗ V1)− (f ∗ V2)(g ∗ V2), (81)

which correlates visual signals from the same point in space. Like the HRC, it is mirror
anti-symmetric:

{V1(t), V2(t)} 7→ {V2(t), V1(t)} =⇒ A 7→ −A, (82)

but it is uncorrelated with the velocity. Nevertheless, the autocorrelator’s correlation with
the HRC is determined by

〈RA〉 =
〈
(f ∗ V1)2(g ∗ V1)(g ∗ V2)

〉
+
〈
(g ∗ V1)(f ∗ V2)2(g ∗ V2)

〉
−
〈
(f ∗ V1)(f ∗ V2)(g ∗ V2)2

〉
−
〈
(f ∗ V1)(g ∗ V1)2(f ∗ V2)

〉
(83)

and need not be zero. Empirically, we find the relevant correlation coefficient to be -0.40
across the ensemble of naturalistic motions, so Eq. (76) implies that this autocorrelator
would enhance the HRC by 8.9%. However, such improvements do not sum over space. Thus,
autocorrelators might be relevant for local motion estimates, but not for motion estimates
that average over space.

Appendix XI: Regarding the computational problem of

visual motion estimation

Throughout this paper, we have illustrated connections between the computations performed
by our models and spatiotemporal correlations. These links are important for both practical
and theoretical reasons. First, the many experimental successes of the HRC already suggest
that the fly’s computation of motion is organized around spatiotemporal correlations in
the stimulus [11]. Thus, by relating our models to spatiotemporal correlations, we were
able to discern how each model generalizes this canonical model. For example, Fig. 3-
supp. 1b shows that the optimal weighted 4-quadrant model supplements the standard
HRC with a specific subclass of odd-ordered correlations, an observation that both reiterates
the importance of the HRC and highlights the most critical signals that it lacks. Second,
spatiotemporal correlations provide a fundamental connection between the motion estimation
strategies used by invertebrates and vertebrates [4, 12]. In particular, although the HRC and
motion energy models differ in their architectural details, both models are ultimately driven
by 2-point correlations in the stimulus. Therefore, general arguments framed in terms of
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spatiotemporal correlations are easy to investigate in the specific context of either the HRC
or motion estimation model. Third, an understanding of the spatiotemporal correlations
computed by each model facilitates the design of psychophysical experiments that test the
models. For example, glider stimuli [10] provide a flexible experimental tool to probe how
specific correlations contribute to motion percepts. Future work will lead to a variety of
more realistic models that can also be characterized by the stimulus correlations that they
detect. These models can be distinguished by carefully designed glider experiments.

From a theoretical point of view, correlation functions are important because they pro-
vide a mathematical basis in which to decompose neural computations [6, 7, 13]. David
Marr famously proposed that neural computation must be understood at several levels [14].
He described his second level as that at which the algorithms that implement a computa-
tion are characterized. Our emphasis on correlation functions is directed towards unraveling
motion estimation at this algorithmic level. As illustrated concretely by Fig. 3-supp. 1,
it’s possible for an algorithm to have a simple characterization in terms of correlation func-
tions, even when the fundamental computational units (e.g. the quadrants) do not actually
compute correlations. Furthermore, correlation functions intuitively relate the visual sig-
natures of motion to measurable features of natural visual environments (App. Fig. 1).
Nevertheless, it’s possible that correlation functions will ultimately provide an inefficient
basis for representing the algorithms of visual motion estimation. For example, although the
weighted 4-quadrant model is well understood in terms of the correlations that it detects, it
would be nontrivial to discern its underlying simplicity based solely on its responses to glider
stimuli, because the constraints relating various higher order correlators would be a priori
unknown. Overall, we consider correlation functions to provide a useful lens for characteriz-
ing and understanding the algorithms of visual motion estimation, but research should also
consider visual motion estimation in alternate bases that might reflect the brain’s biological
substrates more directly [15].

Our characterization of visual motion estimation in terms of correlation functions pro-
vides an interesting perspective on the computational problem faced by Drosophila’s visual
motion estimator in natural environments. Natural images contain many low and high-order
correlations [3], and this implies that the fly brain could in principle use a wide array of
correlations for visual motion estimation (App. Fig. 1). However, each correlation is only
weakly associated with the velocity of motion in naturalistic settings [8, 9]. The reason for
this is that the specific structure of the scene that is moving acts as a nuisance parameter
that hinders the unambiguous assignment of a velocity to pattern of light input. For exam-
ple, it’s well known that the temporal frequency of a moving sinusoidal grating determines
the HRC’s output [16], thereby conflating the velocity with the grating’s spatial frequency.
More generally, the variability of a multipoint correlator across an ensemble of moving scenes
is determined by higher-order statistics of the image ensemble (e.g. see Appendix II). The
fact that the same natural image drives every multipoint correlator also implies that the
correlators co-vary with each other across the naturalistic motion ensemble. This shared
variability can sometimes enable higher-order multipoint correlators to compensate effec-
tively for image-induced noise that contaminates the HRC [8].

Questions of how the brain compute behaviorally relevant stimulus features from sensory
inputs are central to neuroscience, but they are extraordinarily difficult to answer, even in
principle. In the context of Drosophila’s visual motion estimator, the ensemble of photore-
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ceptor signals contains many nonlinear cues that are weakly correlated with the stimulus
velocity and with each other under naturalistic conditions. There are many ways to pool
these signals into an improved motion estimate. The space of possible stimuli is astronomi-
cally large, so it is impossible for experiments to sample it completely. Nevertheless, synthetic
laboratory stimuli can be designed to rule out specific algorithms that the brain might use
to estimate motion. Thus, to deconstruct a neural computation, one must find ways to dra-
matically restrict the space of candidate models and to identify interesting models that can
be experimentally ruled out. It’s important to note that we did not construct our models to
reproduce the behavioral data, even though this is a straightforward exercise (Fig. 4-supp.
1). Instead we aimed for a predictive framework that can relate behavioral responses to the
statistics of natural sensory inputs, the statistics of natural behavior, and the constraints
imposed by the neural circuits that implement the computation. Such constructions are
complicated and depend on features of neural circuits that are incompletely known. Never-
theless, we hope that this added complexity will eventually pay off in computational models
that have a rational structure from the viewpoint of the stimulus, the animal, and the brain.
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