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Abstract18

Although it is well known that long-term synaptic plasticity can be expressed both pre- and postsyn-19

aptically, the functional consequences of this arrangement have remained elusive. We show that spike-20

timing-dependent plasticity with both pre- and postsynaptic expression develops receptive fields with21

reduced variability and improved discriminability compared to postsynaptic plasticity alone. These long-22

term modifications in receptive field statistics match recent sensory perception experiments. Moreover,23

learning with this form of plasticity leaves a hidden postsynaptic memory trace that enables fast re-24

learning of previously stored information, providing a cellular substrate for memory savings. Our results25

reveal essential roles for presynaptic plasticity that are missed when only postsynaptic expression of long-26

term plasticity is considered, and suggest an experience-dependent distribution of pre- and postsynaptic27

strength changes.28
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Survival depends on learning accurate actions in response to sensory stimuli while remaining capable to29

quickly adapt in dynamic environments. The neural substrate of learning is believed to be long-term synaptic30

plasticity [1, 2]. After decades of debate [3, 4], it has become increasingly clear that expression of long-31

term synaptic plasticity can be either pre- or postsynaptic or both [5, 6, 7, 8, 9]. However, the functional32

consequences of this segregation into pre- and postsynaptically expressed plasticity have remained unclear.33

To investigate this, we developed a biologically tuned spike-timing-dependent plasticity (STDP) model, that34

in contrast to earlier models [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], involves both loci of expression.35

Inspired by earlier work [11, 14], this phenomenological model relies on exponentially decaying traces36

of the pre- and postsynaptic spike trains, X and Y (Figure 1a,b). The presynaptic trace x+ tracks past37

presynaptic activity, e.g. glutamate binding to postsynaptic NMDA receptors. When presynaptic activity38

x+ is rapidly followed by postsynaptic spikes, unblocking NMDA receptors, postsynaptically expressed long-39

term potentiation (LTP) is triggered and increases the postsynaptic factor q, which can be interpreted40

as the quantal amplitude. Conversely, the postsynaptic trace y+ represents prior postsynaptic activity,41

e.g. retrograde nitric oxide signalling, which when paired with presynaptic spikes leads to presynaptically42

expressed LTP [7]. Finally, the trace y− tracks postsynaptic activity such as endocannabinoid retrograde43

release and elicits presynaptically expressed long-term depression (LTD) when coincident with presynaptic44

spikes [21]. Presynaptically expressed plasticity is conveyed by long-term changes in the presynaptic factor45

P [22], which can be interpreted as the presynaptic release probability (see Material and methods).46

The model parameters were tuned to an extensive data set of plasticity experiments of monosynaptic47

connections between neocortical layer-5 pyramidal cells [23, 7, 21]. Homeostatic scaling of the postsynaptic48

amplitude q was included to counterbalance postsynaptic potentiation (see Material and methods) [24]. The49

resulting model not only captures the timing and frequency dependence of the synaptic strength changes50

(Figure 1c and Figure 1 - figure supplement 1), but also its pre- as well as postsynaptic expression (Fig-51

ure 1d, e). It thus captures the observed cross-scale interactions between short and long-term synaptic52

plasticity [21, 7]. Short-term depression becomes stronger after LTP and weaker after LTD (Figure 1f,g).53

We validated the model against experiments with pharmacological blockade of presynaptic LTD or LTP54

(see Material and methods). Abolishing presynaptic LTP by nitric oxide blockade reduced total potenti-55

ation as only the postsynaptic potentiation component was left [7]. Likewise, with the presynaptic trace y+56

disabled, presynaptic LTP was blocked, while the synaptic dynamics remained unchanged (Figure 1h and57

Figure 1 - figure supplement 3a). Conversely, simulated blockade of presynaptic LTD during LTP induction58

gave rise to stronger presynaptic potentiation and short-term depression, as observed experimentally during59
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endocannabinoid blockade [7] (Figure 1h and Figure 1 - figure supplement 3b).60

Figure 1: Unified model of pre- and postsynaptically expressed STDP. (a) The synaptic weight is the product
of a presynaptic factor P and a postsynaptic factor q. Long-term modifications in P and q are governed by
interactions between the pre- and postsynaptic spike trains. (b) Model example in which the postsynaptic
neuron first spikes three times at 20 Hz (Y ) ∆t = +10ms after the presynaptic neuron (X), leading to
LTP by increasing both q and P . Next, when the relative timing ∆t is reversed, LTD results as P weakens
strongly, even though q still slightly strengthens. (c) The model fits the rate dependence of synaptic plasticity
(squares, [23]) for both positive (blue: +10ms) and negative timings (red: -10ms). (d,e) The changes in
the pre- and postsynaptic factors P and q match experimental data (reanalyzed from [23]; see Material and
methods and Figure 1 - figure supplement 2). (f,g) As in experiments (top), short-term depression in the
model is reduced after LTD (20 Hz, ∆t = −10ms) and increased after LTP (50 Hz, ∆t = +10ms) (bottom).
Experimental traces from [21] (f) and from [7] (g). (h) Model (blue) is consistent with LTP experiments
(black) [7] in control conditions, nitric oxide (NO) blockade, and endocannabinoid (eCB) blockade. NO and
eCB antagonists abolish and promote presynaptic LTP, respectively [7].

We first investigated the functional consequences of unified pre- and postsynaptically expressed STDP61

on the postsynaptic responses during cortical receptive field development. We simulated receptive field62

development of a postsynaptic neuron receiving 100 synaptic inputs (Material and methods). Presynaptic63

activity was described by Poisson processes with rates spatially distributed according to a Gaussian profile64

( Figure 2a). We defined inputs near the peak of the Gaussian profile as on, and those far away from the65

peak as off. After learning, on neurons had increased q and P , while off neuron had reduced q and P66

(Figure 2a). During learning, the changes in q are preceded by changes in P (Figure 2c). To quantify the67

effect of the plasticity on the postsynaptic neuron, we stimulate a given input and calculated the signal-to-68

noise ratio (SNR) of the first postsynaptic response amidst background noise (see Material and methods).69

A high SNR means that the response can be easily distinguished from the background. After learning, only70

on inputs had developed a high SNR (Figure 2b). Although both high and low P yielded low variance71

(Figure 2 - figure supplement 1), high P was required for high SNR (Figure 2c).72

To further assess the discriminability of the first postsynaptic response, we used classification analysis (see73

Material and methods), which revealed that on inputs obtained a near-perfect discrimination (Figure 2d) over74

a range of background noise levels (Figure S4). However, a model with only postsynaptic LTP, increasing q75

only, did not yield as reliable synaptic transmission (blue curve in Figure 2c,d) — maximal reliability required76

presynaptic LTP in addition. This is because, the variance of the first postsynaptic response increases77

quadratically with the postsynaptic factor q (see Material and methods). Our learning rule compensates for78

this increase in variance by also increasing the presynaptic factor P , thus making postsynaptic responses79

reliable and easier to discriminate. The increased discriminability does not only hold for the first response,80

but generalizes when considering the sum of the first k EPSPs. Furthermore, the benefit of unified STDP81
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remained when we compared the temporal information transmission across a range of presynaptic frequencies82

(Figure 2 - figure supplement 3) [25, 26].83

The change in SNR and variability is consistent with recent sensory perception experiments [27] in84

which pairing a tone with nucleus basalis stimulation led to an increased mean and a decreased variability85

of synaptic responses (Figure 2 - figure supplement 2). Mapped to the parameters of the model, both q86

and P of the potentiated on responses increased (see Material and methods). Conversely, off responses87

that were depressed, decreased in P and did not significantly change in q (Figure 2 - figure supplement 2),88

consistent with the initial modifications that the model predicts (Figure 2c). Therefore, unified pre- and89

postsynaptically expressed plasticity can account for the improved sensory perception after learning observed90

experimentally [27]. Furthermore our model suggests that both pre- and postsynaptic components should91

depend on sensory experience, in agreement with prior findings [28, 29].92

Figure 2: Unified pre- and postsynaptic plasticity improves receptive field discriminability. (a) Synaptic
input rates follow a Gaussian spatial profile (solid grey line). Initially, the presynaptic factor P (top) and
the postsynaptic factor q (bottom) are uniformly distributed (dashed lines). After learning, P (top) and q
(bottom) both follow the input profile. Dark and light red crosses define examples of on and off receptive
field positions, respectively. (b) After learning, the signal-to-noise ratio (SNR) is increased for on and
decreased for off neurons. Postsynaptic plasticity alone leads to a smaller improvement (blue line). (c)
While on neurons obtain higher SNR for postsynaptic-only potentiation (dark blue arrows), unified pre- and
postsynaptic potentiation yields considerably better SNR (dark red arrows). Off neurons get lower SNR
in both scenarios (light blue and light red arrows). Modifications of in-vivo synaptic responses to a tone
from on and off receptive field positions (dark and light green arrows, respectively; reanalyzed from [27], see
Material and methods) are consistent with unified pre- and postsynaptic expression but not with postsynaptic
expression alone. The black square represents starting condition. Arrows represent the plasticity trajectory,
where the model trajectories are plotted every 50 ms. (d) Only on positions with both pre- and postsynaptic
plasticity yield near-perfect discrimination (dark red). Shown for comparison, the discrimination before
development (black), after development for off neurons (light red), and after development for on neurons
with postsynaptic expression only (blue).

Plasticity should also allow the organism to quickly adapt to changing environments. Expression of93

layer-5 pyramidal cell STDP is curiously asymmetric: LTP is both pre- and postsynaptic [7], whereas LTD is94

expressed only presynaptically on the slice experiments timescale [21]. In addition, presynaptic modifications95

are stronger than postsynaptic LTP (Figure 1d-e). To explore the consequences of this asymmetry, we96

extended the above network to study development when high rate inputs alternate between two locations.97

The neuron learned each receptive field by changes in the presynaptic factor P and the postsynaptic factor98

q (Figure 3a-c). When the stimulus location changed, however, the postsynaptic memory trace decayed only99

very slowly as a result of homeostatic scaling (Figure 3b). As a result, the neuron could rapidly relearn100

the previously acquired receptive field by just increasing P , which amounted to a ten-fold decrease in time101
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to learn (Figure 3d,e). Unified pre- and postsynaptically expressed STDP thus allows for learning of new102

information while retaining hidden traces of prior experience.103

Interestingly, spine changes in layer-5 pyramidal cells of visual cortex outlast sensory experience [30],104

thus providing a structural substrate for the psychological phenomenon known as memory savings [31]. As105

synaptic structure and synaptic weight are closely correlated [32, 33], the memory savings mediated by106

structural spine plasticity [30] are reminiscent of those provided by our unified plasticity model.107

Here we have focused on neocortical data. Models based on synaptic traces are flexible and can describe108

both neocortical and hippocampal plasticity data [14, and Appendix 1]. We therefore expect that our109

modelling framework should also be able to capture plasticity in other brain regions, although with different110

parameters. For example, there are several key differences in the expression locus and in the speed of pre-111

and postsynaptic changes in hippocampus [6]. In cerebellum, there is evidence for the opposite asymmetry112

of expression, with LTP being pre- and postsynaptic, but LTD only postsynaptic [34, 35].113

In our work, memory savings are a consequence of the postsynaptic weight decay occurring on a much114

slower timescale than the presynaptic modifications. This arrangement, however, is not crucial for the115

predicted rapid relearning. What is necessary is that the synaptic strength is the product of pre- and post-116

synaptic components (w = Pq) and that these components evolve on different timescales. For example, fast117

postsynaptic changes combined with slow presynaptic changes would allow for the corresponding presynaptic118

trace of previous experience, which indeed could be the case in the cerebellum [34, 35]. Taken together, these119

findings suggest that plasticity expression asymmetry is not particular to neocortical layer-5 pyramidal cells,120

but rather a general functional principle that extends across different brain regions. Interestingly, similar121

functions can also be performed by neuronal inhibition, to sharpen receptive fields [36], to keep hidden122

memories in recurrent neural networks [37], and to act as a substrate for memory savings in the cerebellum123

[38].124

Figure 3: Unified pre- and postsynaptic STDP displays rapid relearning of previously experienced stimuli.
(a) The presynaptic factor P follows the switching between two stimuli (red and blue profiles, arrows indicate
switching time-points). (b) The postsynaptic factor q, however, is not erased and a trace of previously learned
information remains, which decays slowly only due to synaptic homeostasis. The neuron was initially tuned
to the red stimulus. The initial learning of the blue stimulus (at 1s) was slow, but much faster the second
time (at 101s). (c) The neuron’s tuning follows the two stimuli, as indicated by the alternating stimulus-
specific spiking. Previously experienced stimuli are forgotten by the postsynaptic neuron, but a hidden trace
remains. (d) Relearning occurs faster than learning. (e) Relearning was an order of magnitude faster than
initial learning (time to reach 99% performance).

The existence of both pre- and postsynaptic expression of long-term synaptic plasticity has been enig-125
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matic. Although it has been known that changes in release probability play a key role in determining the126

transmission of information across synapses [39, 40, 18], our theoretical treatment is the first to show that127

combined pre- and postsynaptic expression of long-term synaptic plasticity provides the brain with reliable128

sensory detection and the ability to quickly relearn previously experienced stimuli.129
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Material and methods135

Short- and Long-term Synaptic Plasticity model136

Short-term plasticity model137

To model short-term synaptic plasticity, we used the Tsodyks-Markram model with facilitation [22]. This138

model is defined by the following ODEs139

dr(t)

dt
=

1− r(t)

D
− p(t)r(t)X(t), (1)

dp(t)

dt
=

P − u(t)

F
+ P [1− p(t)]X(t). (2)

The first equation models the vesicle depletion process, where the (normalized) number of vesicles r is140

decreased with an amount p(t)r(t) after a presynaptic spike from the train X(t) =
∑

tpre
δ(t− tpre). Between141

spikes r recovers to 1 with a depression time constant D. The second equation models the dynamics of142

the presynaptic factor p which increases an amount P [1 − p] after every presynaptic spike, decaying back143

to baseline presynaptic factor P with a facilitation time constant F . By varying the synaptic dynamics144

parameters D,F and P , one can obtain different synaptic dynamics. We used typical values for pyramidal-145

onto-pyramidal synapses [41], D = 200ms and F = 50ms, while P is modified by long-term plasticity146

as below. The average number of vesicles released per spike is r(t)p(t), which can be interpreted as the147

presynaptic strength.148

Long-term plasticity model149

In layer-5 pyramidal to pyramidal cell synapses, timing-dependent long-term depression (LTD) is presyn-150

aptically expressed. It is mediated by the coincidence between a postsynaptic signal (endocannabinoid151

release) and a presynaptic signal (presynaptic NMDA receptor activation) [21, 42, 43, 8]. LTP is driven by152

postsynaptic coincidence detection of the combined binding of glutamate and postsynaptic depolarization153

[43, 7, 44], promoting an increase in the number and/or properties of postsynaptic AMPA receptors [45].154

However, timing-dependent long-term potentiation (LTP) also has a presynaptic component, mediated by155

postsynaptic diffusion of nitric oxide (NO) [46, 7, 47, 8].156

Our phenomenological triplet model of long-term modification of pre- and postsynaptic components has157
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three synaptic traces, two postsynaptic (y+ and y−) and one presynaptic (x+), which increase upon a post-158

or presynaptic spike, respectively (see Appendix 1 for a more detailed comparison with the triplet model159

[14]). The traces are obtained by filtering the spike trains with a first-order low-pass filter. We defined the160

postsynaptic depression trace161

dy−(t)

dt
=

−y−(t)

τy−

+ Y (t), (3)

the postsynaptic potentiation trace162

dy+(t)

dt
=

−y+(t)

τy+

+ Y (t), (4)

and the presynaptic potentiation trace163

dx+(t)

dt
=

−x+(t)

τx+

+X(t). (5)

The long-term modification in the weight is achieved by modifying the postsynaptic factor q and the164

presynaptic factor P . The postsynaptic factor is modified with every postsynaptic spike Y according to165

∆q = c+ x+(t)y−(t− ϵ)Y (t)︸ ︷︷ ︸
TripletLTP

post

, (6)

where c+ is a constant that sets the amount of postsynaptic LTP. The y− trace is evaluated at (t−ϵ), so that166

the value of the respective synaptic trace is readout before being updated. The triplet character of this rule167

is expressed by the fact that it contains the presynaptic component once, but the postsynaptic activity twice168

(Y and filtered version y−). This ensures that LTP only takes place when the postsynaptic spike follows169

both a presynaptic spike and a preceding postsynaptic spike [14]. As a result, low pairing frequencies do not170

lead to LTP, as y− will have decayed, consistent with data [23].171

Similarly, the presynaptic factor is modified whenever the presynaptic cell is active according to172

∆P = −d− y−(t)y+(t)X(t)︸ ︷︷ ︸
TripletLTD

pre

+d+ x+(t− ϵ)y+(t)X(t)︸ ︷︷ ︸
TripletLTP

pre

. (7)

For plasticity in P to occur, the presynaptic spikes X readout the postsynaptic traces (presynaptic coincid-173

ence detection), y−y+ for presynaptic LTD and x+y+ for presynaptic LTP. d− and d+ are constants that174

set the amount of presynaptic LTD and LTP, respectively. While presynaptic LTD has a triplet form, it175

contains two postsynaptic traces and the raw presynaptic spike train. Therefore it does not vanish at low176
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frequencies. Equivalently, this term could be written as a doublet rule with a double exponential as the177

presynaptic trace.178

The total synaptic strength is a product of both pre- and postsynaptic factors179

w(t) = qp(t)r(t). (8)

For a synapse that has not been stimulated recently this simplifies to w = Pq.180

Being a probability we hard-bounded P = [0, 1]. The postsynaptic factor q had a lower bound of 0,181

and an upper bound of 2. Alternatively a soft-bounded rule could be used [48]. In the data used to fit the182

model (see below), postsynaptic homosynaptic LTD was not apparent on the timescale of the experiment.183

Because it seems unrealistic that the postsynaptic factor q never decreases, slow homeostasic scaling of the184

postsynaptic factor was included for network simulations [24]. This prevents weakly active synapses from185

potentiating the postsynaptic factor q. It was modelled as a postsynaptic subtractive normalization, so that186

the total change in q of synapse i was equal to ∆qi −α 1
N

∑N
j=1 ∆qj [49]. The only condition on the speed α187

for it to be consistent with the data, is that it should not lead to noticable homeostasis on the timescale of188

the experiments. For computational efficiency we used α = 0.075, which is still orders of magnitude faster189

than what has been observed in homeostasis experiements. The exact form of slow normalization (α → 0)190

does not affect the qualitative behavior of the model. Note that the timescale of the slow normalization191

determines how long the memory savings effects are present.192

To speed up the numerical implementations, we integrated the synaptic traces between the pre- and193

postsynaptic spikes. In the following equations, we label the presynaptic spikes with k and the postsynaptic194

ones with l.195

yl+1
− = yl− exp

(
−∆tpost

τy−

)
+ 1, (9)

yl+1
+ = yl+ exp

(
−∆tpost

τy+

)
+ 1, (10)

xk+1
+ = xk

+ exp

(
−∆tpre

τx+

)
+ 1. (11)
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We subsequently integrated the model between pre- and postsynaptic spikes196

ql+1 = ql + c+x
k
+ exp

(
−∆tpost−pre

τx+

)
yl− exp

(
−∆tpost

τy−

)
, (12)

Pk+1 = Pk − d−y
l
− exp

(
−∆tpre−post

τy−

)
yl+ exp

(
−∆tpre−post

τy+

)
, (13)

+d+y
l
+ exp

(
−∆tpre−post

τy+

)
xk
+ exp

(
−∆tpre

τx+

)
, (14)

where ∆tpost−pre is the time between the current postsynaptic spike and the last presynaptic spike, ∆tpost is197

the time between the current postsynaptic (presynaptic) spike and the last one, and similarly for ∆tpre−post198

and ∆pre. Finally, we also integrated the STP equations (Eqs. 1 and 2) between presynaptic spikes k and199

k + 1, a time ∆tpre apart, yielding200

rk+1 = 1− [1− rk(1− uk)] exp

(
−∆tpre

D

)
, (15)

pk+1 = P + pk [1− P ] exp

(
−∆tpre

F

)
, (16)

with initial conditions r0 = 1 and p0 = P .201

Model fitting to in-vitro plasticity data202

We fitted the free parameters of the long-term plasticity model θ = {d−, τy− , d+, τy+ , c+, τx+} to the203

frequency- and timing-dependent slice STDP data of layer-5 pyramidal cells [23]. Parameters are shown204

in Table 1. Rather than fitting to changes in the weight w, we fitted directly to modifications in P and q205

(see Eqs. 21 and 22 for our estimators of P and q). This was done by minimizing the mean squared error206

between the data and the experiments for both P and q (as shown in Figure 1)207

θ = argminθ

1

N

N∑
j

[(
P after
model

P before
model

− P after
data

P before
data

)2

+

(
qaftermodel

qbeforemodel

− qafterdata

qbeforedata

)2
]
, (17)

where N denotes the number of protocols fitted, 10 in total (5 different pairing frequencies with -10 ms or +10208

ms relative timing, see below). For induction protocols at high frequencies (>10 Hz), pre- and postsynaptic209

spike trains consisted of five spikes that were paired 15 times at 0.1 Hz. Low-frequency pairings (0.1 Hz)210

were done with a single pre- and postsynaptic spike (as in [23]). Before plasticity induction, P and q were211
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set to 0.5 and 1, respectively. For the interaction of STP and STDP simulations (Figure 1f, g), we used a212

standard passive neuron model with a membrane time constant of 25ms.213

Parameter d− τy− (ms) d+ τy+ (ms) c+ τx+ (ms)
Young rat visual cortex 0.1771 32.7 0.1548 230.2 0.0618 66.6

Table 1: Unified pre- and postsynaptic STDP model parameters. The model was fitted to data from young
rat visual cortex [23].

Without further fitting this model also captured pharmacological blockade of the plasticity traces. In the214

model, we simulated the experimental effects of pharmacological blockade by setting the relevant parameter215

or variable to 0. Specifically, we simulated the effects of blocking two different retrograde messenger systems216

shown to be involved in STDP in layer-5 pyramidal cell pairs, endocannabinoid signaling [21] and nitric217

oxide signaling [7]. To reproduce pharmacological blockade experiments, we used high-frequency pairing (50218

Hz) with +10 ms delay, which is comparable with our frequency-dependent results and approximates the219

long depolarizing currents used in [7]. Blocking endocannabinoid receptors prevents presynaptic LTD [21].220

By setting d− = 0 presynaptic LTD was disabled. This reveals presynaptic LTP and enhances short-term221

depression (Figure 1 - figure supplement 3), consistent with experimental evidence [7], as the drugs used are222

likely to block presynaptic endocannabinoid receptors. In contrast, blocking nitric oxide decreases LTP but223

does not affect short-term synaptic dynamics [7] (Figure 1 - figure supplement 3a). We simulated this by224

setting y+ = 0, so that both presynaptic components were absent.225

Stochastic synaptic responses and in-vitro P and q estimation226

The release of neurotransmitter was assumed to follow a standard binomial model [50]227

Psyn(X = k) =

(
N

k

)
P k(1− P )N−k, (18)

which defines the probability of having k successful events (neurotransmitter release) given N trials (release228

sites) with equal probability P .229

The mean synaptic response is scaled by a postsynaptic factor q, which can be related to the quantal230

amplitude so that231

µsyn = PqN, (19)
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and the variance is232

σ2
syn = q2NP (1− P ). (20)

Following the binomial release model (Eq. 18), µsyn (Eq. 19) and σ2
syn (Eq. 20),233

P =
µsyn

Nq
, (21)

and234

q =
σ2
syn

µsyn
+

µsyn

N
. (22)

The number of release sites N is believed to change only after a few hours [51, 52]. As the slice synaptic235

plasticity experiments analysed here lasted only up to 1.5 hours [23] and we were interested in the relative236

changes we assumed constant N = 5.5 in our analysis below, as estimated in [53] using data from the237

same connection type we used to fit our model. Eqs. 21 and 22 were used to estimate P and q from238

in-vitro plasticity data (see above), respectively (dataset deposited at Dryad data repository with DOI239

doi:10.5061/dryad.p286g [54]). Note that because the data had to be reanalized in full there are minor240

differences in the mean weights previously published [23].241

We verified our P and q extraction method by analysing short-term plasticity experiments with pharmaco-242

logical manipulation of presynaptic release or of postsynaptic gain [Fig S1a, 21], and experiments with phar-243

macological blockade of pre- or postsynaptic long-term plasticity [Figure S1b, 7] (Figure 1 - figure supplement 2a,b).244

In addition, long-term changes in P but not in q were inversely correlated with changes in paired-pulse ratio,245

as expected (Figure 1 - figure supplement 2c,d). Taken together, these results lend experimental support to246

our binomial-distribution-based approach for extracting P and q to tune changes in the pre- and postsynaptic247

modifications of our unified STDP model (Figure 1d,e).248

Analysis of in-vivo data249

We extracted the effective P and q from the in-vivo data obtained by [27]. Again using a binomial model, we250

obtained estimators for their variability measure given by v = q(1−P ) and the mean by µ = PqN . To ease251

comparison with our simulations we set the initial P to the same initial condition used in our simulations252

P = 0.5 [41]. We then obtained the initial N = |µ|
qP and the initial q = q

(1−P ) . For the after pairing data253
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we allowed both pre- and postsynaptic factors P and q to change, while N was fixed to the values extracted254

before pairing [51]. The estimations after learning were obtained as q = q+ |µ|
N and P = |µ|

Nq . We used these255

estimators to extract q and P from measurements for both the depression experienced for the unpaired (best256

before pairing) receptive field position and the potentiated paired position [27]. After pairing, the effective257

q of the potentiated (’on’) response increased from qonbefore = 23.3pA to qonafter = 27.1pA (+16.3%), while258

P increased from P on
before = 0.5 to P on

after = 0.73 (+46%). Responses that were depressed (’off’), typically259

the original best frequency, yielded no statistically significant change in qoffbefore , while P off
before = 0.5 and260

P off
after = 0.40 (-20%) (Figs. 2, 2 - figure supplement 1 and 2 - figure supplement 2). To ease comparison261

with the postsynaptic factor in the simulations we scaled the experimentally obtained q such that before262

plasticity it was 1. We compared models where we allowed both P and q to change or only one of them,263

the lower variability estimation error was the one where both factors change (2 - figure supplement 2e). The264

estimation error was calculated as 1
N

∑N
i (vireal − viestimated)

2, where N is the number of data points.265

Synaptic signal detection266

We calculated the Signal-to-Noise Ratio (SNR) of a synaptic response defined here by a random variable s,267

amidst additive background noise defined by the random variable n as follows268

SNRsyn = 2
(⟨s⟩ − ⟨n⟩)2

σ2
s + σ2

n

(23)

It is assumed that n ∼ N (0, σ2
n) and we also used the Gaussian approximation to the binomial release model269

specified above, s ∼ N (PqN, q2NP (1 − P ) + σ2
n), from which follows the SNR of the first postsynaptic270

response271

SNRsyn = 2
(PqN)

2

q2NP (1− P ) + 2σ2
n

(24)

In Figure 2, we used σ2
n = 0.5. Variance of the k-th postsynaptic response is given by σ2

synk = q2Nrkpk(1−272

rkpk) (Figure 2 - figure supplement 3a). The SNR of the k-th postsynaptic response is273

SNRk
syn = 2

(rkpkqN)
2

q2Nrkpk(1− rkpk) + 2σ2
n

(25)

where pk and rk are given by Eqs. 16 and 15, respectively. The SNR of the sum of the first K responses,274

evoked at a given presynaptic firing rate ρ therefor equals275
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SNRρ
syn = 2

(∑K−1
k=0 rkpkqN

)2
∑K−1

k=0 q2Nrkpk(1− rkpk) + 2
∑K−1

k=0 σ2
n

(26)

After unified STDP the first response has a higher release probability but the second one a much lower276

probability due to synaptic depression. Combined with the background noise, the SNR can drop when the277

second or further responses are included. However, the SNR of the summed response will always be larger278

than when only post-synaptic modifications are made (see Figure 2 - figure supplement 3b). This holds for279

any frequency, Figure 2 - figure supplement 3c and carries over to an information theoretic analysis of the280

response, Figure 2 - figure supplement 3d.281

Next, we used ROC analysis to compute the false alarm and detection probability of the first postsynaptic282

response283

pfalse alarm =

ˆ +∞

T

Pn(r)dr =
1

2
erfc

(
T√
2σ2

n

)
(27)

pdetection =

ˆ +∞

T

Ps(r)dr =
1

2
erfc

(
T − PqN√

2q2NP (1− P ) + σ2
n

)
(28)

where T is the discrimination threshold, and erfc is the complementary error function defined as erfc(x) =284

2√
π

´∞
x

e−t2dt. To assess the overall discriminability, we used pdiscrimination, which is the area under the ROC285

curve (AUC). The AUC was computed by integrating over the ROC curve using the trapezoid method (see286

Figure 2d). Given that N is a simple constant we set it to 1, unless otherwise stated (see data inference287

above).288

Receptive field development289

For the receptive field development simulations, we used a feedforward network with 100 presynaptic neurons290

j with Poisson statistics and a single integrate-and-fire postsynaptic neuron. The postsynaptic neuron was291

modelled as an adaptive exponential integrate-and-fire neuron model [55]. Model parameters were as reported292

in [55] and synapses were modelled as input currents. The firing rate of the presynaptic Poisson neurons was293

modelled using a Gaussian profile, defined as294

ρ(j; p, σ) = ρmin + (ρmax − ρmin)e
−(j−p)2

2σ2 (29)
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where ρ is the rate in the Poisson neuron model j, p the input position for which the rate is maximal, and295

σ = 5 Hz the distribution spread. ρmax and ρmin are the maximum and minimum rates, and were set to296

ρmax = 50 Hz and ρmin = 3 Hz. We scaled d−, d+ and c+ by a factor 0.15 to yield a smoother receptive field297

development. q was bounded between 0 pA and 200 pA, so that the synaptic input is appropriately scaled for298

the neuron model used. The network was simulated for 100s to achieve convergence. For the memory savings299

experiment, we interleaved two receptive field positions. Results for receptive development and memory300

savings were averaged over 10 runs. The response of the postsynaptic neuron (Figure 3c) was assessed by301

presenting each stimulus alone with long-term synaptic plasticity inactive. Receptive field simulations were302

implemented in simulator Brian 2.0 [56]. Code for running and plotting the savings experiment is available303

online 1.304

Statistical comparison305

Results are reported as mean ± SEM. Statistical comparisons were made with Student’s t test for equal306

means, if data was normally distributed as assessed using Kolmogorov-Smirnov test, Mann-Whitney U non-307

parametric test was used otherwise. For multiple comparisons we applied ANOVA or Kruskal-Wallis test for308

normally or non-normally distributed data, respectively. For correlation analysis the Spearman’s coefficient309

was used together with one-tailed Student’s t test. Significance levels are ∗p < 0.05, ∗ ∗ p < 0.01, and310

∗ ∗ ∗p < 0.001.311

1https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=XXX
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Supplemental Figures312

Figure 1 - figure supplement 1: The unified pre- and postsynaptic STDP model (blue solid line) captured the
characteristic temporal asymmetry of experimental STDP (black squares represent data from [23]). Relative
timing was defined as ∆t = tspikepost − tspikepre . Pairing frequency was 0.1 Hz (left), 20 Hz (middle) and 50 Hz
(right).

Figure 1 - figure supplement 2: Extraction of P and q from synaptic plasticity data from slice paired
recordings using pharmacology and high frequency pairing (based on a long-step current injection plasticity
protocol). (a) The AMPA/kianate antagonist CNQX decreased q (p < 0.01), but not P (p = 0.32; red
symbols), while low bath calcium decreased P (p < 0.01), but not q (p = 0.48; blue symbols). Control
experiments did not yield changes in either component: P (p = 0.15) and q (p = 0.1; black symbols) (data
reanalyzed from [21]). (b) Extraction of P and q after LTP induction and blockade of plasticity traces with
nitric oxide (NO) and endocannabinoids (eCB). LTP induction (control; black symbols) yielded an increase
in both P (p < 0.001) and q (p < 0.001). eCB blockade increased the presynaptic factor P (p < 0.01), but
did not change q (p = 0.1; blue symbols), while LTP induction under NO blockade increased q (p < 0.001),
but did not change P (p = 0.27; red symbols) (data reanalyzed from [7]). (c,d) Changes in presynaptic
factor P (c), but not postsynaptic factor q (d) correlated with changes in paired-pulse ratio. Dashed line
represents a linear regression on the individual data points (open circles). Data shown was normalized to
baseline (before plasticity induction). Open symbols represent individual experiments, while solid symbols
in (a) and (b) represent averages. Error bars represent SEM.

Figure 1 - figure supplement 3: Model is consistent with modifications of synaptic dynamics after pharma-
cological blockade of plasticity traces. (a) After LTP induction under nitric oxide (NO) blockade (top), no
changes in synaptic dynamics were observed when blocking NO retrograde signalling, in keeping with the
model results (bottom). (b) Strong depression is revealed after endocannabinoids (eCB) blockade (top),
similar to the model (bottom). Data was reproduced from [7]. Data shown was normalized to the maximum
amplitude before and after plasticity induction to highlight changes in the synaptic dynamics.

Appendix 1313

Title: Comparison between unified pre- and postsynaptic STDP model, and triplet STDP model [14]314

Legend: In this appendix we compare and discuss the similarities and differences between our model315

and the triplet STDP model [14].316
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Figure 2 - figure supplement 1: Long-term pre- and postsynaptic plasticity reduces response variability of
receptive fields. (a) After receptive field development synaptic variance dropped for both on and off neurons.
(b) Synaptic variance as a function of P and q (grey colour map). Black square represents initial condition.
As in (a), after development on and off neurons yielded low synaptic variance (dark and light red arrows,
respectively). In-vivo plasticity results measuring synaptic responses from on and off receptive fields are
in agreement with modelling predictions (data from [27] – green arrows). For comparison, the results for
a learning rule where only the postsynaptic factor is modified for on and off neurons (dark and light blue
arrows, respectively). (c) Probability of discrimination (area under the curve in Figure 2d) for different
background noise levels. Solid black line represents the initial condition. Black dashed line represents a
random classifier, while grey dashed line represents the background noise level used in Figure 2.

Figure 2 - figure supplement 2: Extraction of effective P and q from in-vivo receptive field plasticity ex-
periments (data reanalyzed from [27]). (a) Modification of variability and mean as reported in [27] after
stimulation of nucleus basalis. Data is shown for both unpaired (referred to as off the receptive field) fre-
quencies (mean: blue filled circles, single experiments: light blue circles) and paired (referred to as on the
receptive field) frequencies (mean: red filled circles, single experiments: light red circles) receptive fields.
(b) Modification in P and q for on and off positions, obtained using a standard binomial release model on
the synaptic responses recorded by [27] (see Material and methods). (c) After receptive field plasticity q
did not change in off positions (p = 1), but was upregulated in on (p < 0.05) positions. (d) P was also
downregulated and upregulated for off (p < 0.05) and on (p < 0.001) positions, respectively, after receptive
field plasticity. (e) An estimator where both P and q change yielded the lowest variability estimation error,
compared to estimators where P or q were fixed.

Figure 2 - figure supplement 3: Long-term pre- and postsynaptic plasticity improves signal-to-noise ratio
(SNR) and information transmission in dynamic synapses. (a) Model with both pre- and postsynaptic plas-
ticity reduces synaptic transmission variability with dynamic synapses (top, red line), while postsynaptic
plasticity alone increases variability (bottom, blue line). Black line represents initial condition as in Figs. 2c.
Shaded area represents the variance of the postsynaptic response. (b) The SNR of the sum of multiple pulses
is improved across in the unified model (red line), compared to postsynaptic plasticity alone (red line; see
Material and methods). The presynaptic firing rate is 30 Hz in (a) and (b). (c) In analogy with the SNR
of the first response (Figs. 2c), the SNR of the sum of the first 15 responses across different presynaptic
frequencies is better for the unified model compared to postsynaptic plasticity alone. (d) Synaptic inform-
ation transmission [25, 26] for the unified model across different presynaptic frequencies is better than with
postsynaptic plasticity alone.
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