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Abstract The Reproducibility Project: Cancer Biology seeks to address growing concerns about

reproducibility in scientific research by conducting replications of selected experiments from a

number of high-profile papers in the field of cancer biology. The papers, which were published

between 2010 and 2012, were selected on the basis of citations and Altmetric scores

(Errington et al., 2014). This Registered Report describes the proposed replication plan of key

experiments from ’Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma’

by Castellarin and colleagues published in Genome Research in 2012 (Castellarin et al., 2012). The

experiment to be replicated is reported in Figure 2. Here, Castellarin and colleagues performed a

metagenomic analysis of colorectal carcinoma (CRC) to identify potential associations between

inflammatory microorganisms and gastrointestinal cancers. They conducted quantitative real-time

PCR on genomic DNA isolated from tumor and matched normal biopsies from a patient cohort and

found that the overall abundance of Fusobacterium was 415 times greater in CRC versus adjacent

normal tissue. These results confirmed earlier studies and provide evidence for a link between

tissue-associated bacteria and tumorigenesis. The Reproducibility Project: Cancer Biology is a

collaboration between the Center for Open Science and Science Exchange and the results of the

replications will be published in eLife.

DOI: 10.7554/eLife.10012.001

Introduction
The human intestine is populated by an estimated 1014 microbes comprising over 1000 bacterial

phylotypes (Ley et al., 2006). The overall composition of the intestinal microbiota is determined by

a number of factors, including host genetics, environment, diet and hygiene (Arrieta et al., 2014;

Keku et al., 2015). These bacteria play important roles in host biology by maintaining intestinal

homeostasis, barrier function, immunity and metabolic function (Backhed et al., 2005; Jones et al.,

2014). Perturbations or imbalances in the microbiome (microbial dysbiosis) are linked to a number

of disease pathologies such as inflammatory bowel disease (Collins, 2014; Hold et al., 2014), obe-

sity (Bajzer and Seeley, 2006; Brown et al., 2012), and colorectal cancers (CRCs; Dulal and Keku,

2014; Keku et al., 2015).

CRC is a complex disease arising from the sequential accumulation of somatic mutations and epi-

genetic alterations. Activating mutations in the K-ras oncogene, as well as the loss of tumor suppres-

sor genes like p53 (TP53) and adenomatous polyposis coli (APC), contribute to the tumorigenic

transformation of normal colonic epithelium (Vogelstein et al., 1988; Fearon, 2011;

Mundade et al., 2014). In addition to genetic factors, microbial dysbiosis, such as altered bacterial

diversity, is strongly associated with the development of CRC (Keku et al., 2015). However, despite

numerous longitudinal studies comparing intestinal microbial communities over time

Repass et al. eLife 2016;5:e10012. DOI: 10.7554/eLife.10012 1 of 10

REGISTERED REPORT

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://osf.io/e81xl/wiki/home/
https://osf.io/e81xl/wiki/studies/
http://centerforopenscience.org/
https://www.scienceexchange.com/
http://dx.doi.org/10.7554/eLife.10012.001
http://dx.doi.org/10.7554/eLife.10012
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


(Rodriguez et al., 2015), and across various cancer stages (Kubota, 1990; Chen et al., 2013;

Nugent et al., 2014), there is limited information on the contribution of specific bacteria to CRC

development.

To identify potential associations between inflammatory microorganisms and gastrointestinal can-

cers, Castellarin et al. (2012) first performed RNA sequencing (RNA-seq) on a limited number of

tumor and matched normal tissue samples. Initial observations indicated a striking overrepresenta-

tion of Fusobacterium nucleatum sequences in carcinoma samples compared to controls. To confirm

these findings, Castellarin et al. (2012) assessed the relative abundance of Fusobacterium in a

larger cohort of tumor and matched normal biopsy samples. In Figure 2, the authors performed

quantitative real-time PCR (qPCR) on genomic DNA (gDNA) isolated from an additional 88 colorec-

tal carcinoma (CRC) specimens and adjacent matched control tissues. Fusobacterium abundance

was observed to be significantly higher in the tumor samples compared to matching control sam-

ples. This key experiment will be replicated in Protocol 1.

Similar findings confirming the higher relative abundance of Fusobacterium in CRC tumor tissues

compared to control biopsies have been reported by other investigators (Kostic et al., 2012;

McCoy et al., 2013; Warren et al., 2013; Tahara et al., 2014). In fact, the study by Kostic et al.

(2012) is considered a co-discovery of this phenomenon. McCoy et al. (2013) successfully validated

the association between Fusobacterium and CRC in a set of matched CRC tumor and normal human

colon tissue samples using both pyrosequencing and qPCR analysis of the 16S bacterial rRNA gene.

Findings by Mira-Pascual et al. (2015) further confirm this trend, as this group observed a signifi-

cantly higher presence of F. nucleatum in mucosal samples from the CRC patients compared to the

healthy subjects (as opposed to matched tissue biopsies). Recent studies have also reported a higher

presence of Fusobacterium species in human colonic adenomas (polyps) and in stool samples from

adenoma and tumor carcinoma patients compared to healthy subjects (Kostic et al., 2012;

2013; McCoy et al., 2013). Furthermore, other studies have expanded these findings to identify

potential mechanisms of action of F. nucleatum during tumorigenesis (Rubinstein et al., 2013;

Gur et al., 2015). Rubenstein et al. (2013) also indirectly confirm a higher abundance of Fusobacte-

rium in CRC patients by measuring higher F. nucleatum FadA mRNA expression relative to healthy

controls.

Materials and methods
Unless otherwise noted, all protocol information was derived from the original paper, references

from the original paper, or information obtained directly from the authors. An asterisk (*) indicates

data or information provided by the Reproducibility Project: Cancer Biology core team. A hashtag

(#) indicates information provided by the replicating lab.

Protocol 1: quantitative PCR for amplification of F. nucleatum from
matched normal and tumor human colon cancer specimens
This protocol utilizes quantitative PCR to test the relative abundance of F. nucleatum DNA in gDNA

isolated from matched normal and tumor human colon cancer specimens. It is a replication of Figure

2.

Sampling
& This experiment will include 40 matched samples for a final power of 87.26%.

. See power calculations for details.
& Each patient sample has two cohorts:

. Cohort 1: Colon tumor sample (n = 40)

. Cohort 2: Matched normal tissue within the same individual (n = 40)

. Cohort 3: Age/ethnicity-matched normal tissue from additional control individuals (n = 40)
& Tissue is collected during surgery (either partial colectomy, ileocolectomy, colorectal resec-

tion, or proctocolectomy) from tumor tissue, adjacent normal tissue, or from normal controls.
Samples are frozen on liquid nitrogen within 30 min after extractions. Diagnosis is confirmed
by a pathologist using histological sections from each sample.

& Quantitative PCR will be performed for each sample two independent times in technical tripli-
cate for the following:
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. F. nucleatum DNA

. Prostaglandin transporter—reference gene

Materials and reagents

Reagent Manufacturer Catalog # Comments

Frozen human colon tumor samples
and matched normal samples

#iSpecimen Data include age, gender, ethnicity,
diagnosis, histopathology report

Gentra Puregene Genomic
DNA extraction kit

Qiagen 158667 Replaces Qiagen 69504

PicoGreen Assay #Life Technologies P7589

Spectrophotometer #NanoDrop ND1000

384-well optical PCR plate #Phoenix Research MPS-3898

Fusobacteria forward qPCR primer Part of a custom-designed
Taqman primer/probe set
(Applied Biosystems)

CAACCATTACTTTAACTCTA
CCATGTTCA

Fusobacteria reverse qPCR primer GTTGACTTTACAGAAGGAGA
TTATGTAAAAATC

Fusobacteria FAM probe TCAGCAACTTGTCCTTCTTGA
TCTTTAAATGAACC†

PGT forward qPCR primer Part of a custom-designed
Taqman primer/probe set
(Applied Biosystems)

ATCCCCAAAGCACCTGGTTT

PGT reverse qPCR primer AGAGGCCAAGATAGTCCTG
GTAA

PGT FAM probe CCATCCATGTCCTCATCTC

TaqMan Universal Master Mix ABI #4304437

qPCR thermal cycling system ABI #4351405 7900HT system

†Note: Probe sequence from original manuscript incorrect. Correct sequence seen here from Flanagan et al.,

2014.

Procedure

1. Obtain ~40 sets from frozen human CRC tumors with matched normal control, and an addi-
tional control group of age/ethnicity-matched tissue from healthy individuals.
a. Tissue will have been flash-frozen in liquid nitrogen very soon after harvest.
b. Pathological data showing positive diagnosis for CRC will be included with samples.

2. Extract gDNA using Gentra Puregene genomic DNA extraction kit according to manufac-
turer’s instructions.

3. Quantify gDNA concentration by Nanodrop spectrophotometer.
4. Assemble 20 �L qPCR reactions in a 384-well optical PCR plate. Each sample is assayed in trip-

licate for each primer/probe set. Each reaction contains:
a. 5 ng of gDNA
b. 18 �M of each primer
c. 5 �M of probe
d. 1 X final concentration of TaqMan Universal Master Mix

5. Perform amplification and detection of DNA using the following reaction conditions:
a. 2 min at 50˚C
b. 10 min at 95˚C
c. 40 cycles of 15 s at 95˚C and 1 min at 60˚C.

6. Calculate cycle threshold using the automated settings. Analyze and compute DDCT values by
normalizing to prostaglandin transporter reference gene.
a. The mean DDCT values from the technical replicates from the tumor and normal sample

will be used to calculate the ratio of tumor versus normal for each matched biopsy.
7. Repeat steps 3–5 for each sample a second time.
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a. The mean ratios of DDCT values in tumor versus normal sample from the two independent
experimental replicates will be calculated for each matched biopsy.

Deliverables

. Data to be collected:
. Descriptive data of gDNA samples including: patient sample age/sex, ethnicity, and %

area of the tumor involved with necrosis.
. Purity (A260/280 and A260/230 ratios) and concentration of isolated total gDNA from tumor

biopsies.
. Raw qRT-PCR values, as well as analyzed DDCT values for each tumor and matched biopsy

sample. Bar graph of mean relative abundance of F. nucleatum in tumor versus normal
colorectal samples (compare to Figure 2A).

Confirmatory analysis plan
This replication attempt will perform the statistical analysis listed below:

& Statistical analysis of replication data:
. Note: At the time of analysis, we will perform the Shapiro–Wilk test and generate a quan-

tile–quantile (q–q) plot to assess the normality of the data. If the data appear skewed, we
will perform the appropriate transformation in order to proceed with the proposed statis-
tical analysis. If this is not possible, we will perform the equivalent nonparametric test (e.
g., Wilcoxon-signed rank test).

. One-sample Student’s t-test using the log of the mean ratios of DDCT values from the two
independent experimental replicates, tumor DDCT/matched within individual controls
compared to a mean value of zero.

& Additional exploratory analysis:
. Two Student’s t-tests with Bonferroni correction comparing absolute values from:

. Mean tumor Fusobacterium abundance versus within subject matched control
(paired)

. Mean tumor Fusobacterium abundance versus healthy matched control (unpaired)
& Meta-analysis of original and replication attempt effect sizes:

. Compute the effect size, compare it against the effect size in the original paper and use a
random effects meta-analytic approach to combine the original and replication effects,
which will be presented as a forest plot.

Known differences from the original study
All known differences are listed in the ’Materials and reagents’ section with the originally used item

listed in the comments section. All differences have the same capabilities as the original and are not

expected to alter the experimental design. We have added an additional control of matched gDNA

from healthy individuals.

Provisions for quality control
The sample purity (A260/280 and A260/230 ratios) of the isolated gDNA from each sample will be

reported. All of the raw data, including the analysis files, will be uploaded to the project page on

the OSF (https://osf.io/v4se2) and made publically available.

Power calculations
For a detailed breakdown of all power calculations, see spreadsheet at https://osf.io/yadgq/

Protocol 1
Summary of original data

. Note: Data estimated from graph reported in Figure 2.
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Sample Log (mean) N

1 1.5787 2

2 1.1957 2

3 0.9277 2

4 0.8766 2

5 0.5192 2

6 0.4468 2

7 0.4128 2

8 0.3149 2

9 0.2936 2

10 0.2681 2

11 0.2766 2

12 0.2383 2

13 0.234 2

14 0.2 2

15 0.1787 2

16 0.1703 2

17 0.1617 2

18 0.1362 2

19 0.0681 2

20 0.0298 2

21 0.034 2

22 0.0128 2

23 0.0095 2

24 0.017 2

25 0.0213 2

26 0.0213 2

27 0.0255 2

28 0.0128 2

29 0.017 2

30 0.0128 2

31 0.017 2

32 0.0255 2

33 0.0213 2

34 0.0301 2

35 0.034 2

36 0.0555 2

37 0.1362 2

38 0.1447 2

39 0.1745 2

40 0.1915 2

41 0.2 2

42 0.2086 2

Continued on next page
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Continued

Sample Log (mean) N

43 0.217 2

44 0.2213 2

45 0.2596 2

46 0.4043 2

47 0.4468 2

48 0.4511 2

49 0.4681 2

50 0.4979 2

51 0.5064 2

52 0.5021 2

53 0.549 2

54 0.5787 2

55 0.5787 2

56 0.5872 2

57 0.6085 2

58 0.6213 2

59 0.6553 2

60 0.6979 2

61 0.7234 2

62 0.7617 2

63 0.8043 2

64 0.8298 2

65 0.966 2

66 0.9617 2

67 1.0042 2

68 1.0128 2

69 1.017 2

70 1.0255 2

71 1.0681 2

72 1.0596 2

73 1.0851 2

74 1.1234 2

75 1.1958 2

76 1.3149 2

77 1.3149 2

78 1.4085 2

79 1.6298 2

80 1.7575 2

81 1.783 2

82 1.8723 2

83 1.9404 2

84 1.983 2

Continued on next page
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Continued

Sample Log (mean) N

85 2 2

86 2.2553 2

87 2.4298 2

88 2.4723 2

89 2.4723 2

90 2.5532 2

91 2.6723 2

92 2.6893 2

93 2.9064 2

94 3.0596 2

95 3.2425 2

96 3.3447 2

97 3.5872 2

98 3.8 2

99 4.261 2

Test family

. Ratio one-sample t-test: aerror = 0.05, m = 0.

Power calculations

. Ratio t-test and power calculations were performed with R software, version 3.1.2 (Team RC
2014).

Mean
Effect
size d A priori power Total sample size

Ratio 0.75893838 0.5024568 87.26% 40*

*Forty total ratios (40 tumor 40 matched controls) will be used.

Additional exploratory analysis
Test family

. Paired Student’s t-test (two-tailed): aerror = 0.025.

Power calculations

. Sensitivity calculations were performed with G*Power software, version 3.1.7 (Faul et al.,
2007).

Group 1 Group 2
Detectable effect
size d A priori power

Total
sample
size

Tumor sample Adjacent matched
control

0.50384 80% 40
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Test family

. Independent Student’s t-test (two-tailed): aerror = 0.025.

Power calculations

. Sensitivity calculations were performed with G*Power software, version 3.1.7. (Faul et al.,
2007).

Group 1 Group 2
Detectable effect
size d A priori power

Total
sample
size

Tumor sample Healthy
individual matched
control

0.7007 80% 40
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