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Abstract Many recent models study the downstream projection from grid cells to place cells,

while recent data have pointed out the importance of the feedback projection. We thus asked how

grid cells are affected by the nature of the input from the place cells. We propose a single-layer

neural network with feedforward weights connecting place-like input cells to grid cell outputs.

Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network

highly resembles neural networks used to perform Principal Component Analysis (PCA). Both

numerical results and analytic considerations indicate that if the components of the feedforward

neural network are non-negative, the output converges to a hexagonal lattice. Without the non-

negativity constraint, the output converges to a square lattice. Consistent with experiments, grid

spacing ratio between the first two consecutive modules is �1.4. Our results express a possible

linkage between place cell to grid cell interactions and PCA.

DOI: 10.7554/eLife.10094.001

Introduction
The system of spatial navigation in the brain has recently received much attention (Burgess, 2014;

Morris, 2015; Eichenbaum, 2015). This system involves many regions, which seem to divide into

two major classes: regions such as CA1 and CA3 of the hippocampus, which contain place cells

(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978), vs. regions, such as the medial-ento-

rhinal cortex (MEC), the presubiculum and the parasubiculum, which contain grid cells, head-direc-

tion cells and border cells (Hafting et al., 2005; Boccara et al., 2010; Sargolini et al., 2006;

Solstad et al., 2008; Savelli et al., 2008). While the phenomenology of those cells is described in

many studies (Derdikman and Knierim, 2014; Tocker et al., 2015), the manner in which grid cells

are formed is quite enigmatic. Many mechanisms have been proposed. The details of these mecha-

nisms differ, however, they mostly share in common the assumption that the animal’s velocity is the

main input to the system (Derdikman and Knierim, 2014; Zilli, 2012; Giocomo et al., 2011), such

that positional information is generated by the integration of this input in time. This process is

termed ’path integration’ (PI) (Mittelstaedt and Mittelstaedt, 1980). A notable exception to this

class of models was suggested in a previous paper by Kropff and Treves (2008); and in a sequel to

that paper (Si and Treves, 2013), in which they demonstrated the emergence of grid cells from

place cell inputs without using the rat’s velocity as an input signal.

We note here that generating grid cells from place cells may seem at odds with the architecture

of the network, since it is known that place cells reside at least one synapse downstream of grid cells

(Witter and Amaral, 2004). Nonetheless, there is current evidence that the feedback from place
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cells to grid cells is of great functional importance. Specifically, there is evidence that inactivation of

place cells causes grid cells to disappear (Bonnevie et al., 2013), and furthermore, it seems that, in

development, place cells emerge before grid cells do (Langston et al., 2010; Wills et al., 2010).

Thus, there is good motivation for trying to understand how the feedback from hippocampal place

cells may contribute to grid cell formation.

In the present paper, we thus investigated a model of grid cell development from place cell

inputs. We showed the resemblance between a feedforward network from place cells to grid cells to

a neural network architecture previously used to implement the PCA algorithm (Oja, 1982). We

demonstrated, both analytically and through simulations, that the formation of grid cells from place

cells using such a neural network could occur given specific assumptions on the input (i.e. zero

mean) and on the nature of the feedforward connections (specifically, non-negative, or excitatory).

Results

Comparing neural-network results to PCA
We initially considered the output of a single-layer neural network and of the PCA algorithm in

response to the same inputs. These consisted of the temporal activity of a simulated agent moving

around in a two-dimensional (2D) space (Figure 1A; see Materials and methods for details). In order to

mimic place cell activity, the simulated virtual space was covered by multiple 2D Gaussian functions

uniformly distributed at random (Figure 1B), which constituted the input. In order to calculate the prin-

cipal components, we used a [Neuron x Time] matrix (Figure 1C) after subtracting the temporal mean,

generated from the trajectory of the agent as it moved through the place fields. Thus, we displayed a

one-dimensional mapping of the two-dimensional activity, transforming the 2D activity into a 1D vec-

tor per input neuron. This resulted in the [Neuron X Neuron] covariance matrix (Figure 1D), on which

PCA was performed by evaluating the appropriate eigenvalues and eigenvectors.

eLife digest Long before the invention of GPS systems, ships used a technique called dead

reckoning to navigate at sea. By tracking the ship’s speed and direction of movement away from a

starting point, the crew could estimate their position at any given time. Many believe that some

animals, including rats and humans, can use a similar process to navigate in the absence of external

landmarks. This process is referred to as “path integration”.

It is commonly believed that the brain’s navigation system is based on such path integration in

two key regions: the entorhinal cortex and the hippocampus. Most models of navigation assume

that a network of grid cells in the entorhinal cortex processes information about an animal’s speed

and direction of movement. The grid cell network estimates the animal’s future position and relays

this information to cells in the hippocampus called place cells. Individual place cells then fire

whenever the animal reaches a specific location.

However, recent work has shown that information also flows from place cells back to grid cells.

Further experiments have suggested that place cells develop before grid cells. Also, inactivating

place cells eliminates the hexagonal patterns that normally appear in the activity of the grid cells.

Using a computational model, Dordek, Soudry et al. now show that place cell activity could in

principle trigger the formation of the grid cell network, rather than vice versa. This is achieved using

a process that resembles a common statistical algorithm called principal component analysis (PCA).

However, this only works if place cells only excite grid cells and never inhibit their activity, similar to

what is known from the anatomy of these brain regions. Under these circumstances, the model

shows hexagonal patterns emerging in the activity of the grid cells, with similar properties to those

patterns observed experimentally.

These results suggest that navigation may not depend solely on grid cells processing information

about speed and direction of movement, as assumed by path integration models. Instead grid cells

may rely on position-based input from place cells. The next step is to create a single model that

combines the flow of information from place cells to grid cells and vice versa.

DOI: 10.7554/eLife.10094.002
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To learn the grid cells, based on the place cell inputs, we implemented a single-layer neural net-

work with a single output (Figure 2). Input to output weights were governed by a Hebbian-like

learning rule. As described in the Introduction (see also analytical treatment in the Methods section),

this type of architecture induces the output’s weights to converge to the leading principal compo-

nent of the input data.

The agent explored the environment for a sufficiently long time allowing the weights to converge

to the first principal component of the temporal input data. In order to establish a spatial interpreta-

tion of the eigenvectors (from PCA) or the weights (from the converged network) we projected both

the PCA eigenvectors and the network weights onto the place cells space, producing corresponding

spatial activity maps. The leading eigenvectors of the PCA and the network’s weights converged to

square-like periodic spatial solutions (Figure 3A–B).

Being a PCA algorithm, the spatial projections of the weights were periodic in space due to the

covariance matrix of the input having a Toeplitz structure (Dai et al., 2009) (a Toeplitz matrix has

constant elements along each diagonal). Intuitively, the Toeplitz structure arises due to the spatial

stationarity of the input. In fact, since we used periodic boundary conditions for the agent’s motion,

the covariance matrix was a circulant matrix, and the eigenvectors were sinusoidal functions, with

length constants determined by the scale of the box (Gray, 2006) [a circulant matrix is defined by a

single row (or column), and the remaining rows (or columns) are obtained by cyclic permutations. It

Figure 1. Construction of the correlation matrix from behavior. (A) Diagram of the environment. Black dots indicate places the virtual agent has visited.

(B) Centers of place cells uniformly distributed in the environment. (C) The [Neuron X Time] matrix of the input-place cells. (D) Correlation matrix of (C)

used for the PCA process.

DOI: 10.7554/eLife.10094.003
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is a special case of a Toeplitz matrix - see for example Figure 1D]. The covariance matrix was heavily

degenerate, with approximately 90% of the variance accounted for by the first 15% of the eigenvec-

tors (Figure 4B). The solution demonstrated a fourfold redundancy. This was apparent in the plotted

eigenvalues (from the largest to the smallest eigenvalue, Figure 4A and C), which demonstrated a

fourfold grouping-pattern. The fourfold redundancy can be explained analytically by the symmetries

of the system – see analytical treatment of PCA in Methods section (specifically Figure 15C).

In summary, both the direct PCA algorithm and the neural network solutions developed periodic

structure. However, this periodic structure was not hexagonal but rather had a square-like form.

Adding a non-negativity constraint to the PCA
It is known that most synapses from the hippocampus to the MEC are excitatory (Witter and Ama-

ral, 2004). We thus investigated how a non-negativity constraint, applied to the projections from

place cells to grid cells, affected our simulations. As demonstrated in the analytical treatment in the

Figure 2. Neural network architecture with feedforward connectivity. The input layer corresponds to place cells

and the output to a single cell.

DOI: 10.7554/eLife.10094.004

Figure 3. Results of PCA and of the networks’ output (in different simulations). (A) 1st 16 PCA eigenvectors

projected on the place cells’ input space. (B) Converged weights of the network (each result from different

simulation, initial conditions and trajectory) projected onto place cells’ space. Note that the 8 outputs shown here

resemble linear combinations of components #1 to #4 in panel A.

DOI: 10.7554/eLife.10094.005
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Methods section, we could expect to find hexagons when imposing the non-negativity constraint.

Indeed, when adding this constraint, the outputs behaved in a different manner and converged to a

hexagonal grid, similar to real grid cells. While it was straightforward to constrain the neural net-

work, calculating non-negative PCA directly was a more complicated task due to the non-convex

nature of the problem (Montanari and Richard, 2014; Kushner and Clark, 1978).

In the network domain, we used a simple rectification rule for the learned feedforward weights,

which constrained their values to be non-negative. For the direct non-negative PCA calculation, we

used the raw place cells activity (after spatial or temporal mean normalization), as inputs to three dif-

ferent iterative numerical methods: NSPCA (Nonnegative Sparse PCA), AMP (Approximate Message

Passing) and FISTA (Fast Iterative Threshold and Shrinkage) based algorithms (see Materials and

methods section).

In both cases, we found that hexagonal grid cells emerged in the output layer (plotted as spatial

projection of weights and eigenvectors: Figure 5A–B, Figure 6A–B, Video 1, Video 2). When we

repeated the process over many simulations (i.e. new trajectories and random initializations of

weights) we found that the population as a whole consistently converged to hexagonal grid-like

responses, while similar simulations with the unconstrained version did not (compare Figure 3 to

Figure 5–Figure 6).

In order to further assess the hexagonal grid emerging in the output, we calculated the mean

(hexagonal) Gridness scores ([Sargolini et al., 2006], which measure the degree to which the solu-

tion resembles a hexagonal grid [see Materials and methods]). We ran about 1500 simulations of the

network (in each simulation, the network consisted of 625 place cell-like inputs and a single grid cell-

like output), and found noticeable differences between the constrained and unconstrained cases.

Namely, the Gridness score in the non-negatively constrained-weight simulations was significantly

higher than in the unconstrained-weight case (Gridness = 1.07 ± 0.003 in the constrained case vs.

0.302 ± 0.003 in the unconstrained case. see Figure 7). A similar difference was observed with the

direct non-negative PCA methods (1500 simulations, each with different trajectories, Gridness =

1.13 ± 0.0022 in the constrained case vs. 0.27 ± 0.0023 in the unconstrained case).

Another score we tested was a ’Square Gridness’ score (see Materials and methods) where we

measured the ’Squareness’ of the solutions (as opposed to ’Hexagonality’). We found that the

unconstrained network had a higher square-Gridness score while the constrained network had a

lower square-Gridness score (Figure 7); for both the direct-PCA calculation (square-Gridness = 0.89

± 0.0074 in the unconstrained case vs. 0.1 ± 0.006 in the constrained case) and the neural-network

(square-Gridness = 0.073 ± 0.006 in the constrained case vs. 0.73 ± 0.008 in the unconstrained case).

Figure 4. Eigenvalues and eigenvectors of the input’s correlation matrix. (A) Eigenvalue size (normalized by the

largest, from large to small (B) Cumulative explained variance by the eigenvalues, with 90% of variance accounted

for by the first 35 eigenvectors (out of 625). (C) Amplitude of leading 32 eigenvalues, demonstrating that they

cluster in groups of 4 or 8. Specifically, the first four clustered groups correspond respectively (from high to low) to

groups A,B,C & D In Figure 15C, which have the same redundancy (4,8,4 & 4).

DOI: 10.7554/eLife.10094.006
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All in all, these results suggest that when direct PCA eigenvectors and neural network weights

were unconstrained they converged to periodic square solutions. However, when constrained to be

non-negative, the direct PCA, and the corresponding neural network weights, both converged to a

hexagonal solution.

Dependence of the result on the structure of the input
We investigated the effect of different inputs on the emergence of the grid structure in the net-

works’ output. We found that some manipulation of the input was necessary in orderto enable the

Figure 5. Output of the neural network when weights are constrained to be non-negative. (A) Converged weights

(from different simulations) of the network projected onto place cells space. See an example of a simulation in

Video 1. (B) Spatial autocorrelations of (A). See an example of the evolution of autorcorrelation in simulation in

Video 2.

DOI: 10.7554/eLife.10094.007

Video 1. Evolution in time of the network’s weights.

625 Place-cells used as input. Video frame shown every

3000 time steps up to t=1,000,000. Video converges to

results similar to those of Figure 5.

DOI: 10.7554/eLife.10094.008

Video 2. Evolution of autocorrelation pattern of

network’s weights shown in Video 1.

DOI: 10.7554/eLife.10094.009
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implementation of PCA in the neural network. Specifically, PCA requires a zero-mean input, while

simple Gaussian-like place cells do not possess this property. In order to obtain input with zero-

mean, we either performed differentiation of the place cells’ activity in time, or used a Mexican-hat

like (Laplacian) shape (See Materials and methods for more details on the different types of inputs).

Another option we explored was the usage of positive-negative disks with a total sum of zero activity

in space (Figure 8). The motivation for the use of Mexican-hat like transformations is their abun-

dance in the nervous system (Wiesel and Hubel, 1963; Enroth-Cugell and Robson, 1966;

Derdikman et al., 2003).

We found that usage of simple 2-D Gaussian-functions as inputs did not generate hexagonal grid

cells as outputs (Figure 9). On the other hand, time-differentiated inputs, positive-negative disks or

Laplacian inputs did generate grid-like output cells, both when running the non-negative PCA

directly (Figure 6), or by simulating the non-negatively constrained Neural Network (Figure 5).

Another approach we used for obtaining zero-mean was to subtract the mean dynamically from

every output individually (see Materials and methods). The latter approach, related to adaptation of

the firing rate, was adopted from Kropff & Treves (Kropff and Treves, 2008), who used it to control

various aspects of the grid cell’s activity. In addition to controlling the firing rate of the grid cells, if

applied correctly, the adaptation could be exploited to keep the output’s activity stable, with zero-

mean rates. We applied this method in our system and in this case the outputs converged to hexag-

onal grid cells as well, similarly to the previous cases (e.g. derivative in time, or Mexican hats as

inputs; data not shown).

In summary, two conditions were required for the neural network to converge to spatial solutions

resembling hexagonal grid cells: (1) non-negativity of the feedforward weights and (2) an effective

zero-mean of the inputs (in time or space).

Stability analysis
Convergence to hexagons from various initial spatial conditions
In order to numerically test the stability of the hexagonal solution, we initialized the network in dif-

ferent ways, randomly, using linear stripes, squares, rhomboids (squares on hexagonal lattice) and

Figure 6. Results from the non-negative PCA algorithm. (A) Spatial projection of the leading eigenvector on input

space. (B) Corresponding spatial autocorrelations. The different solutions are outcomes of multiple simulations

with identical settings in a new environment and new random initial conditions.

DOI: 10.7554/eLife.10094.010
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noisy hexagons. In all cases, the network converged to a hexagonal pattern (Figure 10; for squares

and stripes, other shapes not shown here).

We also ran the converged weights in a new simulation with novel trajectories and tested the

Gridness scores, and the inter-trial stability in comparison to previous simulations. We found that the

hexagonal solutions of the network remained stable although the trajectories varied drastically (data

not shown).

Asymptotic stability of the equilibria
Under certain conditions (e.g., decaying learning rates and independent and identically distributed

(i.i.d.) inputs), it was previously proved (Hornik and Kuan, 1992), using techniques from the theory

of stochastic approximation, that the system described here can be asymptotically analyzed in terms

of (deterministic) Ordinary Differential Equations (ODE), rather than in terms of the stochastic recur-

rence equations. Since the ODE defining the converged weights is non-linear, we solved the ODEs

numerically (see Materials and methods), by randomly initializing the weight vector. The asymptotic

equilibria were reached much faster, compared to the outcome of the recurrence equations. Simi-

larly to the recurrence equations, constraining the weights to be non-negative induced them to con-

verge into a hexagonal shape while a non-constrained system produced square-like outcomes

(Figure 11).

Simulation was run 60 times, with 400 outputs per run. 60˚ Gridness score mean was 1.1 ± 0.0006

when weights were constrained and 0.29 ± 0.0005 when weights were unconstrained. 90˚ Gridness

Figure 7. Histograms of Gridness values from network and PCA. First row (A) + (C) corresponds to network results, and second row (B) + (D) to PCA.

The left column histograms contain the 60˚ Gridness scores and the right one the 90˚ Gridness scores.

DOI: 10.7554/eLife.10094.011
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score mean was 0.006 ± 0.002 when weights were constrained and 0.8 ± 0.0017 when weights were

unconstrained.

Effect of place cell parameters on grid structure
A more detailed view of the resulting grid spacing showed that it was heavily dependent on the field

widths of the place cells inputs. When the environment size was fixed and the output calculated per

input size, the grid-spacing (distance between neighboring peaks) increased for larger place cell field

widths.

To enable a fast parameter sweep over many place cell field widths (and large environment sizes),

we took the steady state limit, and the limit of a high density of place cell locations, and used the

fast FISTA algorithm to solve the non-negative PCA problem (see Materials and methods section).

We performed multiple simulations, and found that there was a simple linear dependency

between the place field size and the output grid scale. For the case of periodic boundary conditions,

Figure 8. Different types of spatial input used in our network. (A) 2D Gaussian function, acting as a simple place cell. (B) Laplacian function or Mexican

hat. (C) A positive (inner circle) - negative (outer ring) disk. While inputs as in panel A do not converge to hexagonal grids, inputs as in panels B or C do

converge.

DOI: 10.7554/eLife.10094.012

Figure 9. Spatial projection of outputs’ weights in the neural network when inputs did not have zero mean (such

as in Figure 8A). (A) Various weights plotted spatially as projection onto place cells space. (B) Autocorrelation of

(A).

DOI: 10.7554/eLife.10094.013
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we found that grid scale was S = 7.5sigma+0.85, where sigma was the width of the place cell field

(Figure 12A). For a different set of simulations with zero boundary conditions, we achieved a similar

relation: S=7.54sigma+0.62 (figure not shown). Grid scale was more dependent on place field size

and less on box size (Figure 12H). We note that for very large environments, the effects of boundary

conditions diminishes. At this limit, this linear relation between place field size and grid scale can be

explained from analytical considerations (see Materials and methods section). Intuitively, this follows

from dimensional analysis: given an infinite environment, at steady state the length scale of the place

cell field width is the only length scale in the model, so any other length scale must be proportional

to this scale. More precisely, we can provide a lower bound for the linear fit (Figure 12A), which

depends only on the tuning curve of the place cells (see Materials and methods section). This lower

bound was derived for periodic boundary conditions, but works well even with zero boundary condi-

tions (not shown).

Furthermore, we found that the grid orientation varied substantially for different place cell field

widths, in the possible range of 0–15 degrees (Figure 12C,D). For small environments, the orienta-

tion strongly depended on the boundary conditions. However, as described in the Methods section,

analytical considerations suggest that as the environment grows, the distribution of grid orientations

becomes uniform in the range of 0–15 degrees, with a mean at 7.5˚. Intuitively, this can be explained

by rotational symmetry – when the environment size is infinite, all directions in the model are equiva-

lent, and so we should get all orientations with equal probability, if we start the model from a uni-

formly random initialization. In addition, grid orientation was not a clear function of the gridness of

the obtained grid cells (Figure 12B). For large enough place cells, gridness was larger than 1

(Figure 12E–G).

Modules of grid cells
It is known that in reality grid cells form in modules of multiple spacings (Barry et al., 2007;

Stensola et al., 2012). We tried to address this question of modules in several ways. First, we used

different widths for the Gaussian/Laplacian input functions: Initially, we placed a heterogeneous pop-

ulation of widths in a given environment (i.e., uniformly random widths) and ran the single-output

network 100 times. The distribution of grid spacings was almost comparable to the results of the

largest width if applied alone, and did not exhibit module like behavior. This result is not surprising

when thinking about a small place cell overlapping in space with a large place cell. Whenever the

agent passes next to the small one, it activates both weights via synaptic learning. This causes the

Figure 10. Evolution in time of the networks’ solutions (upper rows) and their autocorrelations (lower rows). The

network was initialized in shapes of (A) Squares and of (B) stripes (linear).

DOI: 10.7554/eLife.10094.014
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large firing field to overshadow the smaller one. Additionally, when using populations of only two

widths of place fields, the grid spacings were dictated by the size of the larger place field (data not

shown).

The second option we considered was to use a multi-output neural network, capable of comput-

ing all ’eigenvectors’ rather than only the principal ’eigenvector’ (where by ’eigenvector’ we mean

here the vectors achieved under the positivity constraint, and not the exact eigenvectors them-

selves). We used a hierarchical network implementation introduced by Sanger, 1989 (see

Materials and methods). Since the 1st output’s weights converged to the 1st ’eigenvector’, the net-

work (Figure 13A–B) provided to the subsequent outputs (2nd, 3rd, and so forth) a reduced-version

of the data from which the projection of the 1st ’eigenvector’ has been subtracted out. This process,

reminiscent of Gram-Schmidt orthogonalization, was capable of computing all ’eigenvectors’ (in the

modified sense) of the input’s covariance matrix. It is important to note though that, due to the non-

negativity constraint, the vectors achieved in this way were not orthogonal, and thus it cannot be

considered a real orthogonalization process, although, as explained in the Methods section, the pro-

cess does aim for maximum difference between the vectors.

Figure 11. Numerical convergence of the ODE to hexagonal results when weights are constrained. (A) + (B): 60˚ and 90˚ Gridness score histograms.

Each score represents a different weight vector of the solution J. (C) + (D): Spatial results for constrained and unconstrained scenarios, respectively. (E)

+ (F) Spatial autocorrelations of (C) + (D).

DOI: 10.7554/eLife.10094.015
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Figure 12. Effect of changing the place-field size in fixed arena (FISTA algorithm used; periodic boundary

conditions and Arena size 500); (A) Grid scale as a function of place field size (sigma); Linear fit is: Scale = 7.4

Sigma+0.62; the lower bound, equal to 2p=k†, were k† is defined in Equation 32 in the Materials and methods

section; (B) Grid orientation as a function of gridness; (C) Grid orientation as a function of sigma – scatter plot

(blue stars) and mean (green line); (D) Histogram of grid orientations; (E) Mean gridness as a function of sigma;

and (F) Histogram of mean gridness. (G) Gridness as a function of sigma and (arena-size/sigma) (zero boundary

conditions). (H) Grid scale for the same parameters as in G.

DOI: 10.7554/eLife.10094.016
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When constrained to be non-negative, and using the same homogeneous ’place cells’ as in the

previous network, the networks’ weights converged to hexagonal shapes. Here, however, we found

that the smaller the ’eigenvalue’ was (or the higher the principal component number) the denser the

grid became. We were able to identify two main populations of grid-distance ’modules’ among the

hexagonal spatial solutions with high Gridness scores (>0.7, Figure 14A–B). In addition, we found

that the ratio between the distances of the modules was �1.4, close to the value of 1.42 found by

Stensola et al. (Stensola et al., 2012). Although we searched for additional such jumps, we could

only identify this single jump, suggesting that our model can yield up to two ’modules’ and not

more. The same process was repeated using the direct PCA method, utilizing the covariance matrix

of the data after simulation as input for the non-negative PCA algorithms, and considering their abil-

ity to calculate only the 1st ’eigenvector’. By iteratively projecting the 1st ’eigenvector’ on the simula-

tion data and subtracting the outcome from the original data, we applied the non-negative PCA

algorithm to the residual data obtaining the 2nd ’eigenvector’ of the original data. This

’eigenvector’ now constituted the 1st eigenvector’ of the new residual data (see

Materials and methods). Applying this process to as many ’outputs’ as needed, we obtained very

similar results to the ones presented above using the neural network (data not shown).

Discussion
In our work, we explored the nature and behavior of the feedback projections from place cells to

grid cells. We shed light on the importance of this relation and showed, both analytically and in sim-

ulation, how a simple single-layer neural network could produce hexagonal grid cells when subjected

to place cell-like temporal input from a randomly-roaming moving agent. We found that the network

resembled a neural network performing PCA (Oja, 1982), with the constraint that the weights were

non-negative. Under these conditions, and also under the requirements that place cells have a zero

mean in time or space, the first principal component in the 2D arena had a firing pattern resembling

a hexagonal grid cell. Furthermore, we found that in the limit of very large arenas, grid orientation

converged to a uniform distribution in range of 0–15˚. When looking at additional components, grid

scale tends to be discretely clustered, such that two modules emerge. This is partially consistent

with current experimental findings (Stensola et al., 2012; 2015). Furthermore, the inhibitory connec-

tivity between multiple grid cells is consistent with the known functional anatomy in this network

(Couey et al., 2013).

Figure 13. Hierarchial network capable of computing all ’principal components’. (A) Each output is a linear sum of

all inputs weighted by the corresponding learned weights. (B) Over time, the data the following outputs ’see’ is

the original data after subtration of the 1st ’eigenvector’s’ projection onto it. This is an iterative process causing all

outputs’ weights to converge to the ’prinipcal components’ of the data.

DOI: 10.7554/eLife.10094.017
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Place-to-Grid as a PCA network
As a consequence of the requirements for PCA to hold, we found that the place cell input needed

to have a zero-mean, otherwise the output was not periodic. Due to the lack of the zero-mean prop-

erty in 2D Gaussians, we used various approaches to impose zero-mean on the input data. The first,

in the time domain, was to differentiate the input and use the derivatives (a random walk produces

zero-mean derivatives) as inputs. Another approach was to dynamically subtract the mean in all itera-

tions of the simulation. This approach was reminiscent of the adaptation procedure suggested in the

Kropff & Treves paper (Kropff and Treves, 2008). A third approach, applied in the spatial domain

was to use inputs with a zero-spatial mean such as Laplacians of Gaussians (Mexican hats in 2D, or

differences-of-Gaussians) or negative – positive disks. Such Mexican-hat inputs are quite typical in

the nervous system (Wiesel and Hubel, 1963; Enroth-Cugell and Robson, 1966; Derdikman et al.,

2003), although in the case of place cells it is not completely known how they are formed. They

could be a result of interaction between place cells and the vast number of inhibitory interneurons in

the local hippocampal network (Freund and Buzsáki, 1996).

Another condition we found crucial, which was not part of the original PCA network, was a non-

negativity constraint on the place-to-grid learned weights. While rather easy to implement in the net-

work, adding this constraint to the non-convex PCA problem was harder to implement. Since the

problem is NP-hard (Montanari and Richard, 2014), we turned to numerical methods. We used

three different algorithms (Montanari and Richard, 2014; Zass and Shashua, 2006; Beck and

Teboulle, 2009) to find the leading ’eigenvector’ of every given temporal based input. As shown in

the results section, both processes (i.e. direct PCA and the neural network) resulted in hexagonal

outcomes when the non-negativity and zero-mean criteria were met. Note that the ease of use of

Figure 14. Modules of grid cells. (A) In a network with 50 outputs, the grid spacing per output is plotted with respect to the hierarchical place of the

output. (B) The grid spacing of outputs with high Gridness score (>0.7). The centroids have a ratio of close to H2. (C) + (D) Example of rate maps of

outputs and their spatial autocorrelations for both of the modules.
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the neural network for solving the positive PCA problem is a nice feature of the neural network

implementation, and should be investigated further.

We also note that while our network focused on the projection from place cells to grid cells, we

cannot preclude the importance of the reciprocal projection from grid cells to place cells. Further

study will be needed to ‘close the loop’ and simultaneously consider both of these projections at

once.

Similar studies
We note that similar work has noticed the relation between place-cell-to-grid-cell transformation

and PCA. Notably, Stachenfeld et al., (2014) have demonstrated, from considerations related to

reinforcement learning, that grid cells could be related to place cells through a PCA transformation.

However, due to the unconstrained nature of their transformation, the resulting grid cells were

square-like. Furthermore, there has been an endeavor to model the transformation from place cells

to grid cells using independent-component-analysis (Franzius et al., 2007).

We also note that there is now a surge of interest in the feedback projection from place cells to

grid-cells, which is inverse to the anatomical downstream direction from grid cells to place cells

(Witter and Amaral, 2004) that has guided most of the models to-date (Zilli, 2012; Giocomo et al.,

2011). In addition to several papers from the Treves group, in which the projection from place cells

to grid cells is studied (Kropff and Treves, 2008; Si and Treves, 2013), there has been also recent

work from other groups as well exploring this direction (Castro and Aguiar, 2014; Stepa-

nyuk, 2015). As far as we are aware, none of the previous studies noted the importance of the non-

negativity constraint and the requirement of zero mean input. Additionally, to the best of our knowl-

edge, the analytic results and insights provided in this work (see Materials and methods) are novel,

and provide a mathematically consistent explanation for the emergence of hexagonally-spaced grid

cells.

Predictions of our model
Based on the findings of this work, it is possible to make several predictions. First, the grid cells

must receive zero-mean input over time to produce hexagonally shaped firing patterns. With all

feedback projections from place cells being excitatory, the lateral inhibition from other neighboring

grid cells might be the balancing parameter to achieve the temporal zero-mean (Couey et al.,

2013). Alternatively, an adaptation method, such as the one suggested in Kropff and Treves,

(2008) may be applied. Second, if indeed the grid cells are a lower dimensional representation of

the place cells in a PCA form, the place-to-grid neural weights distribution should be similar across

identically spaced grid cell populations. This is because all grid cells with similar spacing would have

maximized the variance over the same input, resulting in similar spatial solutions. As an aside, we

note that such a projection may be a source of phase-related correlations in grid cells (Tocker et al.,

2015). Third, we found a linear relation between the size of the place cells and the spacing between

grid cells. Furthermore, the spacing of the grid cells is mostly determined by the size of the largest

place cell – predicting that the feedback from large place cells is not connected to grid cells with

small spacing. Fourth, we found modules of different grid spacings in a hierarchical network with the

ratio of distances between successive units close to H2. This result is in accordance with the ratio

reported in Stensola et al., (2012). However, we note that there is a difference between our results

and experimental results because the analysis predicts that there should only be two modules, while

the data show at least 5 modules, with a range of scales, the smallest and most numerous having

approximately the scale of the smaller place fields found in the dorsal hippocampus (25–30 cm).

Fifth, for large enough environments our model suggests that, from mathematical considerations,

the grid orientation should approach a uniform orientation in the possible range of 0–15˚. This is in

discrepancy with experimental results which measure a peak at 7.5˚, and not a uniform distribution

(Stensola et al., 2015). As noted, the discrepancies between our results and reality may relate to

the fact that a more advanced model will have to take into account both the downstream projection

from grid cells to place cells together with the upstream projection from place cells to grid cells dis-

cussed in this paper. Furthermore, such a model will have to take into account the non-uniform dis-

tribution of place-cell widths (Kjelstrup et al., 2008).
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Why hexagons?
In light of our results, we further asked what is special about the hexagonal shape which renders it a

stable solution. Past works have demonstrated that hexagonality is optimal in terms of efficient cod-

ing. Two recent papers have addressed the potential benefit of encoding by grid cells.

Mathis et al., (2015) considered the decoding of spatial information based on a grid-like periodic

representation. Using lower bounds on the reconstruction error based on a Fisher information crite-

rion, they demonstrated that hexagonal grids lead to the highest spatial resolution in two dimen-

sions (extensions to higher dimensions were also provided). The solution is obtained by mapping the

problem onto a circle packing problem. The work of Wei et al., (2013) also took a decoding per-

spective, and showed that hexagonal grids minimize the number of neurons required to encode

location with a given resolution. Both papers offer insights into the possible information theoretic

benefits of the hexagonal grid solution. In the present paper, we were mainly concerned with a spe-

cific biologically motivated learning (development) mechanism that may yield such a solution. Our

analysis suggests that the hexagonal patterns can arise as a solution that maximizes the grid cell out-

put variance, under non-negativity constraints. In Fourier space, the solution is a hexagonal lattice

with lattice constant near the peak of the Fourier transform of the place cell tuning curve (Figures 15

and 16; see Materials and methods).

To conclude, this work demonstrates how grid cells could be formed from a simple Hebbian neu-

ral network with place cells as inputs, without needing to rely on path-integration mechanisms.

Materials and methods
All code was written in MATLAB, and can be obtained on https://github.com/derdikman/Dordek-et-

al.-Matlab-code.git or on request from authors.

Neural network architecture
We implemented a single-layer neural network with feedforward connections that was capable of

producing a hexagonal-like output (Figure 2). The feedforward connections were updated according

to a self-normalizing version of a Hebbian learning rule referred to as the Oja rule (Oja, 1982),

DJ ti ¼ "tð trti �ð tÞ2Jti Þ; (1)

where "t denotes the learning rate, J ti is the ith weight and  t; rti are the output and the ith input of

the network, respectively (all at time t). The weights were initialized randomly according to a uniform

distribution and then normalized to have norm 1. The output  t was calculated every iteration by

summing up all pre-synaptic activity from the entire input neuron population. The activity of each

output was processed through a sigmoidal function (e.g., tanh) or a simple linear function. Formally,

 t ¼ f
Xn

i¼1
J ti �rti

� �

; (2)

where n is the number of input place cells. Since we were initially only concerned with the eigenvec-

tor associated with the largest eigenvalue, we did not implement a multiple-output architecture. In

this formulation, in which no lateral weights were used, multiple outputs were equivalent to running

the same setting with one output several times.

As discussed in the introduction, this kind of simple feedforward neural network with linear activa-

tion and a local weight update in the form of Oja’s rule (1) is known to perform Principal Compo-

nents Analysis (PCA) (Oja, 1982; Sanger, 1989; Weingessel and Hornik, 2000). In the case of a

single output the feedforward weights converge to the principal eigenvector of the input’s covari-

ance matrix. With several outputs, and lateral weights, as described in the section on modules, the

weights converge to the leading principal eigenvectors of the covariance matrix, or, in certain cases

(Weingessel and Hornik, 2000), to the subspace spanned by the principal eigenvectors. We can

thus compare the results of the neural network to those of the mathematical procedure of PCA.

Hence, in our simulation, we (1) let the neural networks’ weights develop in real time based on the

current place cell inputs. In addition, we (2) saved the input activity for every time step to calculate

the input covariance matrix and perform (batch) PCA directly.

It is worth mentioning that the PCA solution described in this section can be interpreted differ-

ently based on the Singular Value Decomposition (SVD). Denoting by R the T � d spatio-temporal
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pattern of place cell activities (after setting the mean to zero), where T is the time duration and d is

the number of place cells, the SVD decomposition (see Jolliffe, 2002; sec. 3.5) for R is R ¼ ULA0.

For a matrix R of rank r, L is a r � r diagonal matrix whose kth element is equal to lk
1=2, the square

root of the kth eigenvalue of the covariance matrix RR0 (computed in the PCA analysis), A is the d �
r matrix with kth column equal to the kth eigenvector of RR0, and U is the T � r matrix whose kth

column is l
�1=2
k Rak. Note that U is a T � r dimensional matrix whose kth column represents the tem-

poral dynamics of the kth grid cell. In other words, the SVD provides a decomposition of the place

cell activity in terms of the grid cell activity, as opposed to the grid cell representation in terms of

place cell activity we discussed so far. The network learns the spatial weights over place cells (the

eigenvectors) as the connections weights from the place cells, and ’projection onto place cell space’

(l
�1=2
k Rak) is simply the firing rates of the output neuron plotted against the location of the agent.

The question we therefore asked was under what conditions, when using place cell-like inputs, a

solution resembling hexagonal grid cells emerges. To answer this we used both the neural-network

implementation and the direct calculation of the PCA coefficients.

Simulation
We simulated an agent moving in a 2D virtual environment consisting of a square arena covered by

n uniformly distributed 2D Gaussian-shaped place cells, organized on a grid, given by

rti

�

XðtÞ
�

¼ exp
�
�

XðtÞ�Ci

�2

2si
2

0

B

@

1

C

A
; i¼ 1;2; :::;n (3)

where XðtÞ represents the location of the agent. The variables rti constitute the temporal input from

place cell i at time t, and Ci;si are the ith place cell’s field center and width, respectively (see varia-

tions on this input structure below). In order to eliminate boundary effects, periodic boundary condi-

tions were assumed. The virtual agent moved about in a random walk scheme (see Appendix) and

explored the environment (Figure 1A). The place cell centers were assumed to be uniformly distrib-

uted (Figure 1B) and shared the same standard deviation s. The activity of all place cells as a func-

tion of time ðrðtÞ1; rðtÞ2 . . . rðtÞnÞ was dependent on the stochastic movement of the agent, and

formed a [Neuron x Time] matrix (r 2 RnxT , with T- being the time dimension, see Figure 1C).

The simulation was run several times with different input arguments (see Table 1). The agent was

simulated for T time steps, allowing the neural network’s weights to develop and reach a steady

state by using the learning rule (Equations 1,2) and the input (Equation 3) data. The simulation

parameters are listed below and include parameters related to the environment, simulation, agent

and network variables.

To calculate the PCA directly, we used the MATLAB function Princomp in order to evaluate the n

principal eigenvectors f~qkgnk¼1 and corresponding eigenvalues of the input covariance matrix. As

mentioned in the Results section, there exists a near fourfold redundancy in the eigenvectors (X-Y

axis and in phase). Figure 3 demonstrates this redundancy by plotting the eigenvalues of the covari-

ance matrix. The output response of each eigenvector ~qk corresponding to a 2D input location ðx; yÞ
is

Fðx;yÞk ¼
X

n

j¼1

q
j
k exp �ðx� cjxÞ

2

2s2
x

�
ðy� cjyÞ

2

2s2
y

 !

; k¼ 1;2; :::; n (4)

Table 1. List of variables used in simulation.

Environment: Size of arena Place cells field width Place cells distribution

Agent: Velocity (angular & linear) Initial position —————————————————

Network: # Place cells/ #Grid cells Learning rate Adaptation variable (if used)

Simulation: Duration (time) Time step —————————————————

DOI: 10.7554/eLife.10094.019
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where cjx and cjy are the x; y components of the centers of the individual place cell fields. Unless oth-

erwise mentioned, we used place cells in a rectangular grid, such that a place cell is centered at

each pixel of the image (that is – number of place cells equals the number of image pixels).

Non-negativity constraint
Projections between place cells and grid cells are known to be primarily excitatory (Witter and Ama-

ral, 2004), thus if we aim to mimic the biological circuit, a non-negativity constraint should be added

to the feedforward weights in the neural network. While implementing a non-negativity constraint in

the neural network is rather easy (a simple rectification rule in the weight dynamics, such that

weights which are smaller than 0 are set to 0), the equivalent condition for calculating non-negative

Principal Components is more intricate. Since this problem is non-convex and, in general, NP-hard

(Montanari and Richard, 2014), a numerical procedure was imperative. We used three different

algorithms for this purpose.

The first (Zass and Shashua, 2006) named NSPCA (Nonnegative Sparse PCA) is based on coordi-

nate-descent. The algorithm computes a non-negative version of the covariance matrix’s eigenvec-

tors and relies on solving a numerical optimization problem, converging to a local maximum starting

from a random initial point. The local nature of the algorithm did not guarantee a convergence to a

global optimum (recall that the problem is non-convex). The algorithm’s inputs consisted of the

place cell activities’ covariance matrix, a - a balancing parameter between reconstruction and ortho-

normality, b – a variable which controls the amount of sparseness required, and an initial solution

vector. For the sake of generality, we set the initial vector to be uniformly random (and normalized),

a was set to a relatively high value – 104 and since no sparseness was needed, b was set to zero.

The second algorithm (Montanari and Richard, 2014) does not require any simulation parame-

ters except an arbitrary initialization. It works directly on the inputs and uses a message passing

algorithm to define an iterative algorithm to approximately solve the optimization problem. Under

specific assumptions it can be shown that the algorithm asymptotically solves the problem (for large

input dimensions).

The third algorithm we use is the parameter free Fast Iterative Threshold and Shrinkage algorithm

FISTA (Beck and Teboulle, 2009). As described later in this section, this algorithm is the fastest of

the three, and allowed us rapid screening of parameter space.

Different variants of input structure
Performing PCA on raw data requires the subtraction of the data mean. Some thought was required

in order to determine how to perform this subtraction in the case of the neural network.

One way to perform the subtraction in the time domain was to dynamically subtract the mean

during simulation by using the discrete 1st or 2nd derivatives of the inputs in time [i.e. from

Equation 3, Drðt þ 1Þ ¼ rðt þ 1Þ � r tð Þ]. Under conditions of an isotropic random walk (namely, given

any starting position, motion in all directions is equally likely) it is clear that E½DrðtÞ� ¼ 0. Another

option for subtracting the mean in the time domain was the use of an adaptation variable, as was ini-

tially introduced by Kropff and Treves, (2008). Although originally exploited for control over the fir-

ing rate, it can be viewed as a variable that represents subtraction of a weighted sum of the firing

rate history. Instead of using the inputs rti directly in Equation 2 to compute the activation  t, an

intermediate adaptation variable  t
adpðdÞ was used (d being the relative significance of the present

temporal sample) as

 t
adp ¼  t � t

; (5)

 
t ¼ ð1� dÞ� t�1 þ d t: (6)

It is not hard to see that for i.i.d. variables  t
adp, the sequence  

t
converges for large t to the

mean of  t. Thus, when t�!¥ we find that E½ t
adp��!0, specifically, the adaptation variable is of zero

asymptotic mean.

The second method we used to enforce a zero mean input was simply to create it in advance.

Rather than using 2D Gaussian functions (i.e. [Equation 3]) as inputs we used 2D difference-of-Gaus-

sians (all s are equal in x and y axis):
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rti

�

XðtÞ
�

¼ c1;i exp �

�

XðtÞ�Ci

�2

2s1;i
2

0

B

@

1

C

A
� c2;i exp �

�

XðtÞ�Ci

�2

2s2;i
2

0

B

@

1

C

A
; i¼ 1;2; :::;n (7)

where the constants c1 and c2 are set so the integral of the given Laplacian function is zero (if the

environment size is not too small, then c1;i=c2;i » s2;i=s1;i). Therefore, if we assume a random walk

that covers the entire environment uniformly, the temporal mean of the input would be zero as well.

Such input data can be inspired by similar behavior of neurons in the retina and the lateral-genicu-

late nucleus (Wiesel and Hubel, 1963; Enroth-Cugell and Robson, 1966). Finally, we implemented

another input data type; positive-negative disks (see Appendix). Analogously to the difference-of-

Gaussians function, the integral over input is zero so the same goal (zero-mean) was achieved. It is

worthwhile noting that subtracting a constant from a simple Gaussian function is not sufficient since

at infinity it does not reach zero.

Quality of solution and Gridness
In order to test the hexagonality of the results we used a hexagonal Gridness score (Sargolini et al.,

2006). The Gridness score of the spatial fields was calculated from a cropped ring of their autocorre-

logram including the six maxima closest to the center. The ring was rotated six times, 30� per rota-

tion, reaching in total angles of 30�; 60�; 90�; 120�; 150�. Furthermore, for every rotated angle the

Pearson correlation with the original un-rotated map was obtained. Denoting by Cg the correlation

for a specific rotation angle g, the final Gridness score was (Kropff and Treves, 2008):

Gridness ¼ 1

2
ðC60þC120Þ�

1

3
ðC30þC90þC150Þ: (8)

In addition to this ’traditional’ score we used a Squareness Gridness score in order to examine

how square-like the results are spatially. The special reference to the square shape was driven by the

tendency of the spatial solution to converge to a rectangular shape when no constrains were

applied. The Squareness Gridness score is similar to the hexagonal one, but now the cropped ring

of the autocorrelogram is rotated 45� every iteration to reach angles of 45�; 90�; 135�. As before,

denoting Cg as the correlation for a specific rotation angle g the new Gridness score was calculated

as:

Square Gridness¼C90�
1

2
ðC45þC135Þ: (9)

All errors calculated in gridness measures are SEM (Standard Error of the Mean).

Hierarchical networks and modules
As described in the Results section, we were interested to check whether a hierarchy of outputs

could explain the module phenomenon described for real grid cells. We replaced the single-output

network with a hierarchical, multiple outputs network, which is capable of computing all ’principal

components’ of the input data while maintaining the non-negativity constraint as before. The net-

work, introduced by Sanger, 1989, computes each output as a linear summation of the weighted

inputs similar to Equation 2. However, the weights are now calculated according to:

DJ tij ¼ "tðrtj t
i � t

i

X

i

k¼1

J tkj 
t
kÞ: (10)

The first term in the parenthesis when k ¼ 1 was the regular Hebb-Oja derived rule. In other

words, the first output calculated the first non-negative ’principal component’ (in inverted commas

due to the non-negativity) of the data. Following the first one, the weights of each output received a

back projection from the previous outputs. This learning rule applied to the data in a similar manner

to the Gram-Schmidt process, subtracting the ’influence’ of the previous ’principal components’ on

the data and recalculating the appropriate ’principal components’ of the updated input data.

In a comparable manner, we applied this technique to the input data X in order to obtain non-

negative ’eigenvectors’ from the direct nonnegative-PCA algorithms. We found V2 by subtracting

from the data the projection of V1 on it,
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~X¼X�V
T
1 ðV1�XÞ: (11)

Next, we computed V2, the first non-negative ’principal component’ of ~X, and similarly the subse-

quent ones.

Stability of hexagonal solutions
In order to test the stability of the solutions we obtained under all types of conditions, we applied

the ODE method (Kushner and Clark, 1978; Hornik and Kuan, 1992; Weingessel and Hornik,

2000) to the PCA feature extraction algorithm introduced in pervious sections. This method allows

one to asymptotically replace the stochastic update equations describing the neural dynamics by

smooth differential equations describing the average asymptotic behavior. Under appropriate condi-

tions, the stochastic dynamics converge with probability one to the solution of the ODEs. Although

originally this approach was designed for a more general architecture (including lateral connections

and asymmetric updating rules), we used a restricted version for our system. In addition, the follow-

ing analysis is accurate solely for linear output functions. However, since our architecture works well

with either linear or non-linear output functions, the conclusions are valid.

We can rewrite the relevant updating equations of the linear neural network (in matrix form), (see

[Weingessel and Hornik, 2000] Equations 15–19):

 tþ1 ¼Q�J t�ðrtÞT ; (12)

DJ t ¼ "t
�

 tðrtÞT �Fð t�ð tÞTÞJ t
�

: (13)

In our case we set

Q¼ I; F¼ diag:

Consider the following assumptions

1. The input sequence rt consists of independent identically distributed, bounded random varia-
bles with zero-mean.

2. f"tg is a positive number sequence satisfying:
P

t "
t ¼ ¥;

P

t ð"tÞ
2 < ¥.

A typical suitable sequence is "t ¼ 1
t
; t ¼ 1; 2 . . ..

For long times, we denote

E½ tðrtÞT ��!E½J�r�rT � ¼ E½J��E½r�rT � ¼ JS; (14)

lim
t�!¥

E½  T � ¼ E½J��E½rrT ��E½JT � ¼ JSJT : (15)

The penultimate equalities in these equations used the fact that the weights converge with proba-

bility one to their average value, resulting from the solution of the ODEs. Following Weingessel and

Hornik, (2000), we can analyze Equations 12,13 under the above assumptions, via their asymptoti-

cally equivalent associated ODEs

dJ

dt
¼ JS� diagðJSJTÞ J; (16)

with equilibria at

JS¼ diagðJSJTÞ J: (17)

We solved it numerically by exploiting the same covariance matrix and initializing with random

weights J. In line with our previous findings, we found that constraining J to be non-negative (by a

simple cut-off rule) resulted in a hexagonal shape (in the projection of J onto the place cells space;

Figure 11). In contrast, when the weights were not constrained they converged to square-like

results.

Steady state analysis
From this point onwards, we focus on the case of a single output, in which J is a row vector, unless

stated otherwise. In the unconstrained case, from Equation 17 any J which is a normalized
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eigenvector of S would be a fixed point. However, from Equation 16, only the principal eigenvector,

which is the solution to the following optimization problem

maxJ:JT J¼1 JSJ
T (18)

would correspond to a stable fixed point. This is the standard PCA problem. By adding the con-

straint J � 0 we get the non-negative PCA problem.

To speed up simulation and simplify analysis we make further simplifications.

First, we assume that the agent’s random movement is ergodic (e.g., an isotropic random walk in

a finite box as we used in our simulation), uniform and covering the entire environment, so that

JSJT ¼ E  2
�

XðtÞ
�h i

¼ 1

jSj

ð

S

 2ðxÞdx; (19)

where x denotes location vector (in contrast to XðtÞ, which is the random process corresponding to

the location of the agent), S is the entire environment, and jSj is the size of the environment.

Second, we assume that the environment S is uniformly and densely covered by identical place

cells, each of which has the same a tuning curve rðxÞ (which integrates to zero). In this case, the

activity of the linear grid cell becomes a convolution operation

 ðxÞ ¼
ð

S

Jðx0Þrðx�x0Þdx0; (20)

where JðxÞ is the synaptic weight connecting to the place cell at location x.

Thus, we can write our objective as

1

jSj

ð

S

 2ðxÞdx¼ 1

jSj

ð

S

�

ð

S

Jðx0Þrðx�x0Þdx0
�2

dx (21)

under the constraint that the weights are normalized

1

Sj j

ð

S

J2 xð Þ dx¼ 1; (22)

where either JðxÞ 2 R (PCA) or JðxÞ � 0 (’non-negative PCA’).

Since we expressed the objective using a convolution operation (different boundary conditions

can be assumed), it can be solved numerically considerably faster. In the non-negative case, we used

the parameter free Fast Iterative Threshold and Shrinkage algorithm [FISTA (Beck and Teboulle,

2009); in which we do not use shrinkage, since we only have hard constraints], where the gradient

was calculated efficiently using convolutions.

Moreover, as we show in the following sections, if we assume periodic boundary conditions and

use Fourier analysis, we can analytically find the PCA solutions, and obtain important insight on the

non-negative PCA solutions.

Fourier notation

Any continuously differentiable function f ðxÞ, defined over S¼D ½0; L�D, a ’box’ region in D dimensions,

with periodic boundary conditions, can be written using a Fourier series

f̂ ðkÞ¼D 1

jSj

ð

S

f ðxÞeik�xdx;

f ðxÞ¼D
X

k2Ŝ
f̂ ðkÞe�ik�x;

(23)

where jSj ¼ LD is the volume of the box and

Ŝ¼D 2m1p

L
; . . . ;

2mdp

L

� �� �

ðm1;...;mdÞ2ZD

is the reciprocal lattice of S in k-space (frequency space).
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PCA solution
Assuming periodic boundary conditions, we use Parseval’s identity, and the properties of the convo-

lution, to transform the steady state objective (Equation 21) to its simpler form in the Fourier

domain,

1

jSj

ð

S

 2ðxÞdx¼
X

k2Ŝ
jĴ ðkÞr̂ðkÞj2: (24)

Similarly, the normalization constraint can also be written in the Fourier domain,

1

jSj

ð

S

J2ðxÞdx¼
X

k2Ŝ
jĴ ðkÞj2 ¼ 1: (25)

Maximizing the objective Equation 24 under this constraint in the Fourier domain, we immedi-

ately get that any solution is a linear combination of the Fourier components,

Ĵ kð Þ ¼ 1; k¼ k�
0; k 6¼ k�

:

�

(26)

where

k� 2 argmax
k2Ŝ r̂ ðkÞ; (27)

and Ĵ ðkÞ satisfies the normalization constraint. In the original space, the Fourier components are

JðxÞ ¼ eik�xþif; (28)

where f 2 ½0; 2pÞ is a free parameter that determines the phase. Also, since JðxÞ should assume real

values, it is composed of real Fourier components

JðxÞ ¼ 1
ffiffiffi

2
p ðeik� �xþifþ e�ik��x�ifÞ ¼

ffiffiffi

2
p

cosðk��xþfÞ: (29)

This is a valid solution, since rðxÞ is a real-valued function, r̂ðkÞ ¼ r̂ð�kÞ and therefore

�k� 2 argmaxk2Ŝ r̂ðkÞ.

PCA solution for a difference of Gaussians tuning curve
In this paper we focused on the case where rðxÞ has the shape of a difference of Gaussians

(Equation 7),

rðxÞ / c1 exp �kxk2
2s2

1

 !

� c2 exp �kxk2
2s2

2

 !

(30)

where c1 and c2 are some positive normalization constants, set so that
Ð

S
rðxÞdx ¼ 0 (see appendix).

The Fourier transform of rðxÞ is also a difference of Gaussians

r̂ðkÞ / exp �1

2
s2
1kkk

2

� �

� exp �1

2
s2
2kkk

2

� �

(31)

8k 2 Ŝ, as we show in the appendix. Therefore the value of the Fourier domain objective only

depends on the radius kkk, and all solutions k� have the same radius kk�k. If L�!¥, then the k-lat-

tice Ŝ becomes dense (Ŝ�!R
D) and this radius is equal to

k† ¼ argmaxk�0 exp �1

2
s2
1k

2

� �

� exp �1

2
s2
2k

2

� �� �

(32)

which is a unique maximizer, that can be easily obtained numerically.

Notice that if we multiply the place cell field width by some positive constant c, then the solution

k† will be divided by c. The grid spacing, proportional to 1
k†
, would therefore also be multiplied by c.

This entails a linear dependency between the place cell field width and the grid cell spacing, in the

limit of a large box size ðL�!¥Þ. When the box has a finite size, k-lattice discretization also has a

(usually small) effect on the grid spacing.
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In that case, all solutions k� are restricted to be on the finite lattice Ŝ. Therefore, the solutions k�

are the points on the lattice Ŝ for which the radius kk�k is closest to k† (see Figure 15B,C).

The degeneracy of the PCA solution
The number of real-valued PCA solutions (degeneracy) in 1D is two, as there are exactly two max-

ima, k� and �k�. The phase f, determines how the components at k� and �k� are linearly combined.

However, there are more maxima in the 2D case. Specifically, given a maximum k�, we can write

ðm; nÞ ¼ L
2p
k�, where ðm; nÞ 2 Z

2. Usually there are 7 other different points with the same radius:

ðm;�nÞ,ð�m;�nÞ,ð�m; nÞ,ð�n;�mÞ,ðn;�mÞ,ð�n;mÞ and ðn;mÞ, so we will have a degeneracy of eight

(corresponding to the symmetries of a square box). This is case of points in group B, shown in

Figure 15C.

However, we can also get a different degeneracy. First, if either m ¼ �n, n ¼ 0 or m ¼ 0 we will

have a degeneracy of 4, since then some of the original eight points will coincide (groups A,C and D

in Figure 15C). Second, additional points ðk; rÞ can exist such that k2 þ r2 ¼ m2 þ n2, (Pythagorean

triplets with the same hypotenuse) – for example, 152 þ 202 ¼ 252 ¼ 72 þ 242. These points will also

appear in groups of four or eight.

Therefore, we will always have a degeneracy which is some multiple of 4. Note that in the full net-

work simulation, the degeneracy is not exact. This is due to the perturbation noise from the agent’s

random walk as well as the non-uniform sampling of the place cells.

The PCA solution with a non-negative constraint
Next, we add the non-negativity constraint JðxÞ � 0. As mentioned earlier, this constraint renders

the optimization problem NP-hard, and prevents us from a complete analytical solution. We there-

fore combine numerical and mathematical analysis, in order to gain intuition as to why

1. Locally optimal 2D solutions are hexagonal.

2. These solutions have a grid spacing near (4p=ð
ffiffiffi

3
p

k†Þ (k† is the peak of r̂ kð Þ).

Figure 15. PCA k-space analysis for a difference of Gaussians tuning curve. (A) The 1D tuning curve rðxÞ. (B) The
1D tuning curve Fourier transform r̂ðkÞ. The black circles indicate k-lattice points. The PCA solution, k�, is given by

the circles closest to k†, the peak of r̂ðkÞ (red cross). (C) A contour plot of the 2D tuning curve Fourier transform

r̂ðkÞ. In 2D k-space the peak of r̂ðkÞ becomes a circle (red), and the k-lattice Ŝ is a square lattice (black circles).

The lattice point can be partitioned into equivalent groups. Several such groups are marked in blue on the lattice.

For example, the PCA solution Fourier components lie on the four lattice points closest to the circle, denoted A1-

4. Note the grouping of A,B,C & D (4,8,4 and 4, respectively) corresponds to the grouping of the 20 highest

principal components in Figure 4. Parameters: 2s1 ¼ s2 ¼ 7:5;L ¼ 100.

DOI: 10.7554/eLife.10094.020
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3. The average grid alignment is approximately 7.5˚, for large environments.
4. Why grid cells have modules, and what is their spacing.

1D Solutions
Our numerical results indicate that the Fourier components of any locally optimal 1D solution of

non-negative PCA have the following structure:

1. There is a non-negative ’DC component’ (k = 0).
2. The maximal non-DC component, (k 6¼ 0) is k�, where k� is ’close’ (more details below) to k†,

the peak of r̂ðkÞ.
3. All other non-zero Fourier components are mk�f g¥n¼1, weaker harmonies of k�.

This structure suggests that the component at k� aims to maximize the objective, while the other

components guarantee the non-negativity of the solution JðxÞ. In order to gain some analytical intui-

tion as to why this is the case, we first examine the limit case that L�!¥ and r̂ðkÞ is highly peaked at

k†. In that case the Fourier objective (Equation 24) simply becomes 2ĵrðk†Þj2jĴ ðk†Þj2. For simplicity,

we will rescale our units so that ĵrðk†Þj2 ¼ 1=2, and the objective becomes jĴ ðk†Þj2. Therefore, the
solution must include a Fourier component at k† or the objective would be zero. The other compo-

nents exist only to maintain the non-negativity constraint, since if they increase in magnitude, then

the objective, which is proportional to jĴðk†Þj2, must decrease to compensate (due to the normaliza-

tion constraint – Equation 25). Note that these components must include a positive ’DC component’

at k ¼ 0, or else

ð

S

JðxÞdx / Ĵ ð0Þ � 0, which contradicts the constraints. To find all the Fourier compo-

nents, we examine a solution composed of only a few (M) components

JðxÞ ¼ Ĵ ð0Þþ 2
X

M

m¼1

ĴmcosðkmxþfmÞ:

Clearly, we can set k1 ¼ k†, or otherwise, the objective would be zero. Also, we must have

Ĵ ð0Þ ¼�minx

�

2
X

M

m¼1

ĴmcosðkmxþfmÞ
�

� 0:

Otherwise, the solution would be either (1) negative or (2) non-optimal, since we can decrease Ĵ ð0Þ
and increase jJ1j.

For M ¼ 1, we immediately get that, in the optimal solution, 2Ĵ 1 ¼ Ĵ ð0Þ ¼
ffiffiffiffiffiffiffiffi

2=3
p

(fm does not mat-

ter). For M ¼ 2; 3 and 4 a solution is harder to find directly, so we performed a parameter grid search

over all the free parameters (km; Ĵm and fm) in those components. We found that the optimal solution

(which maximizes the objective jĴ ðk†Þj2), had the following form

JðxÞ ¼
X

M

m¼�M

Ĵ ðmk†Þcos
�

mk†ðx� x0Þ
�

; (33)

where x0 is a free parameter. This form results from a parameter grid search for M ¼ 1; 2; 3 and 4,

under the assumption that L�!¥ and r̂ðkÞ is highly peaked. However, our numerical results in the

general case (Figure 16A), using the FISTA algorithm, indicate that the locally optimal solution does

not change much even if L is finite, and r̂ðkÞ is not highly peaked. Specifically, it has a similar form

JðxÞ ¼
X

¥

m¼�¥
Ĵ ðmk�Þcos

�

mk�ðx� x0Þ
�

: (34)

Since Ĵ ðmk�Þ is rapidly decaying (Figure 16A), effectively only the first few components are non-

negligible, as in Equation 33. This can also be seen in the value of the objective obtained in the

parameter scan
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M 1 2 3 4

jĴ ðk†Þj2
1

6
0:2367 0:2457 0:2457 ; (35)

where the contribution of additional high frequency components to the objective quickly becomes

negligible. In fact, the value of the objective cannot increase above 0:25, as we explain in the next

section.

And so, the main difference between Equations 33 and 34 is the base frequency, k�, which is

slightly different from k†. As explained in the appendix, the relation between k� and k† depends on

the k-lattice discretization, as well as on the properties of r̂ðkÞ.

2D Solutions
The 1D properties, described in the previous section, generalize to the 2D case in the following

manner:

1. There is a non-negative DC component ðk ¼ ð0; 0ÞÞ.

Figure 16. Fourier components of Non-negative PCA on the k-lattice. (A) 1D solution (blue) includes: a DC

component (k ¼ 0), a maximal component with magnitude near k† (red line), and weaker harmonics of the maximal

component. (B) 2D solution includes: a DC component (k = (0,0)), a hexgaon of strong components with radius

near k† (red circle), and weaker components on the lattice of the strong components. White dots show underlying

k-lattice. We used a difference of Gaussians tuning curve, with parameters 2s1 ¼ s2 ¼ 7:5; L ¼ 100, and the FISTA

algorithm.

DOI: 10.7554/eLife.10094.021
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2. A small ’basis set’ of components kðiÞ
�

n oB

i¼1
with similar amplitudes, and with similar radii kðiÞ

�








which are all ’close’ to k† (details below).
3. All other non-zero Fourier components are weaker, and restricted to the lattice

k2 Ŝ j k¼
X

B

i¼1

nik
ðiÞ
�

( )

ðn1 ;:::;nBÞ2ZB

Interestingly, given these properties of the solution we already get hexagonal patterns, as we

explain next.

Similarly to the 1D case, the difference between kkðiÞ
� k and k† is affected by lattice discretization,

and the curvature of r̂ðkÞ near k†. To simplify matters, we focus first on the simple case that L�!¥

and r̂ðkÞ is sharply peaked around k†. Therefore, the Fourier objective becomes
X

B

i¼1

jĴ
�

kðiÞ
�

�

j2, so the

only Fourier components that appear in the objective are fkðiÞ
� gB

i¼1, which have radius k†. We examine

the values this objective can have.

All the base components have the same radius. This implies, according to the Crystallographic

restriction theorem in 2D, that the only allowed lattice angles (in the range between 0 and 90

degrees) are 0, 60 and 90 degrees. Therefore, there are only three possible lattice types in 2D.

Next, we examine the value of the objective for each of these lattice types:

1) Square lattice, in which kð1Þ
� ¼ k†ð1; 0Þ; kð2Þ

� ¼ k†ð0; 1Þ, up to a rotation. In this case,

Jðx;yÞ ¼
X

¥

mx¼�¥

X

¥

my¼�¥
Ĵmx;my

cos
�

k†ðmxxþmyyÞþfmx ;my

�

and the value of the objective is bounded above by 0:25 (see proof in appendix).

2) 1D lattice, in which kð1Þ
� ¼ k†ð1; 0Þ, up to a rotation. This is a special case of the square lattice,

with a subset of Ĵmx ;my
equal to zero, so we can write, as we did in the 1D case

JðxÞ ¼
X

¥

m¼�¥
Ĵmcosðk†mxþfmÞ

Therefore, the same objective upper bound, 0:25, holds. Note that some of the solutions we

found numerically are close to this bound (Equation 35).

3) Hexagonal lattice, in which the base components are

kð1Þ
� ¼ k†ð1;0Þ;kð2Þ

� ¼ k† �1

2
;

ffiffiffi

3
p

2

� �

;kð3Þ
� ¼ k† �1

2
;�

ffiffiffi

3
p

2

� �

up to a rotation by some angle a. Our parameter scans indicate that the objective value cannot sur-

pass 0:2 in any solution composed of only the base hexgonal components fkðmÞ
� g3

m¼1 and a DC com-

ponent. However, taking into account also some higher order lattice components, we can find a

better solution, with an objective value of 0:2558. Though this is not necessarily the optimal solution,

it surpasses any possible solutions on the other lattice types (bounded below 0:25, as we proved in

the appendix). Specifically, this solution is composed of the base vectors fkðmÞ
� g3

m¼1 and their

harmonics

JðxÞ ¼ Ĵ 0 þ 2
X

8

m¼1

ĴmcosðkðmÞ
� �xÞ

with kð4Þ
� ¼ 2kð1Þ

� , kð5Þ
� ¼ 2kð2Þ

� , kð6Þ
� ¼ 2kð3Þ

� , kð7Þ
� ¼ kð1Þ

� þ kð2Þ
� , kð8Þ

� ¼ kð1Þ
� þ kð3Þ

� . Also, Ĵ 0 ¼ 0:6449,

Ĵ 1 ¼ Ĵ 2 ¼ Ĵ 3 ¼ 0:292, Ĵ 4 ¼ Ĵ 5 ¼ Ĵ 6 ¼ �0:0101 and Ĵ 7 ¼ Ĵ 8 ¼ �0:134.

Thus, any optimal solution must be on the hexagonal lattice, given our approximations. In prac-

tice, the lattice hexagonal basis vectors do not have exactly the same radius, and, as in the 1D case,

this radius is somewhat smaller then k†, due to the lattice discretization, and due to that r̂ðkÞ is not

sharply peaked. However, the resulting solution lattice is still approximately hexagonal in k-space.
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For example, this can be seen in the numerically obtained solution in Figure 16B – where the stron-

gest non-DC Fourier components form an approximate hexagon near k†, from the Fourier compo-

nents A, defined in Figure 17.

Grid spacing
In general, we get a hexagonal grid pattern in x-space. If all base Fourier components have a radius

of k†, then the grid spacing in x-space would be 4p=ð
ffiffiffi

3
p

k†Þ. Since the radius of the basis vectors can

be smaller than k†, the value of 4p=ð
ffiffiffi

3
p

k†Þ is a lower bound to the actual grid spacing (as demon-

strated in Figure 12A), up to lattice discretization effects.

Grid alignment
The angle of the hexagonal grid, a, is determined by the directions of the hexagonal vectors. An

angle a is possible, if there exists a k-lattice point k ¼ 2p
L
ðm; nÞ (with m; n integers), for which

p
L
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
L
ðm2 þ n2Þ � k2�

q

, and then a ¼ arctan n
m
. Since the hexagonal lattice has rotational symmetry of

60�, we can restrict a to be in the range �30� � a � 30�. The grid alignment, which is the minimal

angle of the grid with the box boundaries is given by

Grid aligment¼min
�

jaj;90� �ðjaj þ 60�Þ
�

¼minðjaj;30� �jajÞ (36)

which is limited to the range ½0�; 15��, since �30� � a � 30�. There are usually several possible grid

alignments which are (approximately) rotated versions of each other (i.e., different a). Note that,

due to the k-lattice discretization, different alignments can result in slightly different objective values.

However, the numerical algorithms we used to solve the optimization problem reached many possi-

ble grid alignments with a positive probability (Figure 12C), since we started from a random initiali-

zation and converged to a local minimum.

Figure 17. The modules in Fourier space. As in Figure 15C, we see a contour plot of the 2D tuning curve Fourier

transform r̂ðkÞ and the k-space the peak of r̂ðkÞ (red circle), and the k-lattice Ŝ (black circles). The lattice points can

be divided into approximately hexgonal shaped groups. Several such groups are marked in blue on the lattice.

For example, group A and B are optimal since they are nearest to the red circle. The next best (with the highest-

valued contours) group of points, which have an approximate hexgonal shape, is C. Note that group C has a k-

radius of approximately the optimal radius times
ffiffiffi

2
p

(cyan circle). Parameters: 2s1 ¼ s2 ¼ 7:5; L ¼ 100.
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In the limit L�!¥, the grid alignment will become uniform in the range ½0�; 15��, and the average

grid alignment is 7:5�.

Hierarchical networks and modules
There are multiple routes to generalize non-negative PCA with multiple vectors. In this paper we

chose to do so using a ’Gramm-Schmidt’ like process, which can be written in the following way.

First we define,

r1ðx;yÞ ¼ rðx�yÞ ¼ c1 exp �kx�yk2
2s2

1

0

@

1

A� c2 exp �kx�yk2
2s2

2

0

@

1

A

J0ðxÞ ¼ 0;

; (37)

and then, recursively, this process recovers non-negative ’eigenvectors’ by subtracting out the previ-

ous components, similarly to Sanger’s multiple PCA algorithm (Sanger, 1989), and enforcing the

non-negativity constraint.

rnþ1 x;yð Þ ¼ rn x;yð Þ�
ð

s

rn x;zð ÞJn zð ÞJn yð Þdz

Jn yð Þ ¼ arg max
J xð Þ�0; 1

Sj j

Ð

s
J2 xð Þdx¼1

ð

s

dx

ð

s

rnðx;yÞJðyÞdy
� �2

:

(38)

To analyze this, we write the objectives we maximize in the Fourier domain, using Parseval’s

Theorem.

For n =1, we recover the old objective (Equation 24):

X

k2Ŝ
r̂ðkÞĴ ðkÞ
�

�

�

�

2
: (39)

For n =2, we get

X

k2Ŝ
ĵrðkÞ

�

Ĵ ðkÞ� Ĵ 1ðkÞ
�

X

q2Ŝ
Ĵ
�
1ðqÞĴðqÞ

��

j2; (40)

where Ĵ
�
is the complex conjugate of Ĵ . This objective is similar to the original one, except that it

penalizes Ĵ ðkÞ if its components are similar to those of Ĵ 1ðkÞ. As n increases the objective becomes

more and more complicated, but as before, it contains terms which penalize Ĵ nðkÞ if its components

are similar to any of the previous solutions (i.e., ĴmðkÞ for m < n). This form suggests that each new

’eigenvector’ tends to occupy new points in the Fourier lattice (similarly to unconstrained PCA

solutions).

For example, the numerical solution shown in Figure 16B is composed of the Fourier lattice com-

ponents in group A, defined in Figure 17. A completely equivalent solution would be in group B (it

is just a 90 degrees rotation of the first). The next ’eigenvectors’ should then include other Fourier-

lattice components outside groups A and B. Note that components with smaller k-radius cannot be

arranged to be hexagonal (not even approximately), so they will have a low gridness score. In con-

trast, the next components with higher k-radius (e.g., group C) can form an approximately hexagonal

shape together, and would appear as an additional grid cell ’module’. The grid spacing of this new

module will decrease by
ffiffiffi

2
p

, since the new k-radius is about
ffiffiffi

2
p

times larger than the k-radius of

groups A and B.
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Appendix

Movement schema of agent and environment data
The relevant simulation data used:

Size of arena 10X10 Place cells field width: 0.75
Place cells distribution:
uniform

Velocity: 0.25 (linear),
0.1-6.3 (angular)

# Place cells: 625 Learning rate: 1/(t+1e5)

The agent was moved around the virtual environment according to:

Dtþ1 ¼moduloðDt þ!�Z;2pÞ
xtþ1 ¼ xt þ n�cosðDtþ1Þ
ytþ1 ¼ yt þ n�sinðDtþ1Þ

where Dt is the current direction angle, ! is the angular velocity, Z � Nð0; 1Þ where N is the

standard normal Gaussian distribution, n is the linear velocity, and ðxt; ytÞ is the current

position of the agent. Edges were treated as periodic – when agent arrived to one side of

box it was teleported to the other side.

Positive-negative disks
Positive-negative disks are used with the following activity rules:

�

rtjðxt;ytÞ
�

¼

1
�21

�22 � �21
0

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxt � cx;jÞ2 þðyt � cy;jÞ2
q

< �1

; �1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxt � cx;jÞ2 þðyt � cy;jÞ2
q

< �2

; �2 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxt � cx;jÞ2 þðyt � cy;jÞ2
q

8

>

>

>

<

>

>

>

:

Where cx; cy are the centers of the disks, and �1; �2 are the radii of the inner circle and the

outer ring, respectively. The constant value in the negative ring was chosen to yield zero

integral over the disk.

Fourier transform of the difference of Gaussians function
Here we prove that if we are given a difference of Gaussians function,

rðxÞ ¼
X

2

i¼1

ð�1Þiþ1
ci exp �x�x

2s2
i

� �

;

in which the appropriate normalization constants for a bounded box are

ci ¼ ½
ðL

�L

exp � z2

2s2
i

� �

dz��1 ¼ ½
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
i

p

½2FðL=siÞ � 1���D,

with FðxÞ ¼ 1
ffiffiffiffiffiffiffiffi

2ps2
i

p
ðx

�¥
exp � z2

2s2
i

� �

dz being the cumulative normal distribution, then

8k 2 Ŝ ¼ m12p
L
; . . . ; mD2p

L

� �� 	

m1 ;...;mDð Þ2ZD , we have
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r̂ kð Þ¼D 1

Sj j

ð

S

r xð Þ eik�x dx ¼ 1

Sj j
X

2

i¼1

ð� 1Þiþ1
exp �1

2
s2
i k�k

� �

:

Note that the normalization constants ci vanish after the Fourier transform, and that in the

limit L � s1;s2 we obtain the standard result for the Fourier transform of an unbounded

Gaussian distribution.

Proof: For simplicity of notation, we assume D ¼ 2. However, the calculation is identical for

any D.

r̂ðkÞ ¼ 1

jSj

ð

S

rðxÞeik�xdx

¼ 1

jSj
X

2

i¼1

ðL

�L

dx

ðL

�L

dy ð�1Þiþ1
ci exp �x2 þ y2

2s2
i

0

@

1

A

2

4

3

5exp
�

iðkxxþ kyyÞ
�

¼ 1

jSj
X

2

i¼1

ðL

�L

dx ð�1Þiþ1
ci exp � x2

2s2
i

0

@

1

A

2

4

3

5expðikxxÞ

2

4

3

5

�
Ð L

�L
dy ð�1Þiþ1

exp � y2

2s2
i

0

@

1

A

2

4

3

5expðikyyÞ

2

4

3

5

¼ 2D

jSj
X

2

i¼1

ð�1Þiþ1
ci
Y

z2fx;yg

ðL

0

dz exp � z2

2s2
i

0

@

1

A expðikzzÞþ expð�ikzzÞ½ �

¼ 2D

jSj
X

2

i¼1

ð�1Þiþ1
ci
Y

z2fx;yg

ðL

0

dz exp � z2

2s2
i

0

@

1

AcosðkzzÞ

To solve this integral, we define

Ii að Þ ¼
ðL

0

dz exp � z2

2s2
i

� �

cos azð Þ:

Its derivative is

I
0
iðaÞ ¼�

ðL

0

dzz exp � z2

2s2
i

0

@

1

AsinðazÞ

¼ s2
i exp � z2

2s2
i

0

@

1

AsinðazÞjL
z¼0

� as2
i

ðL

0

dz exp � z2

2s2
i

0

@

1

AcosðazÞ

¼�as2
i IiðaÞ

where in the last equality we used the fact that aL ¼ 2pn (where n is an integer) if a 2 Ŝ.

Solving this differential equation, we obtain

IiðaÞ ¼ Iið0Þexp �1

2
s2
i a

2

� �

where

Ii 0ð Þ ¼
ðL

0

dz exp � z2

2s2
i

� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
i

q

F
L

si

� �

�F 0ð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
i

q

F
L

si

� �

� 1

2

� �

:

substituting this into our last expression for rðkÞ we obtain
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rðkÞ ¼ 1

jSj
X

2

i¼1

ð�1Þiþ1
exp �1

2
s2
i

X

z2fx;yg
k2z

0

@

1

A;

which is what we wanted to prove.

Why the ’unconstrained’ k† is a lower bound on
’constrained’ k�
In section ’The PCA solution with a non-negative constraint – 1D Solutions’, we mention that

the main difference between the Equations (Equations 33 and 34) is the base frequency, k�,

which is slightly different from k†.

Here we explain how the relation between k� and k† depends on the k-lattice discretization,

as well as the properties of r̂ðkÞ. The discretization effect is similar to the unconstrained case,

and can cause a difference of at most p=L between k� to k†. However, even if L�!¥, we can

expect k� to be slightly smaller than k†. To see that, suppose we have a solution as described

above, with k� ¼ k† þ dk and dk is a small perturbation (which does not affect the non-

negativity constraint). We write the perturbed k-space objective of this solution

X

¥

m¼�¥
jĴ ðmk†Þj2 ĵr

�

mðk†þ dkÞ
�

j2

Since k† is the peak of jr̂ðkÞj2, if ĵrðkÞj2 is monotonically decreasing for k > k† (as is the case

for the difference of Gaussians function), then any positive perturbation dk > 0 would

decrease the objective.

However, a sufficiently small negative perturbation dk < 0 would improve the objective. We

can see this from the Taylor expansion of the objective,

X

¥

m¼�¥
jĴðmk†Þj2 ĵrðmk†Þj2 þ

dĵrðkÞj2
dk

jk¼mk†
mdkþOðdkÞ2

 !

In which the derivative dĵrðkÞj2
dk

jk¼mk†
is zero for m ¼ 1 (since k† is the peak of ĵrðkÞj2) and

negative for m > 1, if ĵrðkÞj2 is monotonically decreasing for k > k†. If we gradually increase

the magnitude of this negative perturbation dk < 0, at some point the objective will stop

increasing and start decreasing, because, for the difference of Gaussians function, ĵrðkÞj2
increases more sharply for k < k† than it decreases for k > k†. We can thus treat the

’unconstrained’ k† as an upper bound for the ’constrained’ k�, if we ignore discretization

effects (i.e., the limit L�!¥).

Upper bound on the constrained objective – 2D square
lattice
In the Methods section ’The PCA solution with a non-negative constraint – 2D Solutions’ we

examine different 2D lattice-based solutions, including a square lattice, which is a solution of

the following constrained minimization problem
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maxfJmg¥m¼0
Ĵ
2

1;0 þ Ĵ
2

0;1

s:t: : ð1Þ
X

¥

mx¼�¥

X

¥

my¼�¥
Ĵ
2

mx;my
¼ 1

ð2Þ
X

¥

mx¼�¥

X

¥

my¼�¥
Ĵmx ;my

cos
�

k†ðmxxþmyyÞþfmx;my

�

� 0

:

Here we prove that the objective is bounded above by 1
4
, i.e., Ĵ

2

1;0 þ Ĵ
2

0;1 � 1
4
.

Without loss of generality we assume f1;0 ¼ f0;1 ¼ 0; k† ¼ 1 (we can always shift and scale

x; y). We denote

Pðx;yÞ ¼ 2Ĵ 0;1cosðxÞþ 2Ĵ 1;0cosðyÞ

and

Aðx;yÞ ¼
X

¥

mx¼�¥

X

¥

my¼�¥
Ĵmx ;my

cos
�

ðmxxþmyyÞþfmx;my

�

�Pðx;yÞ

We examine the domain ½0; 2p�2. We denote by C� the regions in which Pðx; yÞ is positive or

negative, respectively. Note that

P
�

ðxþpÞmod 2p; ðyþpÞmod 2p
�

¼�Pðx;yÞ

so both regions have the same area, and

ð

C�

P2ðx;yÞdxdy¼
ð

Cþ

P2ðx;yÞdxdy: (A1)

From the non-negativity constraint (2), we must have

8ðx;yÞ 2C� : Aðx;yÞ ��Pðx;yÞ: (A2)

Also, note that Pðx; yÞ and Aðx; yÞ do not share any common Fourier (cosine) components.

Therefore, they are orthogonal, with the inner product being the integral of their product on

the region ½0; 2p�2

0 ¼
ð

½0;2p�2

Pðx; yÞAðx; yÞdxdy

¼
ð

Cþ

Pðx; yÞAðx; yÞdxdyþ
ð

C�

Pðx; yÞAðx; yÞdxdy

�
ð

Cþ

Pðx; yÞAðx; yÞdxdy�
ð

Cþ

P2ðx; yÞdxdy

,

where in the last line we used the bound from Equation (A2), and then Equation (A1). Using

this result, together with Cauchy-Schwartz inequality, we have

ð

Cþ

P2ðx;yÞdxdy�
ð

Cþ

Pðx;yÞAðx;yÞdxdy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

Cþ

P2ðx;yÞdxdy
ð

Cþ

A2ðx;yÞdxdy
v

u

u

t ;

So,
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ð

Cþ

P2ðx;yÞdxdy�
ð

Cþ

A2ðx;yÞdxdy;

Summing this equation with Equation (A2), squared and integrated over the region C�, and

dividing by ð2pÞ2, we obtain

1

ð2pÞ2
ð

½0;2p�2

P2ðx;yÞdxdy� 1

ð2pÞ2
ð

½0;2p�2

A2ðx;yÞdxdy;

using the orthogonality of the Fourier components (i.e., Parseval’s theorem) to perform the

integrals over P2ðx; yÞ and A2ðx; yÞ, we get

2Ĵ
2

1;0þ 2Ĵ
2

0;1 �
X

¥

mx¼�¥

X

¥

my¼�¥
Ĵ
2

mx;my
� 2Ĵ

2

1;0 � 2Ĵ
2

0;1:

Lastly, plugging in the normalization constraint
X

¥

mx¼�¥

X

¥

my¼�¥
Ĵ
2

mx;my
¼ 1, we find

1

4
� Ĵ

2

1;0 þ Ĵ
2

0;1

as required.
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