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Abstract Pharmacological inhibition of chromatin co-regulatory factors represents a clinically

validated strategy to modulate oncogenic signaling through selective attenuation of gene

expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially

abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell

lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression

of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma

cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either

IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain

inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These

findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy

for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network.

DOI: 10.7554/eLife.10483.001

Introduction
Multiple myeloma is an aggressive and incurable hematologic malignancy characterized by the pro-

liferation of abnormal plasma cells (Mahindra et al., 2010). Myeloma is driven by transcriptional

reprogramming events that prevent the differentiation of activated B cells to plasma cells and subse-

quently promote the proliferation of dysfunctional plasma cells (Mahindra et al., 2010). Abnormal

activity of a number of transcription factors has been implicated in multiple myeloma development,

including NF-kB, MAF, MYC, and interferon regulatory factor 4 (IRF4) (Dean et al., 1983;

Keats et al., 2007; Palumbo et al., 1989; Shaffer et al., 2008). The oncogenic activity of these tran-

scription factors in multiple myeloma is demonstrated by the presence of translocation events that

fuse them to highly active enhancers that drive high expression (Dean et al., 1983; Iida et al.,

1997).

The IRF4 transcription factor is a critical component of the normal adaptive immune response and

is required for lymphocyte activation and differentiation of immunoglobulin-secreting plasma cells

(Klein et al., 2006; Mittrücker et al., 1997; Sciammas et al., 2006). Downstream targets of IRF4

include factors that regulate cell cycle progression, survival, and normal plasma cell function

(Shaffer et al., 2008). While oncogenic translocations of IRF4 have been found, more frequently,

myeloma and other lymphoid malignancies are dependent on dysfunctional transcriptional networks

downstream of a genetically normal IRF4 locus (Shaffer et al., 2008). While the immunomodulatory
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agent lenalidomide has been shown to promote IRF4 protein degradation (Moros et al., 2014),

pharmacological agents that regulate the expression of IRF4 mRNA have not been identified.

Small molecule inhibition of bromodomain-containing transcriptional co-regulators have recently

been shown to be a viable strategy for the suppression of otherwise un-druggable downstream tran-

scription factors. This is best exemplified by the inhibitors of BET family bromodomains, which

down-regulate MYC and BCL2 and are thus highly active in malignancies driven by these critical

oncogenes (Dawson et al., 2011; Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 2011).

Cyclic AMP response element binding protein (CREB)-binding protein (CBP) and E1A interacting

protein of 300 kDa (EP300) are highly homologous bromodomain-containing transcriptional co-acti-

vators that regulate a number of important cellular events through their acetyltransferase activity

(Goodman and Smolik, 2000). Genetic studies in mice and surveys of human cancer mutations and

translocations have implicated CBP/EP300 in cancer, but the role of the bromodomain in the normal

and pathological function of CBP/EP300 has not been extensively studied (Kung et al., 2000;

Murati et al., 2007; Ohnishi et al., 2008; Pasqualucci et al., 2011; Peifer et al., 2012). Given the

importance of these genes in cancer development, CBP/EP300 bromodomain inhibition may repre-

sent an important therapeutic strategy to reprogram oncogenic signaling pathways in human

malignancies.

Results

Cellular specificity of CBP/EP300 bromodomain inhibitors
To assess the functional role of CBP/EP300 bromodomains, we made use of two chemical probes

recently generated by the Structural Genomics Consortium (Figure 1A) (SGC; www.thesgc.

org) (Hay et al., 2014). SGC-CBP30 and I-CBP112 are chemically distinct tool compounds with

selective affinity for the bromodomains of CBP/EP300 over other bromodomains in this protein

eLife digest Multiple myeloma is an aggressive and incurable cancer of white blood cells called

B cells and plasma cells. Many of the mutations that trigger multiple myeloma interfere with genes

that normally cause B cells to develop into plasma cells.

Multiple myeloma cells often activate genes that are inactive in healthy cells or vice versa. They

also express some genes that are active in healthy cells but at the wrong levels. These changes in

gene expression are regulated by proteins that bind to DNA and other DNA-associated proteins.

Proteins called CBP and EP300 are two examples of regulatory proteins, and have been implicated

in promoting various cancers in humans. Both CBP and EP300 contain a region known as a

bromodomain, which binds to proteins associated with DNA. Abnormal activity of the

bromodomains of CBP and EP300 may thus promote the onset of cancer.

Conery et al. have now treated a wide range of human blood cancer cells grown in the laboratory

with two new chemicals that inhibit CBP and EP300 bromodomains. Of all the cells tested, multiple

myeloma cells were the most strongly affected; these cells proliferated more slowly and died more

quickly in the presence of the chemical inhibitors.

Next, Conery et al. analysed the changes in gene expression in the multiple myeloma cells when

they were treated with the inhibitors. The genes whose expression levels changed the most were

genes that are regulated by a protein called IRF4. This protein is important for normal B cell and

plasma cell development. One notable IRF4 target gene that was down-regulated was the gene that

encodes a protein called Myc, which strongly encourages cell division and growth. Conery et al.

then supplemented the multiple myeloma cells with extra IRF4 or Myc while treating with the

inhibitors and found that this caused the inhibitors to lose most of their effect.

Neither CBP nor EP300 have previously been thought of as targets for multiple myeloma therapy.

Therefore a next critical step is to find more refined chemicals to target their bromodomains and

importantly to test these chemicals in preclinical trials. These studies could in turn lead to improved

treatments for patients with multiple myeloma in the future.

DOI: 10.7554/eLife.10483.002
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family. Independent of CBP/EP300, the bromodomains with the highest affinity for these molecules

is the BET bromodomain family (Hay et al., 2014). We confirmed the biochemical potency and

selectivity of SGC-CBP30 and I-CBP112 using AlphaLISA with the isolated bromodomain of CBP and

the first bromodomain of BRD4 (BRD4-BD1) (Figure 1B,F). We further addressed the selectivity of

the compounds through the use of Differential Scanning Fluorimetry (DSF) with a panel of 19 puri-

fied bromodomains (Figure 1—source data 1). Taken together, these data are consistent with pub-

lished reports regarding the selectivity of these compounds (Hammitzsch et al., 2015;

Picaud et al., 2015).

To assess the potency of these probes in cells, we utilized a proximity-based assay (NanoBRET),

which monitors the interaction between the bromodomain of CBP and histone H3.3. SGC-CBP30

and I-CBP112 showed similar dose-dependent inhibition of CBP-H3.3 binding, with calculated EC50

values of 0.28 mM and 0.24 mM, respectively (Figure 1C and F). The BET bromodomain inhibitor

Figure 1. Characterization of CBP/EP300 bromodomain inhibitors. (A) Structures of SGC-CBP30 and I-CBP112. (B) Representative AlphaLISA curves

showing the inhibition of acetylated peptide binding to isolated CBP or BRD4 bromodomains in the presence of SGC-CBP30 and I-CBP112. Error bars

represent SEM of 3 technical replicates. (C) Dose-titrations of SGC-CBP30, I-CBP112, and CPI203 using NanoBRET with the isolated CBP bromodomain

and histone H3.3 in 293 cells. Error bars represent SEM of three technical replicates. The calculated EC50 values are shown in F. (D) ZsGreen-

bromodomain fusion proteins were monitored by high content imaging. Representative nuclei showing nuclear foci in the indicated assays in the

presence of DMSO, SGC-CBP30 (5 mM), I-CBP112 (5 mM) or CPI203 (0.33 mM). (E) Quantification of chromatin release assay. Each curve represents a

titration of the indicated compound in stable cell lines expressing the indicated fusion protein (CBP: CBP-bromodomain/BRD9; BRD4: full length BRD4).

Values are mean of four fields per well of two technical replicates, ± SEM. (F) Summary of biochemical and cellular activity of the indicated compounds.

Values represent half-maximal inhibition (IC50) in AlphaLISA assays (n � 2 independent replicates) or half-maximal induction (EC50) in NanoBRET (n = 3

technical replicates ± SEM) or chromatin release assays (n = 2 biological replicates ± SEM). ND = not determined due to a failure to produce 100%

inhibition compared to controls.

DOI: 10.7554/eLife.10483.003

The following source data is available for figure 1:

Source data 1. Bromodomain selectivity of CBP/EP300 bromodomain inhibitors.

DOI: 10.7554/eLife.10483.004
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CPI203 (Devaiah et al., 2012) did not display dose-dependent inhibition in this assay (Figure 1C).

Next, we made use of an imaging-based assay that measures the release of bromodomain-GFP

fusion proteins from chromatin upon ligand binding (Huang et al., 2014). As shown in Figure 1D,

chromatin release results in aggregation of fusion proteins into finite speckles whose number and

intensity increase with ligand binding. Both SGC-CBP30 and I-CBP112 promote chromatin release of

CBP bromodomain fusion proteins at low micromolar concentrations as quantitated by high-content

imaging (10-fold cell shift), comparable to previous results (Figure 1E,F) (Hay et al., 2014). In con-

trast, both probe compounds release BRD4-BD1 fusion proteins from chromatin at significantly

higher concentrations as compared to the selective BET inhibitor CPI203 (Figure 1D–F)

(Devaiah et al., 2012). Given the cellular selectivity of the compounds, we are confident that at

defined concentrations of the inhibitors (�2.5 mM SGC-CBP30 or �5 mM I-CBP112), any observed

pharmacological effects are due to on-target inhibition of CBP/EP300 bromodomains.

CBP/EP300 bromodomain inhibition causes cell cycle arrest and
apoptosis
To assess the biological activity of CBP/EP300 bromodomain inhibition, we treated a panel of cell

lines of multiple myeloma and acute leukemia origin with SGC-CBP30 and I-CBP112. As shown in

Figure 2A,B, and Figure 2—figure supplement 1A, a subset of cell lines was highly sensitive to

both compounds, with the most sensitive cell lines having GI50 values below 3 mM of SGC-CBP30.

Notably, 14 of the 15 most sensitive cell lines are of multiple myeloma origin (Figure 2A). As effec-

tors of multiple biological processes, CBP and EP300 play important roles in multiple phases of the

cell cycle. To assess the requirement of the CBP/EP300 bromodomains in cell cycle progression, we

released G0/G1 arrested LP-1 cells in the presence of either DMSO, SGC-CBP30, or I-CBP112. As

shown in Figures 2C and Figure 2—figure supplement 1B, the progression of the cells appears

normal through G2/M phase (8 hr). Only upon entry into the next cell cycle is there a noticeable

alteration in cell cycle progression, with compound-treated cells accumulating in G1 at 16 and 24 hr

as compared to DMSO-treated cells. Thus, it appears that the primary phenotypic effect of CBP/

EP300 bromodomain inhibition is arrest in the G1 phase of the cell cycle. Consistent with these

observations, growth inhibition resulting from CBP/EP300 bromodomain inhibition is accompanied

by G0/G1 arrest and apoptosis in phenotypically sensitive cell lines (Figures 2D and Figure 2—fig-

ure supplement 1C). As the phenotypic effects of SGC-CBP30 and I-CBP112 appeared similar, we

utilized the more potent compound, SGC-CBP30, for further experiments and made use of

I-CBP112 as a distinct chemotype to confirm important observations.

CBP/EP300 bromodomain inhibition targets the IRF4 transcriptional
program
Recent work by many groups has demonstrated that small molecule inhibitors of BET family bromo-

domains are highly active in cell lines of hematopoetic origin (Dawson et al., 2011; Delmore et al.,

2011; Mertz et al., 2011; Zuber et al., 2011). In contrast, our results suggest that CBP/EP300 bro-

modomain inhibition preferentially targets a more limited subset of hematologic cell lines, with a

bias toward multiple myeloma/plasmacytoma cell lines. To gain insight into the mechanisms underly-

ing these phenotypic differences, we carried out RNA sequencing of LP-1 cells treated with SGC-

CBP30 or the pan-BET inhibitor CPI203. To narrow our focus to direct transcriptional effects, we

examined gene expression changes following short term (6 hr) compound treatment. As shown in

Figures 3A and Figure 3—figure supplement 1A, the transcriptional footprint of SGC-CBP30 is

more circumscribed than that of CPI203, with far fewer genes differentially expressed. Notably how-

ever, the genes differentially expressed by SGC-CBP30 are not simply a subset of those affected by

CPI203 (Figures 3A and Figure 3—figure supplement 1A; confirmed with I-CBP112 in Figure 3—

figure supplement 1D). This suggests that the two modalities may target distinct transcriptional

pathways.

To better understand the pathways impacted by CBP/EP300 and BET bromodomain inhibition,

we carried out Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) with an emphasis

on transcriptional pathways that might distinguish the two modalities. As expected, gene signatures

negatively correlated with CPI203 treatment were dominated by MYC-dependent transcriptional

pathways (Figure 3—figure supplement 1E). However, while several MYC signatures were also
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enriched upon treatment with SGC-CBP30, more notable was the enrichment of signatures for path-

ways important in multiple myeloma (Figures 3B and C), which was distinct from the effects of BET

inhibition. We noted in particular the significant negative correlation (p-value < 0.05) of 4 gene sig-

natures containing downstream targets of IRF4, a lymphocyte-specific transcription factor that is

essential for the survival of multiple myeloma cells (Figure 3—figure supplement 1B)

(Shaffer et al., 2008). Consistent with this gene set enrichment, IRF4 target genes (catalogued by

Shaffer et al.) are significantly enriched in the set of genes differentially expressed following treat-

ment with SGC-CBP30 (Figure 3—figure supplement 1C). A subset of these IRF4 target genes

Figure 2. Phenotypic effects of CBP/EP300 bromodomain inhibition. (A) Growth inhibitory effects of SGC-CBP30 and I-CBP112 in the indicated cell

lines. Cells were incubated with compounds for 6 days, and viability was measured with resazurin. Values are the mean of at least two biological

replicates. Values with error can be found in Figure 2—source data 1. (B) Example viability curves for LP-1. Values represent the mean of three3

technical replicates, ± SD. (C) LP-1 were synchronized by double thymidine block and released into either DMSO or 2.5 mM SGC-CBP30. Cells were

fixed and stained with PI for cell cycle analysis at the indicated time points. Cell cycle distribution at 24 hr is shown in the table. Representative data

from one of two biological replicates are shown. (D) LP-1 cells were treated as in (A) and fixed after 6 days. Viable cell number and percent increase in

G0/G1 or sub-G1 over DMSO were determined by flow cytometry. Each point is the mean of three technical replicates, ± SD. See Figure 2—figure

supplement 1 for additional data with I-CBP112.

DOI: 10.7554/eLife.10483.005

The following source data and figure supplement are available for figure 2:

Source data 1. GI50 and standard deviation for a minimum of two replicates for the data shown in Figure 2 and Figure 2—figure supplement 1.

DOI: 10.7554/eLife.10483.006

Figure supplement 1. CBP/EP300 bromodomain inhibition affects the viability of multiple myeloma cells.

DOI: 10.7554/eLife.10483.007
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(including IRF4 itself) is significantly differentially expressed following treatment with SGC-CBP30

but not CPI203 (Figure 3D), arguing that the IRF4 transcriptional axis may be selectively targeted by

CBP/EP300 bromodomain inhibition.

CBP/EP300 bromodomain inhibition directly suppresses the expression
of IRF4
Since the regulation of the IRF4 transcriptional axis through small molecule inhibition of CBP/EP300

bromodomains would represent a promising new therapeutic strategy for multiple myeloma, we

sought to better understand our initial observations. We first demonstrated by qRT-PCR that IRF4

mRNA was suppressed in a dose-dependent manner by CBP/EP300 bromodomain inhibition in both

LP-1 and another multiple myeloma cell line, OPM2 (Figure 4A and Figure 4—figure supplement

1A). The EC50 of IRF4 suppression in each cell line is in the range of the cellular EC50 values shown

in Figure 1 and the GI50 values shown in Figure 2A, arguing for an on-target effect. Consistent with

suppression at the mRNA level, IRF4 protein is reduced upon treatment with SGC-CBP30 or

I-CBP112 (Figure 4—figure supplement 1D). In support of a direct effect on the transcription of

IRF4, we observed that IRF4 is suppressed within 2 hr of addition of SGC-CBP30 (Figure 4—figure

supplement 1C), and recovers within 1 hr of removal of the compound (Figure 4B).

Figure 3. CBP/EP300 bromodomain inhibition targets IRF4. (A) LP-1 cells were treated with SGC-CBP30 (2.5 mM) or CPI203 (0.25 mM) for 6 hr, and

mRNA expression was measured using RNA sequencing. Expression values for biological replicate compound-treated samples were normalized to

paired DMSO controls to obtain log2 fold change values. (B) Example enrichment plots for GSEA of SGC-CBP30 treated LP-1 cells. (C) Left, Scatter plot

of P value vs. NES for multiple myeloma and IRF4 gene signatures for SGC-CBP30 (red) or CPI203 (black) treated LP-1 cells. Dashed line indicates

p = 0.05. Right, fraction of gene signatures significantly enriched (p<0.05) with each treatment. Error bars indicate SEM. SGC-CBP30: 26/58; CPI203: 9/

58. *** indicates p = 0.0005 by unpaired 2-tailed t-test. (D) IRF4 target genes differentially expressed (minimum 1.5 fold, p<0.05) with SGC-CBP30, but

not CPI203. See Figure 3—figure supplement 1 for additional gene expression data and analysis.

DOI: 10.7554/eLife.10483.008

The following figure supplement is available for figure 3:

Figure supplement 1. CBP/EP300 bromodomain inhibition targets IRF4 transcriptional programs.

DOI: 10.7554/eLife.10483.009
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To further corroborate that IRF4 suppression is due to the on-target activity of CBP/EP300, we

used RNAi to knock down either CBP or EP300 in the LP-1 cell line. As shown in Figures 4C,D and

E, three unique shRNA constructs that efficiently knocked down either CBP or EP300 reduced the

expression of IRF4 at the mRNA and protein level. Viability effects were observed subsequent to

suppression of IRF4 (Figure 4F), which is consistent with the kinetics and phenotypic effects of CBP/

EP300 bromodomain inhibition. Taken together, these data argue that the suppression of IRF4 is

due to on target inhibition of the CBP/EP300 bromodomains.

Figure 4. IRF4 is a direct transcriptional target of CBP/EP300 bromodomain inhibition. (A) Dose-dependent inhibition of IRF4 mRNA expression (qRT-

PCR) with SGC-CBP30 in LP-1 and OPM2 cells following 6 hr of treatment. Values represent the mean of three biological replicates, ± SEM. (B) LP-1

cells were treated with SGC-CBP30 (2.5 mM) for 4 hr, compound was removed, and cells were incubated for an additional 1 hr in fresh media. Levels of

IRF4 mRNA were measured by qRT-PCR and normalized to GAPDH. Relative mRNA values normalized to DMSO at each time point represent the mean

of 2 biological replicates, ± SEM. (C) Cells were transduced with lentivirus and lysed for Western analysis with the indicated antibodies (3 days post-

infection). (D) IRF4 expression was determined by qRT-PCR at 3.5 days following the transduction of shRNA lentivirus, and mRNA was normalized to

GAPDH and expressed relative to the control shLuc (n = 3 technical replicates, ± SEM). (E) Western analysis with the indicated antibodies was carried

out at 3.5 days post-transduction with the indicated shRNA constructs. (F) Cells were fixed at the indicated time points following transduction and

viability was determined by flow cytometry. Percent growth is expressed relative to control shLuc at each time point. Values represent the mean of

n = 3 technical replicates, ± SEM. (G) LP-1 cells were treated with SGC-CBP30 (2.5 mM) for 6 hr, and the indicated antibodies were used for ChIP-seq.

Sequencing traces for the IRF4 super-enhancer and the transcriptional start site are shown. See Figure 4—figure supplements 1 and 2 for additional

supporting data.

DOI: 10.7554/eLife.10483.010

The following figure supplements are available for figure 4:

Figure supplement 1. CBP/EP300 bromodomain inhibition regulates the expression of IRF4.

DOI: 10.7554/eLife.10483.011

Figure supplement 2. CBP/EP300 bromodomain inhibition does not cause global eviction of BRD4 from chromatin.

DOI: 10.7554/eLife.10483.012
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CBP and EP300 function as transcriptional co-activators via acetylation of histones and transcrip-

tion factors. The bromodomains of CBP/EP300 are required for the acetylation of histones within a

chromatin context, and histone H3 lysine 18 (H3K18) and histone H3 lysine 27 (H3K27) have been

shown to be specifically targeted by CBP/EP300 (Jin et al., 2011). To investigate the mechanism of

transcriptional suppression of IRF4, we first examined whether CBP/EP300 bromodomain inhibition

causes global reduction in histone acetylation. Following incubation of LP-1 cells with SGC-CBP30,

we did not observe any significant changes in the global levels of H3K18 or H3K27 acetylation by

Western analysis (Figure 4—figure supplement 1E). We looked more closely for localized changes

in histone acetylation by using chromatin immunoprecipitation followed by massively parallel

sequencing (ChIP-seq). As shown in Figure 4G, we observed a significant reduction in both H3K18ac

and H3K27ac at a previously annotated super-enhancer of IRF4 (Chapuy et al., 2013) as well as at

the transcription start site. Notably, this reduction in acetylation is accompanied by a reduction in

the chromatin occupancy of EP300, suggesting that CBP/EP300 bromodomain inhibition promotes

release of the protein from chromatin leading to a reduction in histone acetylation. It should be

noted that broad and complete loss of EP300 was not observed, perhaps suggesting that the bro-

modomain of EP300 serves to localize it to restricted domains (Figure 4G). Importantly, treatment

with SGC-CBP30 did not result in global eviction of BRD4, arguing against a direct effect on BET

bromodomain proteins (Figure 4—figure supplement 2).

IRF4 and MYC suppression are associated with phenotypic response to
CBP/EP300 bromodomain inhibition
We have shown that CBP/EP300 bromodomain inhibition leads to viability defects in multiple mye-

loma cell lines and to the suppression of IRF4 and its downstream transcriptional programs in the

representative cell line LP-1. To understand whether the suppression of IRF4 was more broadly

involved in the phenotypic response to CBP/EP300 bromodomain inhibition, we profiled the tran-

scriptional response of a panel of cell lines of varying sensitivity to SGC-CBP30 (Figure 2A) following

a 6-hr treatment with the inhibitor. As shown in Figure 5A, the degree of suppression of IRF4 mRNA

is significantly correlated with phenotypic sensitivity to SGC-CBP30, suggesting that this pharmaco-

dynamic response is important for the mechanism of growth inhibition.

To better understand the events downstream of IRF4 suppression that are important for reducing

proliferation and viability following CBP/EP300 bromodomain inhibition, we reduced the expression

of IRF4 in a panel of multiple myeloma cell lines through shRNA transduction. The results first indi-

cate that those cell lines that are sensitive to SGC-CBP30 (GI50 < 2.5 mM) require IRF4 for viability

(Figures 5B and Figure 5—figure supplement 1A). Further, consistent with published results

(Shaffer et al., 2008), knockdown of IRF4 and reduction in viability are associated with concomitant

suppression of the oncogenic transcription factor c-MYC (MYC).

We reasoned that CBP/EP300 bromodomain inhibition may exert its phenotypic effects through

the suppression of MYC downstream of IRF4 in multiple myeloma cells. While not among the most

downregulated genes following the treatment of LP-1 cells with SGC-CBP30, MYC expression was

significantly reduced (see below), and MYC transcriptional programs were affected (Figure 3—fig-

ure supplement 1E). Further, as with IRF4 suppression, the degree of suppression of MYC mRNA in

a panel of cell lines is significantly correlated with phenotypic sensitivity to SGC-CBP30 (Figure 5—

figure supplement 1B). To confirm the dose-dependent reduction of MYC expression, we treated

LP-1 and OPM2 cells with either SGC-CBP30 or I-CBP112 (Figures 5C and Figure 5—figure supple-

ment 1C). The expression of MYC was reduced in a dose-dependent manner, with IC50 values

somewhat higher than those observed for IRF4 suppression (Figures 4A and Figure 4—figure sup-

plement 1A). We also noted that H3K18ac and H3K27ac were reduced at the chromatin regions

driving MYC expression following CBP/EP300 bromodomain inhibition, although loss of EP300 was

less apparent, consistent with IRF4 suppression being up-stream of MYC suppression in this context

(Figure 5—figure supplement 1D). Further, consistent with the suppression of IRF4 at both the

mRNA and protein levels (Figures 4D,E), the expression of MYC was reduced following

the knockdown of either EP300 or CBP in LP-1 and OPM2 cells (Figure 5D, Figure 5—figure sup-

plement 1E and F). Taken together, these data suggest that the bromodomains of CBP and EP300

are involved in the regulation of the IRF4/MYC axis in multiple myeloma cells, and the suppression

of the IRF4/MYC axis may be important for the phenotypic effects of CBP/EP300 bromodomain

inhibition.
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Suppression of the IRF4/MYC axis is required for anti-myeloma effects
of CBP/EP300 bromodomain inhibition
To further test the link between the transcriptional effects on IRF4/MYC and the phenotypic conse-

quences of CBP/EP300 bromodomain inhibition, we generated LP-1 cell lines containing inducible

IRF4 (LP-1/IRF4) or MYC (LP-1/MYC) expression cassettes. We then treated these cell lines with

SGC-CBP30 or I-CBP112 in the presence or absence of doxycycline to induce ectopic expression of

IRF4 or MYC. As shown in Figure 6A and Figure 6—figure supplement 1, in the absence of doxycy-

cline, CBP/EP300 bromodomain inhibition induces G0/G1 arrest within 24 hr, consistent with our

previous observations (Figure 2C). However, upon ectopic expression of IRF4, the cell cycle arrest is

completely abrogated, indicating that suppression of IRF4 is required for the most proximal pheno-

typic consequence of CBP/EP300 bromodomain inhibition. While long-term viability appears to be

reduced by the over-expression of IRF4 itself, there is a significant abrogation of growth inhibition

and a reduced induction of apoptosis over background in the presence of ectopic IRF4 after a 6-day

incubation with CBP/EP300 inhibitor (Figure 6A (right) and Figure 6—figure supplement 1A).

If the IRF4-mediated suppression of MYC is required for the phenotypic effects of CBP/EP300

bromodomain inhibition, one would expect that ectopic expression of IRF4 should block MYC

Figure 5. IRF4 suppression is correlated with phenotypic sensitivity to SGC-CBP30, and MYC is downregulated concomitant with IRF4 suppression

following CBP/EP300 knockdown or bromodomain inhibition. (A) The indicated cell lines were treated with SGC-CBP30 (2.5 mM) for 6 hr, and IRF4

expression normalized to GAPDH was determined by q-RTPCR. Suppression of IRF4 (log2 fold change relative to DMSO) was plotted against log2 GI50.

R2 and p-value of the linear regression are shown. Cell lines indicated in red have a GI50 of less than 2.5 mM SGC-CBP30 (Figure 2A). Source data can

be found in Figure 5—source data 1. (B) Lentiviral shRNA constructs were transduced into the indicated cell lines. Western analysis was carried out

after 4 days, and viability (n = 3 technical replicates ± SEM), was assessed after 7 days. Intensity of MYC bands relative to GAPDH bands is shown below

the Western blots. (C) Cells were treated as in Figure 4A, and normalized expression of MYC was determined by q-RTPCR. Values represent the mean

of three biological replicates, ± SEM. (D) LP-1 cells were transduced as in Figure 4E, and MYC protein expression was determined by Western analysis.

See Figure 5—figure supplements 1 and Figure 5—source data 1 for additional data.

DOI: 10.7554/eLife.10483.013

The following source data and figure supplement are available for figure 5:

Source data 1. Source data for Figure 5A and Figure 5—figure supplement 1B.

DOI: 10.7554/eLife.10483.014

Figure supplement 1. Suppression of the IRF4/MYC axis is important for the effects of CBP/EP300 bromodomain inhibition.

DOI: 10.7554/eLife.10483.015
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suppression. Indeed, we found that the induction of IRF4 in the LP-1/IRF4 cell line both increased

MYC expression (most prominently at the mRNA level) and prevented the suppression of MYC by

SGC-CBP30 and I-CBP112 (Figure 6A far left, 6B and 6C and Figure 6—figure supplement 1E).

Consistent with MYC suppression being a critical downstream effect of IRF4 suppression, ectopic

expression of MYC in the LP-1/MYC cell line phenocopied ectopic expression of IRF4, rescuing cell

cycle arrest and abrogating MYC suppression following CBP/EP300 bromodomain inhibition

(Figure 6D and Figure 6—figure supplement 1B,C,D, and 1F).

While BET proteins are known to similarly target MYC in multiple myeloma, a comparison of

CBP/EP300 and BET bromodomain inhibition demonstrated that these modalities target the IRF4-

MYC network at different nodes, with BET inhibition having no impact on IRF4 at the doses and

timepoints examined (Figure 6E, Figure 3D, and Figure 4—figure supplement 1B). Our data sug-

gest that CBP/EP300 bromodomain inhibition exerts its anti-myeloma effects in a mechanism distinct

from BET inhibition via the direct transcriptional inhibition of IRF4 and the downstream suppression

of IRF4 target genes such as MYC.

Discussion
In the current study, we demonstrate that CBP/EP300 bromodomain inhibition results in cell cycle

arrest and apoptosis in multiple myeloma cell lines. Viability effects are dependent on the silencing

of the transcription factor IRF4, which results in the downstream suppression of c-MYC. CBP/EP300

Figure 6. CBP/EP300 bromodomain inhibition suppresses the IRF4/MYC axis to cause viability defects. (A) IRF4 expression was induced in the LP1/IRF4

cell line by the addition of doxycycline. Left, lysates were prepared after 3 days and used for Western analysis with the indicated antibodies. Middle,

cells were incubated for an additional 24 hr with DMSO or SGC-CBP30 (2.5 mM) and fixed for cell cycle analysis by flow cytometry. Representative

histograms of two biological replicate experiments are shown. Right, Cells were incubated for 6 days in the presence of SGC-CBP30 (2.5 mM). Viable

cells were counted by flow cytometry and percent growth was calculated relative to the DMSO-treated condition for induced or uninduced cells. Values

represent the mean of n = 3 technical replicates, ± SEM (B) Cells were induced as in (A) and were treated with DMSO or SGC-CBP30 (2.5 mM) for 6 hr.

Expression of MYC was measured by qRT-PCR, normalized to GAPDH, and expressed relative to uninduced cells treated with DMSO. Values represent

the mean of n = 3 technical replicates, ± SEM. (C) As in (B) except cells were treated for 24 hr and lysed for Western analysis with the indicated

antibodies. Values represent the ratio of GAPDH-normalized MYC expression relative to uninduced DMSO-treated cells. (D) MYC expression was

induced in the LP1/MYC cell line by the addition of doxycycline. Cells were incubated for an additional 24 hr with DMSO or SGC-CBP30 (2.5 mM) and

fixed for cell cycle analysis by flow cytometry. Representative histograms of two independent experiments are shown. (E) RNA sequencing data from

Figure 3A is expressed as the mean of the two biological replicates ( ± SEM) normalized to DMSO-treated cells. (F) Model for the suppression of the

IRF4/MYC axis by CBP/EP300 and BET bromodomain inhibitors.

DOI: 10.7554/eLife.10483.016

The following figure supplement is available for figure 6:

Figure supplement 1. Additional data pertaining to IRF4 and MYC reconstitution experiments in Figure 6.

DOI: 10.7554/eLife.10483.017
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bromodomain inhibition thus targets the IRF4/MYC network, which is critical for multiple myeloma

cells independent of the upstream oncogenic signal. A recent publication describes the use of the

CBP/EP300 bromodomain inhibitor I-CBP112 to inhibit the growth of leukemic cells (Picaud et al.,

2015). Our data pointing to the preferential activity of both SGC-CBP30 and I-CBP112 in multiple

myeloma cell lines as compared to leukemic cell lines is consistent with this published work. Similar

to our findings, Picaud et al. observed minor cytostatic and limited cytotoxic effects in all leukemic

cell lines screened with the exception of Kasumi-1. Only upon examining the effects of I-CBP112 on

clonogenic growth did the authors observe more broad phenotypic effects. Thus, while CBP/EP300

bromodomain inhibition may have robust cytotoxic effects in multiple myeloma, our results do not

exclude the possibility that this modality would have additional therapeutic utility in leukemia by tar-

geting leukemic self-renewal.

Pharmacological inhibition of CBP/EP300 bromodomains represents a viable strategy for target-

ing these transcriptional co-activators. Evidence from genetic studies in mice has shown that ablation

of any two of the four alleles of CBP and EP300 results in embryonic lethality, and mouse embryonic

fibroblasts lacking expression of CBP and EP300 cannot proliferate (Kung et al., 2000; Jin et al.,

2011; Yao et al., 1998). The selective viability effects and limited transcriptional footprint observed

with CBP/EP300 bromodomain inhibitors suggests that this modality is milder than genetic ablation,

perhaps affording an acceptable therapeutic index once drug-like molecules are optimized. Our

results are more broadly consistent with recent studies using SGC-CBP30 and I-CBP112 that demon-

strated selective phenotypic and transcriptional effects in distinct biological contexts

(Hammitzsch et al., 2015; Picaud et al., 2015).

Mice with heterozygous loss of Cbp are prone to the development of hematologic malignancies,

and human patients with germline mutations in CREBBP develop the Rubinstein-Taybi cancer predis-

position syndrome (Kung et al., 2000; Iyer et al., 2004). Further, recent surveys of the mutational

landscape in a variety of tumors have demonstrated frequent loss of function mutations in CREBBP

and EP300 (Pasqualucci et al., 2011; Peifer et al., 2012; Kishimoto et al., 2005; Mullighan et al.,

2011; Zhang et al., 2012). While this evidence implicates CBP/EP300 as tumor suppressors, evi-

dence also supports their oncogenic activity. Rare human leukemias have been found with oncogenic

fusion proteins containing either CBP or EP300, and these oncogenic fusion proteins require the

activity of CBP or EP300 (Murati et al., 2007; Ohnishi et al., 2008; Yung et al., 2011; Wang et al.,

2011). Genetic ablation and pharmacological inhibition of CBP/EP300 in leukemic cell lines and pri-

mary patient samples also support the oncogenic role of CBP and EP300 (Picaud et al., 2015;

Giotopoulos et al., 2015). Our data in multiple myeloma are consistent with an activity supporting

oncogenic signaling, as either pharmacological inhibition or knockdown resulted in loss of viability. It

is unclear whether CBP/EP300 bromodomain inhibition would have tumor promoting activity in nor-

mal tissues. However, concerns about inhibiting potential tumor suppressor activity of CBP/EP300 in

normal tissues may be alleviated by a dosing regimen that prevents continuous target coverage in

normal tissues.

BET bromodomain inhibitors are highly active in hematologic malignancies, including multiple

myeloma (Delmore et al., 2011; Mertz et al., 2011). The activity of CBP/EP300 bromodomain inhib-

itors in multiple myeloma potentially suggests that this modality may modify similar genes regulated

by BET bromodomain inhibitors, but transcriptional profiling does not support this notion. At the

doses of SGC-CBP30 utilized, CBP/EP300 bromodomain inhibition appears to have a more circum-

scribed transcriptional footprint than BET bromodomain inhibition. Phenotypic effects of BET bro-

modomain inhibition in multiple myeloma are likely due to direct suppression of MYC and BCL2,

while the effects of CBP/EP300 bromodomain inhibition appear to be via suppression of IRF4. The

distinct transcriptional effects of the two modalities suggests that combinations may be efficacious.

It has in fact been shown that targeting the IRF4 network with lenalidomide and the MYC network

with BET bromodomain inhibitors has synergistic effects in mantle cell lymphoma and primary effu-

sion lymphoma (Moros et al., 2014; Gopalakrishnan et al., 2015). CBP/EP300 bromodomain inhibi-

tion may thus represent an alternative strategy for targeting the IRF4 transcriptional axis in these

contexts.

The discovery of BET bromodomain inhibitors represented a breakthrough in the ability to target

what were thought to be intractable oncogenic factors. Here we have shown that CBP/EP300 bro-

modomain inhibitors may similarly be used to target the expression of critical oncogenic transcrip-

tion factors. As dysregulated transcriptional control is central to the pathology of cancer, the ability
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to target oncogenic transcription networks with small molecule bromodomain inhibitors represents a

promising direction for future therapeutics.

Materials and methods

Cell lines
Sources of cell lines and results of mycoplasma testing are provided as Supplementary file 2. All

cell lines were used within 1–2 months of thawing from original stock vials received from supplier

and were not further authenticated. LP-1 cells containing doxycycline-inducible IRF4 were generated

as described for the inducible LP-1/MYC cell line (Mertz et al., 2011) using the IRF4 coding

sequence (RefSeq BC015752.1) obtained from Origene Technologies, Inc. (Rockville, MD) as a tem-

plate. Inducible cell lines were incubated with 1 mg/ml doxycycline (Sigma-Aldrich, Inc; St. Louis,

MO) for 3 days. SGC-CBP30 (2.5 mM) or I-CBP112 (5 mM) was added for 6 hr for RNA analysis or for

24 hr, and cells were fixed for cell cycle analysis or pelleted for Western analysis, or were seeded in

a 96 well plates for long -term viability testing.

NanoBRET cellular assays
NanoBRET was carried out using the NanoBRET Protein:Protein Interaction System (Promega, Inc.;

Madison, WI) according to the manufacturer’s instructions. Briefly, HEK293 cells were transiently co-

transfected with a vector for histone H3.3-HaloTag and a NanoLuc tagged CBP bromodomain

expression construct. Transfected cells were plated in 96 -well plates in the presence or absence of

ligand, then treated with dose titrations of indicated compounds. Readings were performed on an

Envision Plate Reader (Perkin Elmer, Inc.; Waltham, MA) and BRET readings were calculated by

dividing the acceptor emission value (600 nm) by the donor emission value (460/50 nm).

Bromodomain chromatin release assay
As described previously (Huang et al., 2014), this assay monitors the compound-dependent release

and aggregation of a fusion protein consisting of a bromodomain and the fluorescent protein

ZsGreen. For the BRD4 chromatin release assay, U2OS cells capable of inducibly expressing the full-

length BRD4 protein in fusion with ZsG were generated using the pLVT3G/ZsGreen-BRD4/TO3G

vector and maintained in blasticidin at 15 mg/ml. Consistent with published data (Dawson et al.,

2011), we did not observe global release of full length CBP fused to ZsGreen in response to com-

pounds or bromodomain point mutations. Therefore, the bromodomain (BD) of CBP was cloned into

full length BRD9 (replacing the BRD9 BD) in frame with a ZsGreen fluorescent tag (ZsG). U2OS cells

capable of inducibly expressing the ZsGreen-CBPBD fusion protein were generated by lentiviral

delivery of the pLVT3G/BRD9-ZsG-CBPBD/TO3G vector, which contains both the inducible fusion

protein and the tet transactivator. Cells were selected and maintained in the presence of 15 mg/ml

blasticidin. 5000 cells/well were seeded in 384-well imaging plates in the presence of 2 mg/ml doxy-

cycline to induce the expression of ZsG-fusion proteins. After 16 hr of incubation with doxycycline,

fresh media containing serial dilution of compounds were added to the cells for 2 hr at 37˚C. Cells
were fixed with 4% paraformaldehyde (PFA) dissolved in PBS for 15 min at room temperature.

Images of cells were acquired using ImageXpress Micro (Molecular Devices, Inc.; Sunnyvale, CA) and

processed with the Transfluor Module of MetaXpress software. Average pits per cell values were

obtained from four adjacent images in each well with two technical replicates for each compound

concentration. Dose-response curves were generated by plotting the average pits per cell values at

each dose and EC50 values were calculated by a four-parameter non-linear regression model in

GraphPad Prism.

Differential scanning fluorimetry
Differential scanning fluorimetry (DSF) was performed as described (Niesen et al., 2007) with the

indicated bromodomains using the ViiA7 real time PCR system (Life Technologies, Inc.; Carlsbad,

CA). Variable buffer compositions were used for the different bromodomain proteins with 12X

SYPRO orange dye, 20 mM of the compounds or equivalent percentage of DMSO, and 4–8 mM of

the indicated protein. A melting curve was established using a range of 25–95˚C and a ramping rate

of 3˚C per minute. The melting temperature (Tm) for each sample was determined using the ViiA7
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software (version 1.2.2) and the DTm was calculated by subtracting the Tm of the control from the Tm
of the compound treated sample.

Cell cycle analysis and viability determination
Cells were plated at 5000–10000 cells per well of 96-well plates containing titrations of the com-

pounds as indicated. After incubation, the cells were incubated with 500 mg/ml resazurin (Sigma) in

PBS for 2–8 hr, and fluorescence was measured (Ex 530 nm, Em 590 nm). Cell cycle analysis was per-

formed as described previously (Mertz et al., 2011). For visualization, DNA content histograms

were generated with GraphPad Prism. Dose-response curves were generated by plotting the nor-

malized percent growth, percent sub-G1 and percent increase in G0/G1 at each dose values. GI50
values were determined as the concentration at which viability was 50% of the DMSO value and cal-

culated by a four-parameter non-linear regression model in GraphPad Prism. Cell synchronization

was performed as described (Mertz et al., 2011), and cells were released into media containing

DMSO, 2.5 mM SGC-CBP30 or 5 mM I-CBP112.

Lentiviral shRNA transduction
Lentiviral shRNA vector and packaging have been described previously (Mertz et al., 2011). Cells

(2E6 cells/ml) were transduced with lentivirus at an MOI of 5–10 in 8 mg/ml sequebrene (Sigma) and

centrifuged at 1000g for 2 hr. Cells were diluted to 1 � 106 cells/ml overnight. Infected cells were

diluted to 2 � 105 cells/mL in 1 mg/ml puromycin and transferred to 96-well plates or TC flasks. After

3–4 days, cells in flasks were pelleted and used for qRT-PCR or Western analysis. Cells in 96-well

plates were incubated for 9 days and fixed for cell cycle analysis, with passaging and fixing of ali-

quots as indicated. Target sequences for shRNAs were as follows: shEP300 1: 5’CGGAAACAG

TGGCACGAAGAT3’; shEP300 2: 5’CGGAGGATATTTCAGAGTCTA3’; shEP300 3: 5’GCGGAATAC

TACCACCTTCTA3’; shCBP 1: 5’CCTCTTTGGAGTCTGCATCCT3’; shCBP 2: 5’GAGCTTCCCAAG

TTAAAGAAG3’; shCBP 3: 5’GCCCATTGTGCATCTTCACGA3’. For IRF4 knockdown, validated

shRNA constructs were obtained from Sigma. Constructs shIRF4-1, shIRF4-2, shIRF4-3, shIRF4-4, and

shIRF4-5 correspond to TRCN0000429523, TRCN0000014764, TRCN0000014765,

TRCN0000014767, and TRCN000433892, respectively.

mRNA sequencing, gene expression microarrays, data analysis, and
quantitative RTPCR
Total RNA was prepared with an RNeasy Mini Kit (Qiagen, Inc.; Hilden, Germany) with on column

DNAse digestion and submitted to Ocean Ridge Biosciences (Palm Beach Gardens, FL) for sequenc-

ing and mapping. The data in RPKM for each gene with compound treatment was compared to

DMSO treatment, and log2 fold changes were used for further analysis. Rank ordered gene lists

were used for Gene Set Enrichment Analysis (Subramanian et al., 2005). RNA preparation, cDNA

synthesis, and qRT-PCR were performed as described (Mertz et al., 2011). For dose titration experi-

ments, cells in 96 -well plates were lysed in lysis buffer (1% Triton X-100, 0.01 mM glycine pH 2.5)

and used directly for cDNA synthesis and qRT-PCR. Primer sequences can be found in

Supplementary file 1.

Western analysis
Whole cell extracts were prepared by lysis in RIPA buffer + EDTA (Boston Bioproducts, Inc.; Ashland,

MA) with protease inhibitor cocktail (Roche Life Sciences; Indianapolis, IN). Extracts were subjected

to SDS-PAGE and Western analysis with MYC (Cell Signaling (Danvers, MA) #5605), IRF4 (Cell Signal-

ing #4964 or #4948), GAPDH (Life Technologies AM4300), CBP (Santa Cruz (Dallas, TX) sc-369),

EP300 (Santa Cruz sc-584), or b-actin (Life Technologies AM4302) primary antibodies. For histone

analysis, extracts were prepared by sulfuric acid extraction of permeablized nuclei, and extracted his-

tones were subjected to SDS-PAGE and Western analysis with H3K18ac (Cell Signaling #9675),

H3K27ac (EMD Millipore (Billerica, MA) 07–360), or H4 (Abcam (Cambridge, MA) 31830). Blots were

incubated with DyLight conjugated secondary antibodies, imaged and quantified with a Licor fluo-

rescence imager (Licor, Inc.; Lincoln, NE), or with HRP- conjugated secondary antibodies for ECL

visualization.
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ChIP-seq
5 x 107 LP-1 cells were treated for 6 hr with DMSO or 2.5 mM SGC-CBP30 at a density of 5 x 105/ml.

Cells were fixed with a final concentration of 1% formaldehyde for 10 min at room temperature. Gly-

cine was added to a final concentration of 0.125 M to stop crosslinking. The cells were washed twice

in cold PBS followed by lysis at 4˚C for 1 hr in buffer containing 10 mM Tris-HCl pH 7.5, 10 mM

NaCl, 5 mM MgCl2, 0.2% NP-40, + protease inhibitor cocktail (Sigma). Following lysis, nuclei were

recovered by centrifugation, and resuspended in buffer containing 10 mM Tris-HCl, 0.1 mM EDTA, 5

mM MgAc2, 25% glycerol. An equal part 2X MNase buffer was added, containing 50 mM KCl, 8 mM

MgCl2, 2 mM CaCl2, 100 mM Tris-HCl. Micrococcal nuclease (Roche) was added to 300 U/ml and

chromatin was digested at room temperature for 20 min. Dilution buffer (0.1% SDS, 1.1% Triton-X

100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 150 mM NaCl) was added and nuclei were broken down

by sonication. Chromatin was cleared by centrifugation and pre-cleared with protein A-conjugated

magnetic beads (Life Technologies). 10–20 mg pre-cleared chromatin was combined with 10 mg anti-

EP300 antibody (Santa Cruz sc-585X) or 2.5 ug of anti-H3K18ac (Cell Signaling, 9675) or anti-

H3K27ac (Abcam, ab4729) conjugated to protein A magnetic beads. IPs were performed overnight

at 4˚C. Immune complexes were washed twice in buffer containing 140 mM NaCl, once in buffer

containing 360 mM NaCl, once in 250 mM LiCl wash buffer, and twice in TE. Samples were eluted

and treated with 20 mg proteinase K (Roche) for 1 hr at 55˚C, crosslinks were reversed for 4 hr at

65˚C, and 20 mg RNase (Sigma) was added for 1 hr at 37˚C. DNA was purified with the MinElute kit

(Qiagen), and libraries were prepared using the Ovation Ultralow DR Multiplex System (NuGEN,

Inc.; San Carlos, CA) according to the manufacturer’s recommendations. Amplified libraries were

size selected and gel-purified prior to Illumina massively parallel sequencing on a HiSeq 2000 system

at the MIT Biomicro Center. Biological replicates were performed for each sample, and representa-

tive images are depicted.

AlphaLISA
Inhibitory activity of compounds was determined by following the inhibition of the binding of puri-

fied His-Flag-tagged bromodomains to H4-TetraAc-biotin peptide (New England Peptide, Inc.;

Gardner, MA) using AlphaLISA technology (Perkin Elmer). Compound at varying concentrations

were dispensed into 384 well Proxiplates (Perkin Elmer) using Echo technology (Labcyte, Inc.; Sunny-

vale, CA). For CBP assays, 0.5 mM His-Flag-tagged CBP bromodomain (amino acids 1082–1197) was

incubated with 0.003 mM H4-TetraAc-biotin for 20 min at room temperature in 1x reaction buffer (50

mM HEPES pH 7.5, 1 mM TCEP, 0.069 mM Brij-35, 150 mM NaCl, and 0.1 mg/ml BSA). Streptavidin

acceptor beads and nickel donor beads (Perkin Elmer) were added to 15 mg/ml with a Combi Multi-

drop dispenser. Plates were sealed and incubated at 90 min in the dark at room temperature, and

plates were read on an Envision plate reader (Perkin Elmer) according to manufacturer’s instructions.

For the BET assays, the protocol was similar except that BET family bromodomains were used at

0.03 mM (BRD4-BD1) and incubated with 0.2 mM H4-TetraAc-biotin for 20 min in reaction buffer (40

mM HEPES pH7.0, 1 mM DTT, 0.069 mM Brij-35, 40 mM NaCl, and 0.1 mg/ml BSA). Streptavidin

donor beads and Anti-Flag Acceptor beads (Perkin Elmer) were added to 10 mg/ml, and then plates

were sealed and incubated in the dark for 60 min prior to reading on the Envision.

Chemical compounds
The synthesis and characterization of CPI203 have been published previously (Devaiah et al., 2012).

SGC-CBP30 and I-CBP112 are commercially available (Sigma).
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