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Abstract 26 
 27 
The rodent hippocampus represents different spatial environments distinctly via changes 28 
in the pattern of “place cell” firing.  It remains unclear, though, how spatial remapping in 29 
rodents relates more generally to human memory. Here participants retrieved four virtual 30 
reality environments with repeating or novel landmarks and configurations during high-31 
resolution functional magnetic resonance imaging (fMRI). Both neural decoding 32 
performance and neural pattern similarity measures revealed environment-specific 33 
hippocampal neural codes. Conversely, an interfering spatial environment did not elicit 34 
neural codes specific to that environment, with neural activity patterns instead resembling 35 
those of competing environments, an effect linked to lower retrieval performance. We 36 
find that orthogonalized neural patterns accompany successful disambiguation of spatial 37 
environments while erroneous reinstatement of competing patterns characterized 38 
interference errors. These results provide the first evidence for environment-specific 39 
neural codes in the human hippocampus, suggesting that pattern separation/completion 40 
mechanisms play an important role in how we successfully retrieve memories. 41 
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Introduction 62 
 63 

Place neurons (e.g. “place cells”) in the rodent hippocampus preferentially fire in 64 
a particular spatial location [1], the combination of which provide a neural code for that 65 
spatial environment [2-4].  The collection of active place cells in an environment is 66 
thought to serve as a “cognitive map,” providing a spatial framework for both navigation 67 
and memory more generally [2, 5, 6].  Two fundamental properties of place cells are their 68 
stability [7, 8] and their environmental specificity, also known as “remapping” [4].  69 
Without reliable recapitulation of the ensemble of place cells representing a specific 70 
“map,” spatial memory is impaired [e.g., 9, 10, 11].  Remapping, a form of reorganization 71 
of hippocampal “maps” for different environments, is theorized to be a fundamental 72 
mechanism to navigation and memory more generally.  However, the exact link between 73 
memory performance and remapping has yet to be fully established [12, 13].  In humans, 74 
invasive recordings from the hippocampus have demonstrated place-coding neurons in 75 
single environments [14-16].  Additionally, the human hippocampal formation is 76 
important to episodic memory more broadly [17], with place cells activating during item 77 
recall [16] and several studies demonstrating the ability to decode both location and 78 
episode-specific details from hippocampal fMRI blood-oxygen-level-dependent (BOLD) 79 
patterns [18-20].  Whether the human hippocampus represents one spatial environment as 80 
either the same or different from another, however, – a cornerstone of the idea that the 81 
hippocampus may compute spatial “maps” as part of a larger role in processing memories 82 
– remains unknown and untested.  83 

In addition to serving as a basic marker of memory, the environmental specificity 84 
of the hippocampus is thought to elucidate critical theoretical mechanisms of 85 
hippocampal function known as pattern separation and completion.  These processes 86 
were predicted by early computational models and are thought to account for the memory 87 
interference errors commonly encountered in memory research and our everyday lives 88 
[21-24]. This theory states that pattern separation is a process that makes memories 89 
neurally distinct during memory storage and pattern completion a process by which 90 
memories are retrieved from a neural cue. Pattern separation and completion are thus 91 
thought to be important complements to each other [21].  Theoretical models and several 92 
empirical findings additionally suggest that CA3/DG and CA1 subfields mediate pattern 93 
separation and completion in the hippocampus [25-28].  Yet exactly how these findings 94 
relate to human spatial memory remains unclear.   95 

Pattern completion is thought to rely on neural “attraction” between the cues that 96 
precede recall and stored representations, therefore allowing the cue to trigger re-97 
instantiation of the full memory [29].  This property of attraction has the important 98 
implication that memories that are neurally similar will compete, producing interference 99 
in the case that the incorrect memory wins this competition [13, 30]. Theoretical models, 100 
therefore, postulate the central importance of pattern separation as critical to making 101 
memories less similar and thus avoiding interference due to neural attraction. Alternative 102 
accounts of memory interference, however, instead argue against a pure pattern 103 
separation/completion based account in favor of a model which posits inhibition of 104 
interfering memories from executive control regions during memory recall [31].   This 105 
account instead predicts that similar representations can co-exist, but can be selected, 106 
maintained, and strengthened by executive control centers during memory retrieval.  107 
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Therefore, a definitive neural link between behavioral interference, neural pattern 108 
separation, and spatial remapping is necessary to resolve this debate and clarify the 109 
hippocampus’s function in memory.  110 

The aims of this study, thus, were three fold.  The first was to examine whether 111 
humans also recapitulate neural codes for the same environment as well as bifurcate 112 
codes for different environments as measured by non-invasive measures of fMRI voxel-113 
pattern remapping.  A second and critical test of whether remapping occurs in humans, 114 
however, is whether situations involving highly interfering spatial contexts can produce 115 
remapping failures [e.g., 32, 33], and if so, what neural mechanisms characterize these 116 
errors.  A final goal was to provide a link between behavioral measures of environment 117 
knowledge and neural measures of spatial remapping in humans. 118 
 119 
Results 120 
 121 

To determine whether the human hippocampus also contains environment-122 
specific neural codes, participants first explored four cities with varying levels of shared 123 
spatial context.  Two cities (Cities 1 & 2) involved the same stores arranged in the same 124 
geometry, but with two store locations swapped (also termed the similar cities).  A third 125 
city (City 3) involved the same stores as Cities 1 & 2, but arranged in a novel geometry 126 
and therefore at novel locations (interference city).  Finally, City 4 involved a completely 127 
novel set of stores and geometrical arrangement (distinct city; see Figure 1A, Materials 128 
and Materials and methods).  Following each round of navigation, participants drew maps 129 
of the environment to ensure that they accurately encoded spatial configuration details 130 
(Figure 1B, see Materials and methods).  Following navigation and map drawing of all 131 
cities, participants entered the scanner where they performed two retrieval blocks per city 132 
(Figure 1C).  Participants were instructed to recall a specific city during each retrieval 133 
block, with each trial involving judgments of the relative distances between stores (please 134 
see Methods for further details).    135 

To better understand the extent to which the different cities involved competing 136 
representations, we compared learning rates of city-specific map-drawing performance in 137 
a separate behavioral study (Figure 1—figure supplement 1–2 and Materials and 138 
methods).  We predicted that City 3 would experience slower learning relative to Cities 1 139 
& 2 because all of City 3’s store locations were in conflict with store locations from 140 
Cities 1 & 2. Cities 1 & 2, on the other hand, had only 2 conflicting store locations, which 141 
could be learned via a simple swap.  We found that the slowest learning did occur for the 142 
interference city (City 3) as well as the greatest confusion with the similar cities (Cities 143 
1&2).  In contrast, transitioning between the similar cities (e.g., City 1 to City 2) resulted 144 
in little detrimental effect on learning; in fact, learning one facilitated the learning of the 145 
other.  Finally, no other cities facilitated learning of the distinct city (City 4) nor did 146 
learning the distinct city interfere with learning any other city.  These findings suggested 147 
that City 1 and 2 (similar cities), despite being most similar, were easily distinguished 148 
from one another and that City 3 involved a representation prone to interference from 149 
similar cities (thus called the inference city).  City 4, in contrast, did not interact with the 150 
other cities (distinct city) due to its novel stores and spatial geometry [34], allowing it to 151 
be readily distinguished from the other three cities.   152 
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We then tested whether participants’ accuracy during retrieval of spatial distances 153 
of landmarks within the different cities (i.e., is store X closer to store Y or store Z?).  154 
Participants performed well above chance on spatial retrieval of all four cities (Figure 1D, 155 
single sample t-test against chance performance: t(18)>4.7, p<.0002).   A one-way 156 
repeated-measures ANOVA revealed differences in performance as a function of city 157 
(F(3,54) = 20.9, p<.001), which was driven by significantly lower retrieval performance 158 
on the interference city than all other cities (t(18)>4.65,p<.0002).  No other cities differed 159 
from each other in terms of performance, confirming the results of our navigation and 160 
map data analysis suggesting that retrieving information from the interference city (City 161 
3) resulted in a tendency to confuse traces with those used in Cities 1&2.  It is important 162 
to note that even though Cities 1&2 involved similar representations (with the difference 163 
being two swapped stores), performance on these two cities could not be explained by 164 
using the same responses between the two cities or the same responses and guessing on 165 
the swapped stores (see Materials and methods).  These findings support the idea that 166 
participants were nonetheless using at least partially non-overlapping representations to 167 
retrieve details from Cities 1&2. 168 
 169 
Classification of city-specific retrieval patterns in the hippocampus demonstrates 170 
successful decoding of all spatial contexts except the interfering environment  171 
  172 

Our first and most basic prediction was that our human participants, analogous to 173 
remapping the rodent, would exhibit hippocampal voxel patterns that could uniquely 174 
identify each spatial environment. To address this prediction, we performed a searchlight 175 
classifier throughout the MTL (see Materials and methods for details and Figure 2C).  176 
This approach allowed us to naively identify MTL regions where voxel patterns carried 177 
city specific information.  Our inclusion of the interference city into this analysis allowed 178 
us to address additional questions of pattern separation/completion.  For instance, if the 179 
reduced retrieval performance of the interfering city could be attributed to insufficiently 180 
separated neural patterns where models predict neural competition at retrieval, the 181 
classifier should disproportionally misclassify the interference city as one of the similar 182 
cities (Cities 1&2) but not the distinct city (City4). 183 

  The pattern classifier correctly identified three of the four cities at levels above 184 
chance, revealing a cluster in hippocampal regions left CA3/DG and CA1 that 185 
significantly classified city identity (Figure 3A–C).  Analyzing this cluster in a one-way 186 
repeated-measures ANOVA, with classifier performance of each city as a separate factor, 187 
revealed significant differences between cities (Figure 3C, F (3,54) = 12.9, p<.001).  188 
Testing each city’s classifier performance against chance revealed that the classifier 189 
performed above chance on all cities except the interference city (Cities 1, 2, & 4 above 190 
chance: t(18) > 3.2, p<.006, two-tailed).  Conversely, interference city classification 191 
performance was consistently below chance levels (t(18) = -3.2, p=.006, two-tailed), 192 
despite overall classification (across all cities) being well above chance (Figure 3C, t(18) 193 
= 5.6, p=2x10-5, two-tailed).  We note that a control analysis produced similar results 194 
using a different training protocol (Figure 3–figure supplement 1, see Materials and 195 
methods for more details). This finding confirmed our prediction that, like the rodent, the 196 
human hippocampus contains environment specific representations in the CA1 and 197 
CA3/DG subfields of the hippocampus for the environments that were most easily 198 



 6

retrieved (Cities 1, 2, & 4).  Additionally, the below chance classifier performance for 199 
City 3 and close resemblance of the retrieval accuracy and classifier accuracy seemed to 200 
indicate that low behavioral performance on City 3 may have related to lower levels of 201 
voxel pattern remapping for this environment.  202 

To further explore the idea that low classification levels of the interference city 203 
(City 3) were due to the competing representations of the similar cities, we inspected 204 
interfering city classification results.  Here, we predicted that the classifier would 205 
misclassify the interference city trials as either City 1 or City 2 on more than 50% of 206 
trials (chance level).  This would be consistent with our behavioral results, which 207 
indicated that the interfering city was most often confused with Cities 1 and 2 during 208 
learning (see Materials and methods).  This would potentially support a pattern 209 
separation/completion account of hippocampal remapping of spatial memory errors.  As 210 
predicted, interference city trials were incorrectly labeled as one of the two similar cities 211 
at levels well above 50% (t(18) = 2.7, p=.01, two-tailed, Figure 3C).  This suggested that 212 
a disproportionate amount of interference city trials resembled the similar cities. In 213 
contrast, trials for Cities 1 & 2, on which retrieval performance was well above chance, 214 
were incorrectly classified as City 3 significantly less than chance (t(18)=-8.6,p<.001 215 
corrected; see Figure 3—figure supplement 2).  Overall, these findings are consistent 216 
with the idea that retrieval errors on City 3 could be attributed to, at least in part, 217 
insufficient differentiation of neural patterns from Cities 1&2. 218 

A second critical prediction from the pattern separation/completion account 219 
would suggest that better individual performance on the interference city should be 220 
attributable to more distinct and therefore more readily classified representations of this 221 
city.  Therefore, we also examined the link between interference city classifier 222 
performance and participant retrieval performance by seeing if the two measures were 223 
correlated.  We found that interference city retrieval and classifier performance were 224 
significantly correlated (r(17)=.61, p=0.006, Figure 3D), a result which persisted even 225 
when matching the number of classifier training trials for each city (Figure 3—figure 226 
supplement 1).  The link between participants who performed better on the interference 227 
city and those that had more readily classified neural representations of the interference 228 
city thus suggested that our best performing participants had neural representations that 229 
were more differentiated from each other than those of poorly performing participants.  230 
Together, the findings from the searchlight classification analysis support the idea that 231 
humans exhibit environmental specificity of their hippocampal codes.  Further, the low 232 
classification performance of the interference city, and correlation between behavioral 233 
and neural classifier performance, favor a pattern separation/completion based account of 234 
memory interference.  235 

Although searchlight classifier analyses have advantages, in our case, the ability 236 
to naively identify regions within the human hippocampus exhibiting environment 237 
specific coding, they are not as well suited to hypotheses involving functional 238 
dissociations between subfields.  For instance, searchlight clusters do not necessarily 239 
carry unique signals from different brain regions [35, 36].  Pattern classification also 240 
cannot indicate whether neural codes are more similar within the same vs. between 241 
different environments, a cornerstone of spatial remapping findings in the rodent [3, 4].  242 
We therefore employed a region-of-interest (ROI) based, multivariate pattern similarity 243 
(MPS) approach to 1) determine whether different human hippocampal subfields played 244 
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different roles in spatial remapping and 2) provide more specific alignment with findings 245 
from rodents indicating higher neural similarity for the same vs. a different spatial 246 
environment. 247 
 248 
ROI-based multivariate pattern similarity (MPS) voxel remapping suggests a functional 249 
dissociation of CA3/DG and CA1 250 
 251 

As outlined in the prior section, our operational definition of remapping was 252 
voxel similarity within the same city (context reinstatement) and dissimilarity between 253 
different cities (remapping).  To quantify this using multivariate pattern similarity (MPS), 254 
we created a voxel “remapping index” defined as within-environment similarity minus 255 
the average between-environment similarity (Figure 2D–E).  Because our searchlight 256 
classifier analysis implicated CA1 and CA3/DG subfields in exhibiting voxel pattern 257 
remapping and remapping in the rodent is predominantly studied in CA1 and CA3/DG, 258 
here, we only include data from only CA1 and CA3/DG (for other subfield results, please 259 
see Figure 4—figure supplement 1).  The results of this analysis are presented in Figure 260 
4A–C.  A 2x4 subfield by city repeated measures ANOVA revealed a main effect of 261 
subfield (F(1,18)=6.93, p<.02), and a marginal subfield by city interaction (F(3,16)=3.14, 262 
p<.06).  This suggested that CA3/DG tended to exhibit more remapping but also that the 263 
pattern of results across cities differed for CA3/DG vs. CA1.  Also of interest was 264 
whether each city remapping score was significantly different from chance.  In left 265 
CA3/DG, remapping scores were significantly above zero for Cities 1 & 2 (all t-tests one 266 
tailed, t(18)>1.8, ps<.05 corrected; see Materials and methods) and marginally above 267 
zero City 4 (t(18)=1.6, p=.06 corrected).  Thus, left CA3/DG MPS patterns indicated 268 
higher pattern similarity when participants retrieved spatial distances within Cities 1,2, 269 
and 4 compared to the correlations of the patterns between different cities.  270 

Left CA1, in contrast, had remapping scores that were significantly above zero for 271 
City 4 (t(18)=2.29, p<.05, corrected), but not for Cities 1-3 (ts<-0.25, p>.6).  Consistent 272 
with the searchlight classifier results, City 3 did not exhibit significant remapping in 273 
either CA3/DG or CA1 (ts<.98,ps>.17).  This analysis further clarified the results of the 274 
searchlight classifier by suggesting that when characterizing entire subfields, more cities 275 
showed significant remapping effects in CA3/DG than CA1, but that CA1 did exhibit 276 
remapping for the most distinct city (City 4).  Together, these findings suggested that 277 
CA1 and CA3/DG showed remapping for distinct city retrieval, while only CA3/DG 278 
showed remapping between similar cities.  Overall, these findings also confirm the 279 
importance of pattern separation mechanisms to remapping in both human CA3/DG and 280 
CA1, an issue we consider with greater depth in the Discussion. 281 

 282 
Analysis of retrieval trials from the interference city suggests a partially unstable 283 
representation 284 
 285 

Our searchlight classifier results suggested that correct trials tended to 286 
disproportionally resemble the similar cities but this effect was reduced for our best 287 
performing participants.  This begged the question, if even correct interference city trials 288 
resembled the similar cities, did incorrect trials show even greater resemblance to the 289 
similar cities than the correct trials? If the representation of the interference city was 290 
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unstable and easily attracted to the similar cities, then voxel patterns for incorrect 291 
interfering city trials should be highly correlated with voxel patterns of correct trials from 292 
the similar cities.  Conversely, we would not expect to see high pattern similarity between 293 
similar cities and interference city trials if they were correctly answered.  An important 294 
control comparison was included to make sure that this effect could be attributed to 295 
interference rather than a general property of incorrect retrieval.  We would not expect 296 
the incorrect interference city trials to show similarity to the distinct city (because the 297 
distinct city was substantially different from Cities 1-3), and thus neither incorrect nor 298 
correct interfering city trials should have correlated voxel patterns with the distinct city. 299 

To address these issues, we calculated MPS to compare correct and incorrect 300 
interference city trials with other city trials using matched visual stimuli (triads) (see 301 
Materials and methods), the results of which are presented in Figure 5.  Voxel patterns in 302 
left CA3/DG (and right CA3/DG) on incorrect high interference city retrieval trials were 303 
significantly correlated with correctly retrieved voxel patterns in the similar cities (Figure 304 
5A). Importantly, incorrect interference city trials were significantly more correlated with 305 
correct similar city (City 1 & 2) trials than were correct interference city trials with 306 
correct similar city or distinct city trials in CA3/DG (left bar greater than others, two-307 
tailed t-test, t(18)>2.2, p<.04).  This effect was present in left CA3/DG (it was also 308 
present in right CA3/DG, two-tailed t-test, t(18)>3.7, p<.001, Figure 5B, Figure 5—309 
figure supplement 1A) but not present in CA1 nor any other subfield (t(18)<1.8, p>.09, 310 
Figure 4—figure supplement 1C, Figure 5—figure supplement 1B).  These results 311 
augment our searchlight classification results by demonstrating resemblance of incorrect 312 
interference city trials to the similar cities.  Specifically, our findings support the idea that 313 
the unstable, weakly differentiated neural patterns of City 3 allowed the stable 314 
representations of Cities 1 & 2 to occasionally “outcompete” City 3 during retrieval.  315 
This in turn led to pattern completion of the wrong representation and selection of an 316 
incorrect response. 317 

 318 
Differences in univariate activations cannot account for city-specific representational 319 
contextual shifts 320 

 321 
One potential issue with multivariate pattern analysis techniques such as 322 

classification and MPS is that they could be driven by simple effects related to increases 323 
or decreases in the BOLD signal at specific voxels and subfields rather than changes in 324 
distributed neural patterns [36].  It is also important to demonstrate that regions that 325 
carried multivariate information were recruited during the task by showing activation 326 
above baseline.  To address these issues, we employed a simple univariate model 327 
comparing correct responses on each retrieval block against the baseline task (see 328 
Materials and methods).  We found significant levels of activation across hippocampal 329 
subfields (average parameter estimates of CA1, CA3/DG, and subiculum, left 330 
hippocampus t(18)=3.6, p=.002, right hippocampus: t(18)=5.4, p=3x10-5; all t-tests two-331 
tailed), confirming that the hippocampus was broadly activated by our task, consistent 332 
with our past work [37-39].  We then tested whether MPS differences could be explained 333 
based on differences in univariate activation, which would challenge our findings of 334 
subfield specific changes in BOLD activation patterns [36, 40].  To test this idea, we 335 
performed an 8x4 subfield (left and right CA1, CA3/DG, Subiculum, and PHC) by city 336 
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repeated measures ANOVA on mean activation.  This analysis revealed a main effect of 337 
subfield (F(7,126)=29,p<.001) driven by larger parameter estimates in PHC than 338 
hippocampus proper (t(18)>4.3,p<4x10-4).  Neither of the remaining effects, however, 339 
(main effect of city and subfield by city interaction) were significant (F<1,p>.5).  We also 340 
specifically tested regions of interest CA3/DG and CA1 with a 2x4 subfield (left CA1 vs 341 
left CA3/DG) by city repeated measures ANOVA which revealed no significant effects 342 
(Fs<2, ps>.15). These findings suggest that city-specific differences in univariate 343 
activation levels (i.e., greater activation to the distinct city than other cities) could not 344 
account for our overall pattern of results. 345 
 346 
Discussion 347 
 348 
 We believe that four novel components of our findings aid in understanding of 349 
human hippocampal function and its relation to memory processing.  First, we extend 350 
environment specific coding to the human hippocampus using voxel-pattern based 351 
analyses.  Using a searchlight classifier approach, which naively identified medial 352 
temporal lobe regions carrying city specific information, we found a cluster of voxels in 353 
CA3/DG and CA1 whose patterns decoded specific cities during retrieval.  Next, using an 354 
MPS ROI approach which utilized all voxels from a subfield to characterize similarity 355 
within and between cities using simple correlations, both CA3/DG and CA1 showed 356 
higher similarity within city than between cities. Although past studies in humans have 357 
confirmed the presence of location specific coding in the hippocampus [14, 15], 358 
measuring remapping typically requires a large number (>40) of simultaneously recorded 359 
cells [3], which are difficult to obtain in most human studies.  Additionally, although past 360 
fMRI studies in humans have suggested location-specific [18, 19], distance-specific [41],  361 
and episode-specific spatial coding within a single environment [42], demonstrating 362 
remapping between different spatial environments in particular has been elusive because 363 
altering the environment changes the visual scenes and trajectories experienced by the 364 
subject. Here, we dealt with this issue by minimizing visual confounds inherent in 365 
navigation by instead having subjects retrieve spatial distances from specific 366 
environments during retrieval.  Thus, our findings suggest that indeed the human 367 
hippocampus contains neural codes that differentiate specific spatial environments. 368 
 Second, our results provide support for a pattern separation/completion based 369 
account of memory disambiguation.  Here, we probed the neural underpinnings of both 370 
successful disambiguation at retrieval, as well as unsuccessful disambiguation.  Retrieval 371 
of Cities 1, 2, & 4, which were more easily learned and retrieved, were shown to involve 372 
orthogonal voxel patterns, as demonstrated by a searchlight classifier and voxel similarity 373 
analyses.  City 3, however, which contained repeated landmarks but in a novel 374 
arrangement from Cities 1&2, did not exhibit neural characteristics consistent with 375 
remapping or pattern separation, i.e. higher within than between city similarity or above 376 
chance classification. Rather, when attempting to classify City 3’s correct retrieval trials, 377 
most trials were classified as City 1 or 2, although this effect was reduced for higher 378 
performing participants, suggesting that high performers exhibited more stable 379 
hippocampal patterns than low performers.  Thus, one possible explanation for the poor 380 
performance on City 3 is that its neural patterns were insufficiently separated from those 381 
of Cities 1&2, resulting in a tendency to incorrectly pattern complete to stable 382 
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representations of City 1&2. An alternative interpretation could be to attribute such errors 383 
to inhibition failure, for example, insufficient inhibition of City 1&2 representations by 384 
prefrontal cortex could lead to those being erroneously retrieved when attempting to 385 
retrieve City 3 [43].  The inhibition model, though, would not appear to predict low 386 
classification of correct City 3 trials and misclassification of these trials as Cities 1&2 387 
trials since correct City 3 trials should involve trials in which traces from Cities 1&2 388 
were successfully suppressed [44] and thus show no correlation with Cities 1&2 (see 389 
Figure 5).  Furthermore, it is not clear how inhibition from higher cortical areas alone 390 
could lead to different patterns of suppression across the hippocampal subfields as 391 
prefrontal cortex projects primarily to subiculum and entorhinal cortex and not 392 
differentially to the CA fields, at least in non-human primates [45].  Thus, our findings 393 
overall support the importance of pattern completion and separation, particularly in 394 
CA3/DG, to spatial remapping and appear less easily reconciled with an inhibition-based 395 
account. 396 
 A third important insight provided by our findings is a potential link between 397 
remapping-like mechanisms in humans, spatial learning, and rodent hippocampal 398 
remapping.  The relationship between hippocampal remapping and behavior, however, 399 
remains unclear from the few studies to address both [13].  Part of the issue, as 400 
acknowledged in past such studies, is that it is difficult to assay whether a rat “knows” it 401 
is in a different environment or not, although dwell time and reversing direction may be 402 
important behavioral assays [33].  Jeffery et al., (2003) show that in a hippocampally 403 
dependent place-reward discrimination task, rodents perform only slightly worse after 404 
small environment modifications that induce global (~85% of cells) remapping [12], 405 
suggesting that remapping can occur quickly and have little negative effect on 406 
performance.  McHugh et al., 2007, in contrast, demonstrated that dentate gyrus NMDA 407 
knockout mice experienced less hippocampal remapping between contexts and less 408 
behavioral discrimination [11], suggesting that remapping is important to behavior.  In 409 
the current study, we assessed map drawing performance after each round of spatial 410 
exploration, which provided a more direct link to the formation of a cognitive map during 411 
navigation.  We found that maps of Cities 1 & 2 were easily learned because information 412 
could be readily transferred between the two cities.  Later, when assessing neural patterns 413 
during retrieval, Cities 1 & 2 were shown to have mutually orthogonal hippocampal 414 
voxel patterns.  In contrast, City 3’s maps were less accurate and took more trials to 415 
acquire due to interference from Cities 1 & 2.  During retrieval, performance was lower 416 
and hippocampal patterns were not orthogonal to those of Cities 1 & 2. However, we 417 
found that participants who performed better on City 3 did show voxel patterns that were 418 
more readily differentiated from the other cities.  Thus, our findings from Cities 1 & 2 419 
appear consistent with the results of Jeffrey et al. 2003 as we show remapping between 420 
Cities 1 & 2 despite the map acquisition data arguing for shared information between the 421 
two distinct representations.  Our results for City 3, though, appear consistent with 422 
McHugh et al., 2007, with less remapping negatively impacting memory performance.  423 
Thus, we think our data provide a potentially important link between behavioral memory 424 
performance in humans and measures of remapping and pattern separation/completion. 425 
 Finally, our findings also provide important extensions and challenges regarding 426 
the function of the human hippocampal subfields in spatial context 427 
disambiguation.  Specifically, when correctly retrieving spatial distances from two 428 



 11

overlapping cities differing only in terms of two swapped stores, neural patterns were 429 
uncorrelated to each other and all other cities, an effect primarily shown in left 430 
CA3/DG.  These findings support a role for CA3/DG in differentiation of competing 431 
spatial inputs, suggesting that this subfield in particular may be important for fine-grained 432 
discriminations amongst overlapping contexts as a part of a larger role in pattern 433 
separation/completion [46].  We also found that CA3/DG pattern remapping was 434 
(marginally) significant for City 4, suggesting that it differentiated the distinct city as 435 
well.  These findings are consistent with the idea of CA3/DG as a universal pattern 436 
separator/completer, with failures linked to low performance on City 3 [46].  In contrast, 437 
pattern similarity in CA1 was higher when participants correctly judged spatial distances 438 
from a distinct city featuring novel landmarks and geometry compared to retrieval-439 
induced patterns from the other cities.  These findings appear somewhat inconsistent with 440 
models that suggest CA1 serves as a complement to CA3/DG in pattern 441 
separation/completion [25].  Instead, our data appear to be more consistent with the 442 
emerging idea that CA1 may play a specific role in detection or representation of 443 
novelty [47, 48], possibly acting as an important hub for integrating cortical input [39, 444 
49].  Although our study cannot provide specific insight beyond this speculation 445 
regarding the functional role of CA1, our findings suggest that its role in processing 446 
spatial contexts goes beyond a pattern separation/completion function defined by its 447 
position between CA3/DG and entorhinal cortex. 448 
 One potentially perplexing aspect of our findings is that we found similar degrees 449 
of remapping, and therefore putative neural pattern separation processes, for both the 450 
similar cities (Cities 1&2) and City 4, despite the fact that information content was 451 
significantly different for City 4 than Cities 1&2.  Past studies, for example, have found 452 
that neural pattern differences may scale as a function of environment dissimilarity, with 453 
geometrically more distinct environments showing lower neural pattern similarity than 454 
more similar-shaped environments [50, 51].  In contrast to these two studies, though, we 455 
did not employ a continuous measure of environmental similarity and retrieval success 456 
hinged on being able to successfully maintain separate representations for the different 457 
environments but not necessarily tracking differences in the details of the different 458 
environments themselves.  Thus, it is possible that our paradigm involved a more discrete 459 
form of pattern separation [21] than would be needed in experiments involving a 460 
continuous change between environments.  Consistent with the discrete pattern separation 461 
interpretation, studies of human episodic memory suggest that even overlapping episodes 462 
can be successfully decoded from multivariate patterns in the hippocampus, suggesting 463 
that retrieval of even very similar episodes can involve pattern separation-like processes 464 
[20].  Thus, one possible interpretation of our results is that pattern separation in CA3/DG 465 
may not always scale with behavioral details and thus may be a more discrete process 466 
that depends on the exact demands required by encoding and retrieval.  467 

In conclusion, while past studies in rodents suggest that hippocampal remapping 468 
might be one possible mechanism whereby memories are differentiated, no studies have 469 
demonstrated a comparable phenomenon in humans.  Our findings thus provide several 470 
important insights about the human hippocampus: 1) the hippocampus contains unique 471 
codes about specific spatial environments, with these codes showing significant neural 472 
pattern similarity within the same spatial environment and low similarity between 473 
different spatial environments 2) when interference between spatial environments is high, 474 
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pattern completion/separation processes may fail, resulting in difficulties discriminating 475 
competing cities 3) remapping, in humans at least, appears tightly linked with behavioral 476 
performance at discriminating different environments during retrieval 4) human CA3/DG 477 
appears to play a fairly ubiquitous role in pattern separation/completion during retrieval 478 
of specific spatial environments while CA1 plays a more specific role in representing 479 
features of novel environments.  Together, our findings provide new insight into how the 480 
human hippocampal circuit processes competing spatial information. 481 
 482 
Materials and methods 483 
 484 
Participants 485 
 486 
 Nineteen healthy individuals participated in the experiment (9 female) from the 487 
community surrounding University of California at Davis.  All participants had normal or 488 
corrected-to-normal vision and were screened for neurological or psychiatric illness.  489 
This study was approved by the Institutional Review Board at the University of 490 
California at Davis.  Written informed consent was obtained from each participant before 491 
the experiment. 492 
 493 
Task Procedures 494 
 495 
 The study consisted of a learning session (not scanned) and retrieval session 496 
(scanned).  During the spatial learning session, subjects played a video game where they 497 
learned four virtual environments on the computer in a randomized order. Each virtual 498 
environment consisted of six “stores” (for a snapshot, see Figure 2—figure supplement 499 
1).  Participants learned store locations by traversing the environment and then drawing a 500 
map of the store locations after visiting each store.  This process repeated four times in 501 
the imaging study and six times in the behavioral study (see Methods) before participants 502 
moved on to the next city.  Traversals involved traveling to each store in the environment 503 
in a randomized order.  504 
 The layout of each environment is shown in Figure 1A.  Similar cities (cities 1 505 
and 2) were the same except the locations of two stores were swapped in these 506 
environments.  City 3 (called the interference city based on the behavioral results) 507 
contained the same stores as Cities 1 and 2, but in a novel layout and with novel ground 508 
and wall textures.  Finally, City 4 (distinct city) contained a novel store set, a novel 509 
layout, and novel ground and wall textures.  We instructed participants that there would 510 
be four cities, some involving repeated stores, and that they would need to distinguish 511 
each city from one another to successfully perform the retrieval portion of the task. 512 
 The retrieval portion took place in the scanner, where participants completed eight 513 
retrieval blocks (two per city).  Each retrieval block consisted of ~4 ½ minutes of 514 
memory judgments pertaining to a single city.  Before the start of each retrieval block, 515 
text and verbal confirmation informed participants of which city they would be retrieving 516 
next, followed by a 40 s refresher video. After completing a retrieval block, participants 517 
were permitted a brief break before moving on to the next block and thus a new city. The 518 
order of retrieval blocks was pseudo randomized with rules dictating that no city could be 519 
tested twice in a row and that each city must be tested once before a city could be 520 
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repeated.  Each block consisted of 20 trials of judgments of the relative distances of 521 
stores in that city.  Each trial consisted of an image of 3 stores, one store on top and two 522 
below.  Participants judged which of the two bottom stores was closer to the top store, 523 
and indicated their choice by pressing the corresponding key on an MR-compatible 524 
button box.  A “one” response indicated that the lower left store was closer to the top 525 
store and a “two” indicated the lower right.  Because cities 1-3 shared the same stores, 526 
they also shared the same stimulus set, while city 4 contained a novel stimulus set.  To 527 
control for effects of motor response, the position of the two bottom probe stores on each 528 
stimulus was swapped during “A” vs “B” retrieval blocks of the same city, effectively 529 
switching the correct button responses for the different sessions of the same city (see 530 
Figure 2C). 531 
 532 
Behavioral assay of spatial contextual shifts 533 
 534 

To determine behaviorally whether participants employed similar, competing, or 535 
novel representations for spatial context, we tested each participant on how they encoded 536 
four different virtual cities (Figure 1A).   This involved navigating one of the four cities 537 
and then drawing a map immediately afterward.  The first two cities (cities 1 & 2 538 
involved the same stores and geometry with two locations swapped [similar cities]); the 539 
third city involved the same stores as cities 1 &2 but a novel geometry and locations 540 
(interference city).  City four involved a completely novel set of stores and geometrical 541 
arrangement (distinct city; see Figure 1, Materials and methods, and Zhang et al. 2014).   542 
We tested a total of 31 participants.  Map drawing accuracy improved for all four cities as 543 
a function of navigation (Figure 1—figure supplement 1: City 1&2: Beta = 0.065, 544 
F(1,170)=34.95, p = 1.8x10-8; second city 1&2: Beta = 0.025, F(1,175)=7.36, p=.007; 545 
City 3: Beta = 0.058, F(1,179)=38.41, p=4x10-9; City 4: Beta = 0.033, F(1,179)=14.52, 546 
p=.0002), suggesting that participants were able to form stable representations of each 547 
one.  We next wished to address the extent to which acquiring a representation for one 548 
environment might enhance or impede acquiring a representation for another 549 
environment.  This, in turn, would provide insight into the extent to which forming a 550 
representation of the different environments involved overlapping, different, or 551 
competing representations, as hypothesized.  To address this issue, we computed the 552 
difference in map drawing scores during city transitions, in other words, the extent to 553 
which drawing a map on the last trial of learning interfered with drawing the map of a 554 
new city on the first trial (i.e., first drawn map of the new city – last drawn map of the 555 
previous city.   556 

Comparing changes in map scores when transitioning from one city to another, 557 
we found a main effect of city transition (Figure 1—figure supplement 2, 1- Way 558 
ANOVA, F(3,74)=3.83, p<.02).  Post hoc two-tailed t-tests demonstrated that 559 
transitioning to city 3 from city 1 or 2 resulted in significantly greater learning costs than 560 
transitioning from city 1 to city 2 or from city 2 to city 1 (t(41)=2.4, p<.02; t(38)=2,7, 561 
p<.01).  Similarly, transitioning from city 3 to cities 1 or 2 resulted in significantly 562 
greater learning costs than transitioning to city 4 (t(33)=-2.2, p < .04).  This supports the 563 
assertion that city 3 representations interfered with cities 1 and 2.  The only city to city 564 
transition that did not result in significant learning costs was the city 1 to city 2 transition 565 
(two-tailed t-test: t(27)=-1.9, p =.07; all other city to city transitions involved significant 566 
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costs in map drawing performance (one tailed t-tests against zero, ts>-3.3, ps<.007).  This 567 
supports the idea that cities 1 and 2 facilitated learning of each other.  Transitioning to 568 
city 4 from any other city compared to transitioning from cities 1 and 2, however, did not 569 
differ (t(49)=1.0, p=.3).   This suggests that city 4 was likely represented by a new 570 
representation entirely. Together, our findings support the idea that cities 1 and 2 likely 571 
involved similar, largely overlapping representations (similar cities), city 3 involved a 572 
representation interfering with city 3 (interference city), and city 4 likely involved a novel 573 
non-overlapping, novel representation (distinct city). 574 
 575 
Behavioral analysis of City 1 & 2 swap trials 576 
 577 
We designed our stimuli such that trials involving stores that swapped locations between 578 
cities 1 and 2 were over-represented.  For instance, 12 of 20 trials involved at least one 579 
swapped store between cities 1 & 2 and 9 of these 12 had a different correct response in 580 
city 1 vs. city 2.  Therefore, a subject could score a maximum of 55% accuracy in city 2 581 
based on knowledge of city 1 alone, and vice versa and all subjects were well above this 582 
threshold.  Additionally, even if we assume that subjects correctly answer all trials 583 
involving the same response in cities 1 & 2 and guess on trials involving different correct 584 
responses, we would expect a chance level accuracy of 77.5 % for cities 1 & 2.  All but 2 585 
subjects had accuracy above 77.5% for both cities 1 and 2 (one scored 77.5% on city 1 586 
and 92.5 percent on city 2; the other scored 72.5 and 57.5 on cities 1 & 2, respectively). 587 
Furthermore, taking the lower performance for cities 1 and 2 for each subject and testing 588 
the result against 77.5%, subjects still performed significantly above chance (t(18) = 5.4, 589 
p<.0001).  Thus, performance on the swapped cities (Cities 1&2) could not be explained 590 
by a strategy involving using the same response on both cities. 591 
 592 
 593 
fMRI Data Acquisition, Preprocessing, and Parameter Estimation for Univariate 594 
Analyses 595 
 596 
 We employed the same imaging sequences and preprocessing steps described in 597 
Kyle et al., 2015 and Stokes et al., 2015.  Imaging took place in a Siemens 64-Channel 598 
3T “Skyra” scanner.  High-resolution structural images were acquired employing T2-599 
weighted turbo-spin echo (TSE) anatomical sequences (TR = 4200.0 ms, TE = 93.0 ms, 600 
FOV= 1.9 mm, flip angle = 139◦, bandwidth = 199 Hz/pixel), involving a voxel 601 
resolution of .4 mm × .4 mm × 2 mm.  High-resolution functional echo-planar imaging 602 
(EPI: TR = 3000 ms, TE = 29 ms, slices = 36, field of view (FOV) = 192 mm, flip angle 603 
= 90◦, bandwidth = 1462 Hz/pixel) involved a resolution of 1.6 mm × 1.6 mm × 2 mm. 604 
Sequences were acquired perpendicular to the long axis of the hippocampus. An 605 
additional matched-bandwidth sequence was acquired to aid in registration of the EPI 606 
sequence to the high-resolution scan (TR = 3000 ms, TE = 38 ms, slices = 36, FOV= 245 607 
mm, flip angle = 90◦, bandwidth = 1446 Hz/pixel).  Each EPI sequence underwent band 608 
pass filtering, slice-timing, and motion correction in SPM8 before parameter estimation.  609 
Parameter estimation for univariate analyses used a canonical hemodynamic response 610 
function (HRF), and modeled all correct responses above baseline for each EPI sequence 611 
[52].  612 
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 613 
Parameter Estimation for Multivariate Analyses 614 
 615 
 Analysis of multivariate pattern similarity requires maximally orthogonalized 616 
hemodynamic response functions (HRFs) as collinearity can inflate MPS-related 617 
correlations [53].  Consistent with past work, we modeled each trial as a separate 618 
regressor [38, 53, 54] using finite impulse response (FIR) functions to model the average 619 
HRF to retrieval stimuli.  This produced 10 parameter estimates for the first through the 620 
tenth TR after stimulus onset, corresponding to a 30 second long time course estimate of 621 
the HRF for each subject, block, and voxel [53, 55].   This ensured the greatest ability to 622 
detect when spatial contextual retrieval might occur for the different cities but without 623 
selecting specific HRFs for different subjects or conditions.  To select the HRF that 624 
explained the most variance for all subjects, sessions, and voxels, we employed 625 
independent component analysis decomposition using logistic infomax ICA [56] and 626 
identified a single HRF component that explained 38% variance (shown in Figure 5—627 
figure supplement 2). This HRF was then resampled using a cubic spline interpolation to 628 
match the 16 time-bin per scan default that SPM8 uses to build regressors. 629 
 630 
Subfield Demarcation 631 
 632 
 Separate left- and right- hemisphere anatomical ROIs were manually traced (using 633 
FSLview) based on each participant’s high resolution T2 as described previously [38, 634 
57].  Demarcated subregions included hippocampal subregions CA1, CA3/DG, 635 
Subiculum, and the extrahippocampal region parahippocampal cortex.   We combined the 636 
CA3/DG subfield as finer distinctions cannot be made at the acquired resolution.  MPS 637 
analyses were based on all voxels identified within ROIs. 638 
 639 
Classification analysis 640 
 641 
 We performed classification using the Princeton mvpa toolbox [58], with 642 
alterations to the code to allow three hidden layers and a searchlight across MTL 643 
subfields.  The searchlight was performed as in our previous manuscripts [38, 39, 59].  644 
Briefly, for each 31 voxel ellipsoid throughout each subject’s MTL, we trained the 645 
classifier on one half of retrieval blocks (one block per city) and used the second half to 646 
test classification accuracy then swapped training and testing data.  Two classifier 647 
training protocols were used.  The first trained the classifier using all correct trials from 648 
one half of retrieval blocks.  This method maximized the amount of training data but did 649 
not balance the number of trials used to train each city (Figure 2C and Figure 3).  A 650 
second classifier training protocol used a random subset of correct trials from each city so 651 
that the classifier would be trained using the same number of trials from each city (Figure 652 
3—figure supplement 1).  Next, the average classifier performance for each searchlight 653 
position created a subject specific statistical map.  Maps were warped to common space 654 
of a template subject using Advanced Normalization Tools [60].  Finally, group-space 655 
maps were contrasted and clustered by t-value corresponding to alpha=.05.  Permutation 656 
tests corrected for false positives by providing a corrected p<.05 cluster size from the 657 
distribution of max cluster size of 1000 label-shuffled permutations.  We note that a 658 
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control analysis expanded search volume outside of the MTL to include fusiform gyrus 659 
and inferior temporal cortex, no clusters from these regions passed threshold.   660 
 661 
fMRI multivariate pattern analysis (MPS) 662 
 663 
 Pattern similarity analysis involves measuring the similarity of voxel patterns by 664 
calculating the correlation between parameter estimates of different trials within a 665 
common collection of voxels [53, 61].  To measure pattern similarity, we identified trials 666 
that were correctly retrieved during two separate retrieval blocks.  For within city MPS 667 
correlations were made between blocks of the same city and for between city MPS 668 
between blocks of different cities.  MPS values measured the average r value between 669 
matching, correctly answered trial pairs for each participant and each subfield (Figure 670 
2C).  The bottom stores of each stimuli were swapped between different testing sessions 671 
of the same city, eliminating contributions to within-city MPS from the same motor 672 
response (Figure 2D).  Because Cities 1-3 shared a common stimulus set, within and 673 
between city MPS could be calculated identically for these cities. The ability to match 674 
stimuli identity for within and between city MPS for cities 1-3 allowed excellent control 675 
for visual aspects of the task as any differences in patterns could be attributed solely to 676 
retrieval environment.  Because city 4 contained novel stimuli, necessitated by our 677 
behavioral testing to ensure that this city involved a new representation, between-city 678 
comparisons involving city 4 had no logical matching stimuli.  Thus, instead of matching 679 
trials based on stimuli identity, all correctly retrieved stimuli from City 4 were correlated 680 
with all correctly retrieved stimuli from the other city for all possible pairwise 681 
combinations. A control analysis calculated between-city MPS for Cities 1-3 using the 682 
same method as City 4, with all pairwise combinations of non-visually matched triads.  683 
This control analysis did not reveal any significant deviations to our effects and thus 684 
visual matching was maintained when possible.  The significance of the remapping index 685 
was tested with a t-test against 0.  The family-wise error rate was corrected for using a 686 
bootstrapping approach. Ten thousand iterations of t-tests on each subfield and city were 687 
performed on randomly permuted data.  The distribution of t-values was then used to 688 
determine the corrected t-value at a given percentile. 689 
 690 
Region-of-interest MPS ANOVAs 691 
 692 
 Although we present only results from Left CA1 and Left CA3/DG in the body of 693 
the manuscript, CA1, CA3/DG, subiculum, and parahippocampal cortex (PHC) were 694 
demarcated from both hemispheres.  Use of all hippocampal subfields in a region-of-695 
interest (ROI) multivariate pattern similarity (MPS) analysis provided a complementary 696 
approach to the searchlight classifier.  Searchlight techniques are limited in that they can 697 
demonstrate the location of information content, but generally do not support functional 698 
dissociations between regions.  ROI approaches allow better access to investigate 699 
functional dissociations but suffer from the multiple comparison problem. To control for 700 
multiple comparisons here, we performed ANOVAs using all demarcated subfields to 701 
attempt to control for multiple comparisons.   702 
 First, we tested whether within city vs. between city neural similarity varied as a 703 
function of subfield, we performed a 2 (Within/Between) X 8 (Left and right, CA1, 704 
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CA3/DG, Subiculum, and PHC) repeated-measures ANOVA.  We found a main effect of 705 
subfield (F(7,126)=8.4,p<.001) and an interaction effect of Within/Between city retrieval 706 
and subfield F(7,126)=2.14,p=.04). This suggested that the relationship of 707 
within/between city MPS varied by subfield.  We then broke down within vs between for 708 
each city using the remapping index (Figure 4).  Here an 8 x 4 subfield by city remapping 709 
repeated measures ANOVA revealed a main effect of subfield (F(7,126) = 2.835, p=.009) 710 
suggesting that MTL subfields varied significantly in their tendency to “remap.”  These 711 
analyses suggested further investigation was warranted.  This analysis is provided in the 712 
manuscript under “Classification of city-specific retrieval patterns in the hippocampus 713 
demonstrates successful decoding of all spatial contexts except the interfering 714 
environment” in the results section. 715 
 In the next section, we address incorrect vs correct retrieval of the interfering city. 716 
Here, we calculated MPS to compare correct and incorrect interference city trials with 717 
other city trials using matched visual stimuli (triads) during retrieval (see Experimental 718 
Procedures).  An 8 x 4 subfield by condition repeated measures ANOVA revealed that 719 
the correlations between correct and incorrect trials of the different city comparisons 720 
(Figure 5A,B and Figure 4—figure supplement 1 and Figure 5—figure supplement 1) 721 
varied as a function of subfield (significant interaction effect: F(21,378)=2.5, p < .001). 722 
 723 
 724 
Addressing possible confounds due to visual probes during retrieval 725 
 726 
 One possibility is that our analysis approach for Cities1-3 or our presentation of 727 
novel stores for City 4 allowed for a visual confound.  Thus, could our results be due to 728 
differences in visual features during retrieval rather than city-specific neural 729 
representations?  Several lines of evidences argue against this possibility.  Cities 1-3 were 730 
perfectly visually matched in terms of what was presented to the participant and how we 731 
correlated these triads during our analyses.  To provide more detail on the visual 732 
matching in our incorrect trial analysis using MPS (Figure 5) was perfectly visually 733 
matched (matched incorrect City 3 trials with corresponding City 1&2 trials vs. matched 734 
correct City 3 trials with corresponding City 1&2 trials), eliminating a visual confound as 735 
a possible counter interpretation. Thus, these findings for Cities 1-3 cannot be explained 736 
based on a trivial visual stimulus confound.   737 

One unavoidable aspect is that our use of a truly novel city, City 4, did not 738 
involve visually matched triads as these stores were necessarily different than those in 739 
Cities 1-3. The pattern of findings based on a visual confound from City 4 alone, 740 
however, would have predicted a qualitatively and quantitatively different pattern of 741 
results.  Specifically, a visual confound would predict higher classifier performance for 742 
City 4 and similar performance for Cities 1, 2, & 3.  Our pattern of results, however, was 743 
that City 3 had lower classifier performance than Cities 1, 2, 4.  Thus, the prediction 744 
provided solely by a visual confound was not supported by our data.  Second, the visual 745 
confound would not predict the presence of a performance correlation with classification 746 
accuracy on City 3 (Figure 3D).  Specifically, as we report in Figure 3D, classification 747 
performance improves with better individual subject retrieval performance on City 3.  748 
Thus, together, our paradigm and pattern of findings argue against a visual confound 749 
based explanation alone. 750 
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Figure Legends 911 
 912 
Figure 1.  Experimental design and performance 913 
(a) Depiction of contextual modifications between environments.  Each colored box represents a different 914 
target store.  Cities 1 & 2 (similar cities) are identical aside from swapped of position of stores (purple and 915 
teal).  City 3 (interference city) shares the same stores as similar cities but in a novel layout.  City 4 916 
(distinct city) has a novel layout and stores.  (b) During encoding participants completed 4 rounds of 917 
navigation and map building of each city.  (c) Retrieval consisted of 8 blocks of city-specific distance 918 
judgments.  (d) Retrieval accuracy demonstrates lower performance on city 3. **p<.01 919  920 
Figure 2. Analysis methods. 921 
(a) Single trial parameter estimates were generated by building a single model with a separate regressor for 922 
each trial.  (b) Subfields were demarcated manually to create separate ROIs for CA3/DG, CA1, Subiculum, 923 
and PHG.  (c) The searchlight classifier was trained using single trial estimates from half of the retrieval 924 
blocks and tested on the remaining retrieval data. Training/testing was repeated for all searchlight spheres 925 
in each subjects MTLs, creating subject specific statistical maps.  (d) Within-city similarity was assessed 926 
for each ROI by extracting the trial parameter estimates from the subfields and correlating between 927 
matched trials of a city’s “A” and “B” retrieval blocks.  (e) Between-city similarity was calculated 928 
consistent with within-city similarity.   929  930 
Figure 3.  Environment classification. 931 
(a)  City classification searchlight revealed a cluster of above chance classification performance throughout 932 
much of left CA3/DG and CA1 (b) Pie chart of distribution of voxels in the searchlight showing their 933 
predominance in CA3/DG and CA1.  (c) Classifier performance of each city revealed above chance 934 
performance on cities 1,2, and 4 and below chance performance on city 3.  Further analysis of city 3 935 
classification performance revealed above-chance misclassification of city 3 trials as cities 1 & 2.  (d) City 936 
3 (interference city) retrieval performance and city 3 classifier performance were positively correlated. 937 
*p<.05, **p<.01 938  939 
Figure 4.  Environment similarity. 940 
(a) Similarity matrix of all pairwise city MPS conditions in CA3/DG. Diagonal depicts within-city and off-941 
diagonal depicts between city MPS conditions. (b) Same as (a) for CA1.  (c) Voxel remapping index for 942 
CA3/DG (green) and CA1 (blue).  Remapping index for each city was the z-transformed contrast between 943 
within city and average between cities MPS (see legend below). Left CA3/DG showed overall more 944 
remapping than CA1, with significant remapping for Cities 1 & 2 and marginally significant remapping for 945 
City 4. Left CA1 showed significant remapping only for City 4. 946 
*p<.05  947  948 
Figure 5. Analysis of incorrect and correct interference city trials. 949 
(A) Analysis of interference city trials reveals higher similarity between incorrect city 3 (interfering city) 950 
and correct city 1 or 2 trials than between correct city 3 and correct cities 1 and 2 trials in CA3/DG.  951 
Control comparisons suggest that this effect could be attributed to interference from cities 1 & 2.  Left bar 952 
greater than all other bars t(18)>2.2, p<.04. (B) CA1 did not exhibit similar behavior for incorrect vs 953 
correct between-city 3 comparisons.  954 
*p<.05, **p<.01 955  956 
Figure Supplement Legends 957 
 958 
Figure 1—figure supplement 1. Map drawing learning curves. 959 
 960 
Figure 1—figure supplement 2.  City transition map scores. 961 
 962 
Figure 2—figure supplement 1.  Snapshot of virtual environment. 963 
 964 
Figure 3—figure supplement 1.  Classifier trained with matched number of trials from each city. 965 
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 966 
Figure 3—figure supplement 2.  City 1&2 classification results broken down by correctly classified 967 
and incorrectly classified as each city. 968 
 969 
Figure 4—figure supplement 1.  Cortical region MPS analysis. 970 
 971 
Figure 5—figure supplement 1.  Right hemisphere hippocampal interference city MPS analysis. 972 
 973 
Figure 5—figure supplement 2. Empirical HRF plotted beside Canonical HRF convolved with 4s 974 
boxcar function (average response time was 3.8s). 975 
 976 
 977 
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