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Abstract Caspase-3 carries out the executioner phase of apoptosis, however under special

circumstances, cells can survive its activity. To document systematically where and when cells

survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent

protein expression, transiently or permanently, in cells that survive caspase-3 activation in

Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal

patterns emerged in different tissues. Some cells activated caspase-3 during their normal

development in every cell and in every animal without evidence of apoptosis. In other tissues, such

as the brain, expression was sporadic both temporally and spatially and overlapped with periods of

apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of

every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs

reduced wing size demonstrating functional significance. The implications of these patterns are

discussed.

DOI: 10.7554/eLife.10936.001

Introduction
The cell death program known as apoptosis was originally described as a series of morphological

changes that cells undergo as they die (Tenev et al., 2005). The reproducibility of the sequence sug-

gested an underlying molecular program, and a conserved set of enzymes, the caspases, emerged

as key regulators and executioners of apoptosis (Martin and Green, 1995; Jacobson and Evan,

1994; Thornberry, 1998). While caspase activation is frequently a terminal event resulting in swift

cellular demise (Chang et al., 2002), cell survival following caspase activation has been described (e.

g., [Florentin and Arama, 2012; Kuranaga and Miura, 2007; Kumar, 2004; Meinander et al.,

2012]). In some cells and tissues, caspases promote localized or partial destruction of the cell with-

out actually killing it (Arama et al., 2003; Huh et al., 2004; Connolly et al., 2014).

A variety of primary cells and cell lines can survive caspase activation following a lethal dose of an

apoptotic stimulus, as long as it is transient and thus sublethal in time (Tang et al., 2012). This rever-

sal of late stage apoptosis has been named anastasis (Greek for ’rising to life’). Cell survival following

caspase activation in response to a sublethal dose of irradiation has also been reported

(Florentin and Arama, 2012; Liu et al., 2015; Ichim et al., 2015). Such survival following caspase

activation has the potential for both beneficial and harmful effects. It may limit permanent damage

to the heart following transient ischemia (Kenis et al., 2010); however it can also be oncogenic
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(Tang et al., 2012; Liu et al., 2015; Ichim et al., 2015), and could in principle allow tumor cells to

escape chemotherapy.

Apoptosis is a critical feature of normal development in multicellular organisms (Miura, 2012;

Denton and Kumar, 2015; Vaux and Korsmeyer, 1999). Studies in model organisms such as worms

and flies have made important contributions to unraveling the underlying mechanisms

(Connolly et al., 2014; Denton and Kumar, 2015; Orme and Meier, 2009; Steller, 1995). It is

unknown whether cells ever recover from the brink of apoptotic cell death during development. The

observations that cultured cells and adult cardiac myocytes recover from transient insults that cause

caspase-3 activation raised the question as to how widespread cell survival following caspase activa-

tion might be in vivo, whether this ever occurs during normal development, and if so what function it

might serve.

Identification of cells that survive transient caspase activation is challenging because they bear no

known distinguishing characteristic. Therefore we developed a genetic system to mark and manipu-

late cells that survive caspase activation in Drosophila (Figure 1). Using these CasExpress transgenic

flies, we discovered that the majority of cells in the adult derive from cells that survive caspase acti-

vation during normal development. We observed distinct categories of CasExpress activation. For

example, in some organs, every cell activated the sensor over an extended period of development

without evidence of apoptosis or morphological remodeling, suggesting a function for caspase-3

unrelated to cellular destruction. In other tissues, activation was sporadic in temporal and spatial pat-

tern, suggesting a stochastic process. In these tissues, the precise patterns differed from animal to

animal, and occurred in regions that normally exhibit apoptosis. These observations suggest that

some cells recover from the brink of apoptotic cell death and undergo developmental anastasis. We

propose that these different patterns represent distinct functions of executioner caspases during

normal development.

Results

Design of CasExpress, an in vivo sensor for cells that survive caspase
activation
In order to detect and follow the fates of cells that survive caspase activation, we designed a cas-

pase-inducible Gal4 transcription factor (Figure 1A). To keep Gal4 inactive in the absence of caspase

activity, we tethered it to the plasma membrane by fusing it to mCD8 (mouse cluster of

eLife digest Every day, individual cells in our body actively decide whether to live or die. There

are enzymes called executioner caspases that help cells to die in a carefully controlled process called

apoptosis. Although the activation of executioner caspases generally leads to apoptosis, there are

some circumstances in which cells are able to survive.

Fruit flies are often used in research as models of how animals grow and develop. Ding, Sun et al.

set out to find out more about the circumstances in which cells manage to survive caspase activation

in fruit flies. The experiments used a new method that results in cells that survive caspase activity

producing a fluorescent marker protein. This allowed Ding, Sun et al. to track when and where these

events occurred in the flies.

Few cells in fruit fly embryos survive the activation of executioner caspase. However, in later

stages of development, more and more cells survive this process. Cells in different parts of the body

responded differently. For some types of cells, every cell seemed to survive caspase activity with no

evidence of apoptosis. In other tissues like the central brain, in which a few cells normally choose to

die, some cells occasionally managed to survive the activation of caspases. This rescue from the

brink of death was more common than Ding, Sun et al. had anticipated.

The next step will be to uncover the molecular mechanisms that enable the cells to survive

caspase activity. This knowledge may help us to develop treatments that can promote the survival of

useful cells like heart muscle cells and brain cells, or trigger the death of cancer cells.

DOI: 10.7554/eLife.10936.002
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Figure 1. Widespread CasExpress activation in adult tissues. (A) A schematic of CasExpress and G-trace. (B) A schematic showing the sequence of the

DQVD caspase cleavage site in CasExpress and the point mutation in the DQVA control. (C–L) Confocal micrographs showing overlays of DAPI, RFP

and GFP from CasExpress/G-Trace flies. (D’–L’) GFP channel only. (D”–L”) RFP channel only. Arrows in D–D’’ indicate examples of GFP+ progenitor

cells, and arrowheads point to examples of GFP- progenitor cells. Dotted lines in F–F’’ mark the boundary between midgut and hindgut. Scale bars in

C and I-L are 100 mm; scale bars in D–H are 25 mm. (M) A schematic summarizing the general pattern of GFP and RFP expression in adult. Although

GFP expression was present in all body wall muscle, only part is shown in green for simplicity and presentation clarity.

DOI: 10.7554/eLife.10936.003
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differentiation 8). To render the protein caspase-inducible, we inserted the caspase-3-binding and

cleavage domain from the Drosophila Inhibitor of Apoptosis Protein 1 (DIAP1) (Ditzel et al., 2003)

in between CD8 and Gal4. As a negative control we created a second transgene with a DQVD to

DQVA amino acid substitution in the caspase cleavage site (Figure 1B) in order to render it caspase

insensitive, hereafter the ’DQVA control.’ To allow for detection of caspase activation in as many cell

types as possible, the fusion protein was expressed under the control of the ubiquitin (ubi)

enhancer/promoter. We characterized the expression and activity of transgenic flies bearing a site-

directed insertion into the attP40 landing site, selected for its ability to allow relatively uniform, mod-

erate levels of expression in a variety of tissues (Markstein et al., 2008). We also generated an inser-

tion into a random site for comparison. We named this system CasExpress for its ability to drive

expression of downstream genes and proteins under the control of caspase-3 activity.

Widespread activation of CasExpress in the adult
To detect caspase activity, we crossed the sensor and control to G-Trace (Evans et al., 2009) a fly

line that expresses two fluorescent protein targets, under the control of Gal4-responsive UAS

(upstream activating sequences). G-Trace flies contain three transgenes, all on the second chromo-

some: UAS-RFP, UAS-FLP, which encodes a yeast recombinase enzyme, and a ubi-FRT-STOP-FRT-

GFP cassette where FRT stands for FLP Recombination Target sequence. Crossing the mCD8-

DQVD-Gal4 sensor to G-Trace should lead to permanent GFP expression in any cell that survives

transient caspase activation and in all of its progeny, in contrast to other caspase activity reporters

(Bardet et al., 2008). We expected the caspase-activated Gal4 protein to be short-lived because we

had observed rapid degradation of other caspase reporters (Tang et al., 2012), so we anticipated

RFP would be transient and limited to the cells that activated caspase-3 but not their progeny.

We first examined adult tissues where, to our surprise, we found widespread GFP expression

(Figure 1C–L). In the intestine for example, GFP was evident in the most anterior structure, the pro-

ventriculus (Figure 1C), although little RFP was evident there, suggesting that caspase had been

active earlier during development. In the midgut both RFP and GFP appeared in a partially overlap-

ping pattern (Figure 1C,D–D”). Large nuclei corresponding to differentiated epithelial cells

expressed both RFP and GFP suggesting ongoing caspase activation, whereas a subset of small pro-

genitor cells expressed GFP but not RFP (Figure 1D–D” arrows). Visceral muscle and hindgut

showed a mixture of GFP+/RFP- cells as well as some GFP+/RFP+ cells (Figure 1E–F”). The adult

eye and antenna exhibited widespread nuclear GFP but only infrequent RFP (Figure 1G–H”), sug-

gesting that caspase had been activated earlier in development either in a large fraction of cells, or

in precursors that gave rise to a large fraction of adult cells; however little activation of caspase

appeared to be ongoing in the adult.

In the adult central brain and nerve cord, a minority of cells expressed GFP and/or RFP

(Figure 1I–J”). In the optic lobe, many but not all cells expressed GFP and/or RFP (Figure 1I–I”),

whereas in body wall muscle, nearly every cell expressed GFP (Figure 1K–K”). In the female repro-

ductive system, every cell of the oviduct was GFP+/RFP- in every animal, whereas the majority of

germline and somatic cells in egg chambers lacked FP expression (Figure 1L). Figure 1M summa-

rizes these findings schematically. Recently a similar strategy detected similarly widespread adult

expression (Tang et al., 2015).

Distinct spatial and temporal patterns of CasExpress during
development
The adult expression suggested that CasExpress was activated during development. To document

when caspase activation first appeared, we examined embryonic and larval stages. In Drosophila

embryos, the only tissue that activated CasExpress robustly was the salivary gland beginning at

stage 12 (Figure 2A–A”). Salivary gland expression was not detected in the DQVA control, demon-

strating that this was not due to leaky or background expression from the G-Trace transgenes or ran-

dom breakdown of the fusion protein that might separate Gal4 from the transmembrane domain.

We also confirmed that the DQVD sensor and DQVA control showed similar patterns and levels of

fusion protein expression at the cell surface detected with anti-mCD8 antibody staining throughout

the embryo and in most tissues and stages of development (Figure 2—figure supplement 1). In the

embryo RFP was also detected in some randomly distributed cells, likely corresponding to a subset
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of cells that normally undergo apoptosis (Figure 2A and A”); little if any GFP was detected in those

cells, presumably because dying cells were not active enough to transcribe and translate FLP,

undergo DNA recombination, and then transcribe and translate GFP to detectable levels. While RFP

was detected in the salivary gland beginning in stage 12, GFP expression became evident later

(Figure 2B–B”), confirming that these FPs exhibit different timing of activation.

Figure 2. CasExpress activation in embryos and larvae. (A–B”) RFP and GFP expression in Drosophila embryos (A–A”) stage 12, (B–B”) stage 17. (C–C”)

Acridine orange detection of apoptotic cells in stage 13 embryos of the indicated genotypes. (D–D”) 1st instar larva, (E–E”) 2nd instar larva and (F–F”)

3rd instar larva. (G) A schematic summarizing of GFP and RFP expression in above stages. Red represents RFP expression. Green represents GFP.

Yellow/Orange indicates either a mixture of GFP positive and RFP positive cell populations or the presence of cells expressing both. Scale bars

represent: 100 mm (A–C); 200 mm (D); 400 mm (E); and 600 mm (F).

DOI: 10.7554/eLife.10936.004

The following figure supplement is available for figure 2:

Figure supplement 1. Expression of CasExpress DQVD and the DQVA control.

DOI: 10.7554/eLife.10936.005
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Although the DQVD and DQVA proteins contained the caspase binding sequence from DIAP1

(Tenev et al., 2005), which in principle could function as a dominant-negative inhibitor of caspase

activity if expressed at high enough levels, the flies expressing the sensor were viable and fertile and

showed no discernible morphological defects. The modest expression level and membrane localiza-

tion presumably prevented any dominant negative effect. Moreover, there was no decrease in the

number, or change in distribution, of apoptotic cells in DQVD and DQVA embryos compared to

w1118 embryos (Figure 2C–C”).

Figure 3. CasExpress activation in larval tissues. (A–F) Confocal micrographs showing overlays of DAPI, RFP and GFP expression in the indicated tissues

of wandering 3rd instar larvae. (A’–E’) GFP only. (A”–E”) RFP only. The brackets in D mark the eye and antenna parts of the disc, in E mark the position

of optic lobe, central brain and ventral nerve cord, and in F mark the different regions of the gut. Scale bars in A and F are 200 mm, in B and C are 50

mm, in D and E are 100 mm. (G) A schematic summarizing of GFP and RFP expression in larvae. There is little GFP/RFP expression in trachea or muscles,

which are not included in diagram.

DOI: 10.7554/eLife.10936.006

The following figure supplements are available for figure 3:

Figure supplement 1. Comparison of GFP expression in the CasExpress DQVD sensor, the DQVA control or G-trace alone.

DOI: 10.7554/eLife.10936.007

Figure supplement 2. Diverse CasExpress activation patterns in larval CNS.

DOI: 10.7554/eLife.10936.008

Figure supplement 3. Diverse CasExpress patterns in leg and wing discs.

DOI: 10.7554/eLife.10936.009

Figure supplement 4. CasExpress patterns in larval intestines.

DOI: 10.7554/eLife.10936.010

Ding et al. eLife 2016;5:e10936. DOI: 10.7554/eLife.10936 6 of 20

Research Article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.10936.006
http://dx.doi.org/10.7554/eLife.10936.007
http://dx.doi.org/10.7554/eLife.10936.008
http://dx.doi.org/10.7554/eLife.10936.009
http://dx.doi.org/10.7554/eLife.10936.010
http://dx.doi.org/10.7554/eLife.10936


Both RFP and GFP continued to be expressed throughout embryonic and larval development

(Figure 2D–F”). The temporal appearance of RFP and GFP in embryonic and larval life are indicated

schematically in Figure 2G.

During larval development CasExpress activation appeared over time in many cell types and tis-

sues including all imaginal discs, oenocytes, and in subsets of neurons (Figure 2E and Figure 3). Tis-

sues from flies carrying G-Trace in the absence of the caspase sensor or in combination with the

DQVA caspase-insensitive control exhibited infrequent FP expression in small clones in a minority of

animals (Figure 3—figure supplement 1). The frequency and patterns were very similar regardless

of the presence or absence of the DQVA control transgene (Figure 3—figure supplement 1), sug-

gesting that this minor background was due to leaky, Gal-4-independent FLP expression from the

UAS-FLP transgene. In contrast, expression in the presence of the DQVD caspase-sensitive construct

was present in every animal (Figure 3—figure supplement 1), and in large fractions of cells

(Figure 3).

Different tissues exhibited distinct temporal and spatial patterns. For example oenocytes exhib-

ited RFP and GFP expression in virtually every cell and in every animal (Figure 3A–A”). In contrast,

in imaginal discs fewer cells expressed RFP as compared to GFP (Figure 3B–D”). Although every

disc from every animal exhibited expression, the precise patterns varied (Figure 3—figure supple-

ments 2–4). In the developing central nervous system (CNS) the patterns were not bilaterally sym-

metric (Figure 3—figure supplement 2). In the imaginal discs the patterns, particularly of RFP,

varied from animal to animal and did not appear to correspond to known developmental patterns of

known signaling pathways or cell types (Figure 3—figure supplement 3).

Tissues that showed little or no activation of the sensor during normal development up through

the third instar included somatic muscles, trachea, and the ventral nerve cord (Figure 3E–E”).

Although most of the nervous system showed little sensor activation, a consistently large fraction

(50–80%) of cells in the developing optic lobes were GFP-positive (Figure 3E–E”). In the larval intes-

tine, partially overlapping GFP and RFP expression patterns were observed (Figure 3F), and while

the overall regional patterns were conserved from one animal to the other, the details varied (Fig-

ure 3—figure supplement 4). The third instar larval patterns are summarized schematically in

Figure 3G.

Caspase dependence of the sensor
The unexpectedly widespread activation of CasExpress raised the question as to its caspase-depen-

dence. The sensor inserted into the attP40 site and the random insertion demonstrated similar pat-

terns. The absence of expression in the DQVA control demonstrated that a proteolytic cleavage at

the aspartic acid was likely necessary. To address the possibility that a protease other than caspase

activated CasExpress, we crossed the sensor and G-Trace into a homozygous dronc mutant back-

ground. Dronc encodes the upstream apoptotic caspase in Drosophila (equivalent to caspase-9 in

mammals, (Meier et al., 2000; Hawkins et al., 2000) and its activity is necessary for activation of

both fly executioner caspase molecules Drice and Dcp-1 (Florentin and Arama, 2012; Song et al.,

1997; Fraser et al., 1997; Fraser and Evan, 1997; DeVorkin et al., 2014; Muro et al., 2006).

Although Dronc mutants are homozygous lethal, they survive to the third instar larval stage allowing

us to assess CasExpress at that stage. As expected, the homozygous dronc mutant background

eliminated caspase activity detected with an antibody against cleaved and activated Dcp-1 (c-Dcp-1)

(Figure 4A–F’). The dronc mutant also eliminated virtually all RFP and GFP expression in imaginal

discs from CasExpress (Figure 4A–F).

Homozygous dronc mutant embryos retained RFP and GFP expression in the salivary gland, pos-

sibly due to the perdurance of maternal caspase expression. To confirm the presence of cleaved cas-

pase in embryonic salivary gland cells, which has not been previously reported, we stained

CasExpress embryos with an antibody against cleaved caspase-3 (Figure 4—figure supplement 1).

Despite the absence of other apoptotic markers in these cells, salivary glands did label with this anti-

body, suggesting a non-apoptotic function for caspase in this tissue.

The Baculovirus p35 protein inhibits both executioner caspases DrIce and Dcp-1, but not Dronc

(Meier et al., 2000). Therefore we crossed GMR-p35, which is a transgene that expresses p35 in the

eye imaginal disc posterior to the morphogenetic furrow (Hay et al., 1994), into the CasExpress/G-

Trace flies. GMR-p35 significantly reduced the number of RFP+ cells in the posterior eye disc com-

pared to the control (Figure 4 G-I), whereas no change in RFP was observed in the antennal disc,
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Figure 4. Caspase-dependence of CasExpress. (A–F) Confocal micrographs showing overlays of DAPI, RFP and

GFP expression in third-instar larval eye-antennal disc (A–B), wing disc (C–D), and leg disc (E–F). CasExpress and

G-trace were crossed into heterozygous (A, C, E) or dronc homozygous (B, D, F) dronc mutants. (A’–E’) Cleaved

Dcp-1 staining of corresponding discs. Scale bars are 50 mm. (G–H) RFP expression in eye-antennal discs of late

third-instar larvae with CasExpress and G-trace with (H) or without (G) GMR-p35. The dashed line encircles the

region where p35 is expressed. (I) Quantification of of RFP: DAPI area. Error bars show standard error of the mean,

and *** indicates p<0.001.

DOI: 10.7554/eLife.10936.011

The following figure supplements are available for figure 4:

Figure supplement 1. Anti-cleaved caspase-3 (red) and DAPI (blue) staining of stage 14 embryo (A) and high

magnification of a salivary gland (B).

DOI: 10.7554/eLife.10936.012

Figure supplement 2. GFP and RFP expression of CasExpress in a wild type eye-antennal disc (A–A”), or one

carrying the GMR-p35 transgene (B–B”).

DOI: 10.7554/eLife.10936.013

Figure supplement 3. Loss of dredd does not change CasExpress patterns.

DOI: 10.7554/eLife.10936.014
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which served as an additional internal control. The few remaining RFP+ cells in the posterior eye disc

likely were cells that had activated Gal4 prior to the onset of expression of the GMR promoter. GFP

expression was still evident, indicating that caspase activation preceded expression of p35 from the

GMR enhancer/promoter in those cells (Figure 4—figure supplement 2).

One known non-apoptotic role for caspase activity is in the innate immune response. Specifically

the upstream caspase Dredd activates NFkB signaling and expression of anti-microbial peptides

(Meinander et al., 2012; Leulier et al., 2000). The gut is known to have a highly active innate

immune response. Therefore to determine whether the CasExpress activity we detected in the gut

was due to the immune response, we crossed CasExpress into dredd mutant animals. However we

detected no difference in the GFP or RFP expression level or pattern between dredd mutants and

heterozygous wild type siblings, in any tissue examined (Figure 4—figure supplement 3).

Developmental timing of caspase activation
To address when the CasExpress was activated in various tissues, we silenced CasExpress during

most of development, by crossing in the temperature-sensitive (ts) version of Gal80 (Gal80ts), which

represses expression from UAS transgenes even in the presence of Gal4. When flies carrying CasEx-

press, Gal80ts, and G-TRACE were grown at 18˚C, GFP was completely repressed, and even the

infrequent, random clones due to leaky expression of UAS-FLP was suppressed (Figure 5—figure

supplement 1).

Figure 5. Timing of caspase activation in larval tissues. Larvae with CasExpress, G-trace and Gal80ts were grown at 18˚C (blue in the timeline bars on

the left) for 2d (A, D, G, J), 6d (B, E, H, K), or 12d (C, F, I, L), shifted to 29˚C (red in the timeline bars) for 1d, then kept at 18˚C until late third instar.

Induction of GFP expression occurs in wing discs (A–C), leg discs (D–F) and eye-antennal discs (G–I) throughout the larval stage; whereas few cells in

brain (J–L) survive caspase activation before third instar. Scale bars are 50 mm.

DOI: 10.7554/eLife.10936.015

The following figure supplement is available for figure 5:

Figure supplement 1. GFP, RFP and DAPI fluorescence in imaginal discs from flies carrying CasExpress, Gal80ts, and G-TRACE raised at 18˚C.
DOI: 10.7554/eLife.10936.016
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Imaginal disc CasExpress arises sporadically in time
The large percentage of GFP+ cells in late third instar larval tissues raised the question as to whether

caspase was activated in a significant fraction of cells at one particular stage in development, or

alternatively whether caspase was activated sporadically in time. To address this question, we grew

Gal80ts/CasExpress/G-Trace flies at 18˚C and then shifted them to 29˚C for 24 hr either at the first

instar (Figure 5, upper panels), the second instar (Figure 5, middle panels) or the mid third instar

(Figure 5, lower panels). We then returned them to 18˚C and dissected them at the late third instar

larval stage. Rather than all the GFP+ cells arising at one particular stage, sporadic expression was

observed regardless of when the temperature shift occurred. This was true in wing (Figure 5A–C),

leg (Figure 5D–F) and eye-antennal discs (Figure 5G–I). Cells that activated the sensor later pro-

duced smaller patches of cells, as expected if the patches represent clonal descendants of a single

event. However we cannot rule out the possibility that separated cells that activate the sensor, coa-

lesced into patches based on differential adhesion. In contrast to the discs, caspase activation in the

brain was limited to late larval stages (Figure 5J–L).

The temporal and spatial pattern of brain CasExpress
Apoptosis plays a particularly important role in the nervous system, and cleaved caspase is detected

throughout larval CNS (CNS) development, both in w1118 and in DQVD sensor flies (Figure 6—fig-

ure supplement 1). Therefore we characterized the temporal and spatial activation of CasExpress in

this tissue in more detail. We combined CasExpress, G-Trace and Gal80ts. Flies kept at 18˚C to

Figure 6. Timing of CasExpress activation in larval CNS. Larvae with CasExpress G-Trace and Gal80ts were grown in 18˚C (blue bars in the middle) until

3rd instar and shifted to 29˚C for 12 hr. Then larvae were kept at 18˚C for 72 hr (A, E), 48 hr (B, F), 24 hr (C, G) or 12 hr (D, H) until they reached late 3rd

instar. (A–D) Four examples of GFP expression patterns in the larval CNS presented in Rainbow RGB, which shows different levels of GFP intensity in

different colors. (E–H) Z-projections of different samples were slightly transformed and fit into the diagram of brain. The positions of GFP positive cells

for each sample are indicated with different colors. Scale bars are 100 mm.

DOI: 10.7554/eLife.10936.017

The following figure supplement is available for figure 6:

Figure supplement 1. Caspase activity during larval CNS development.

DOI: 10.7554/eLife.10936.018
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Figure 7. Developmental timing of caspase activation in adult tissues. (A) A schematic of the timing of the temperature shifts (blue: 18˚C, red: 29˚C)
during the growth of flies with CasExpress, G-trace, and Gal80ts. (B–M) GFP and RFP expression in antenna (B–D), brain (E–G), midgut (H–I), visceral

muscle surrounding midgut (J–K), and hindgut (L–M) in flies with CasExpress, G-trace, and Gal80ts that grown at the condition indicated in the panels.

Panels marked with prime showed separated channels of the left. Arrows in H–I’’ point to some examples of GFP+ progenitor cells. Dotted lines in L–

M’’ mark the boundary between midgut and hindgut. Arrows in L and M point to the hindgut proliferation zone. Scale bars in B–D, and H–M are 25

mm. Scale bars in E–G are 100 mm.

DOI: 10.7554/eLife.10936.019
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silence CasExpress throughout development exhibited virtually no expression of RFP or GFP. How-

ever if we shifted them to 29˚C for 12 hr at the early (Figure 6A), middle (Figure 6B), or late

(Figure 6C,D) third instar and dissected them near the end of larval development, we observed GFP

expression in seemingly random locations. Similar numbers of GFP-expressing cells appeared

regardless of precise developmental stage. Figure 6E–H shows the patterns observed in 10 different

animals, each in a different color, demonstrating the variability. The patterns were clearly not bilater-

ally symmetrical. We conclude that cells survive caspase activation sporadically during CNS develop-

ment. This pattern seems more consistent with that expected for developmental anastasis, that is

recovery from the brink of apoptotic cell death, rather than a precise role for caspase in the develop-

ment of a specific cell type.

CasExpress activation during metamorphosis
Metamorphosis requires remodeling of some tissues and wholesale destruction and rebuilding of

others (Baehrecke, 2002; Yu and Schuldiner, 2014). Apoptosis contributes substantially to these

processes. To address how much of the adult expression arose during metamorphosis in each tissue,

we crossed in the Gal80ts repressor and grew flies at 18˚C to prevent the induction of CasExpress.

We then shifted the flies to 29˚C, the non-permissive temperature for Gal80ts, to allow induction

only during specific time windows corresponding to larval, pupal, or adult stages respectively

(Figure 7A). Distinct patterns were observed in different tissues. In the antenna (Figure 7B–D”) and

brain (Figure 7E–G”), CasExpress was activated during larval and pupal stages but virtually none

was detected in adulthood. Activation during the pupal period could be responsible for remodeling

of connections during metamorphosis and was not unexpected, however the more extensive activity

during the larval period suggests an additional function for caspase in earlier nervous system devel-

opment. In midgut enterocytes, some activation occurred during pupal life but more appeared in

the adult (Figure 7H–I”), possibly related to the biology of midgut enterocytes which face damage

and undergo rapid turnover in adults even under normal physiological conditions. In visceral muscle

surrounding the midgut (Figure 7J–K”) and in the hindgut (Figure 7L–M”) activation was limited to

pupal stages, consistent with a role for caspase in metamorphosis of this tissue.

When CasExpress induction was allowed only during the pupal stage, some progenitor cells in

the midgut (Figure 7I–I’’), visceral muscle surrounding it (Figure 7K–K’’), and the whole hindgut

including the proliferation zone, which contains progenitor cells (Figure 7M–M’’), showed GFP

expression. Thus caspase was activated during metamorphosis and some cells survived. This is

intriguing because during metamorphosis the larval gut degenerates and the adult gut is reconsti-

tuted by progenitor cells (Micchelli, 2012). We did not detect RFP in progenitor cells at any stage

that we analyzed, and we only detected GFP in progenitors when CasExpress was allowed to be

active during the pupal stage. Therefore caspase is likely activated for a brief period during pupal

life. The progenitor cells, like the rest of the animal, are exposed to apoptotic stimuli such as sys-

temic ecdysone (Jiang et al., 1997), yet they survive to reconstitute the adult gut. They might sur-

vive either because they are particularly resistant to caspase activity and apoptosis, as is postulated

for stem/progenitor cells generally. Alternatively caspases may actually promote their proliferation

or maintenance as has been described for some mammalian progenitors (Li et al., 2010;

Yoneyama et al., 2014); or some progenitor cells may undergo anastasis and recover from the brink

of apoptotic cell death. Although we cannot currently distinguish definitively between these possibil-

ities, the observation that a subset of progenitor cells activates CasExpress might indicate that some

cells resist the apoptotic stimulus prior to activation of caspase-3 whereas others experience caspase

activity and recover from it. The observation that pupal visceral muscle cells exhibit RFP and GFP in

nearly every cell suggests prolonged caspase activation. Together these observations demonstrate

that survival of caspase activation occurs in distinct spatial and temporal patterns for different cell

types and tissues, possibly due to differing epigenetic states, developmental mechanisms, and/or

physiological functions (see Discussion).

Functional significance of developmental caspase in the wing
We wondered if the observed caspase activity was functionally significant. The homozygous Drice

mutant is lethal, as are dronc mutants. The interpretation is that these mutations prevent apoptosis,

and that apoptosis is essential. Our results suggest an additional possibility, which is that non-
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apoptotic caspase activity may be important during normal development. To test this, we crossed

two different UAS-p35 transgenes to the rotund-Gal4 (rn-Gal4) line, which expresses in the pouch

region of the wing imaginal disc, the region that gives rise to the adult wing blade. We then evalu-

ated the morphology and size of the adult wing for defects in growth and/or patterning. Although

the wings appeared normally patterned, they showed a small (10%) but reproducible and significant

reduction in area (Figure 8A–D), demonstrating the functional importance of caspase activity in this

tissue. We repeated this experiment using engrailed-Gal4, which drives expression only in the poste-

rior compartment of the wing, and compared the area of the posterior compartment to that of the

Figure 8. Inhibition of caspase activity reduces wing size. (A–C) Representative wings from progeny of rn-Gal4

crossed to (A) control w1118, (B) UAS-p35 on chromosome II, or (C) UAS-p35 on the X chromosome. (D)

Quantification of wing area in arbitrary units. (E) Schematic showing the regions used for area measurement in

wings with or without p35 expressed under en-Gal4. In the anterior compartment, we measured the area anterior

to L3 vein, which is highlighted in blue and marked as A(L3). In posterior compartment, we measured the area

posterior to L4, which is highlighted in purple and marked as P(L4). (F) Quantification of the ratio between P(L4)

and A(L3) in wings from progeny of en-Gal4 crossed to w1118, UAS-p35 on the second chromosome, and UAS-p35

on the X chromosome. Error bars show standard error of the mean, and **** indicates p<0.0001.

DOI: 10.7554/eLife.10936.020
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anterior compartment as an internal control. Again, inhibition of apoptosis by expression of p35

caused a small but significant reduction in size. If the only function of caspase were to promote apo-

ptosis, inhibition of caspase should result in excess cells, and therefore a larger size. The observation

of a smaller wing suggests a different function for caspase in this tissue (see Discussion).

Discussion
Here we report the first systematic analysis of the fates of cells that survive caspase-3 activation

throughout Drosophila development. The striking results include widespread cell survival of caspase

activation and the distinct spatial and temporal patterns observed in different tissues throughout

development. Caspase-3 activation has been strongly associated with cell death (Thornberry, 1998;

Chipuk et al., 2006). While some previous studies have indicated that caspase-3 can perform other

functions (e.g.[Connolly et al., 2014]), these non-apoptotic caspase activities are generally consid-

ered exceptions to the rule. However it has not been possible to systematically follow the fates of

cells that experience executioner caspase activity throughout development in vivo.

We observed several distinct patterns of CasExpress activation, which likely reflect different bio-

logical functions. Oenocytes and cells of the salivary gland and Malpighian tubules activated CasEx-

press in every cell, in every animal, with no evidence of apoptosis or even partial cellular destruction.

This pattern seems most consistent with non-apoptotic roles for caspases. One known protein target

of Drice and Dcp1 that might be relevant in this context is the Sterol Regulatory Element-binding

Protein (dSREBP) (Amarneh et al., 2009). SREBP is synthesized as a membrane-tethered precursor

that is released by proteolytic cleavage so that it can translocate to the nucleus where it transcribes

target genes involved in lipid synthesis and uptake. Oenocytes have an established role in lipid syn-

thesis (Makki et al., 2014). According to FlyBase, SREBP is expressed at high levels in many of the

tissues that show constitutive caspase-3 activity. SREBPs in mammals and flies are cleaved by site-2

protease (S2P). However Drice and Dcp1 can also cleave SREBP and can even substitute in the

absence of S2P in Drosophila (Amarneh et al., 2009). It is possible then that one function of caspase

activity in oenocytes and other cell types is to activate SREBP during normal development and/or in

times of stress to meet metabolic demands.

The published literature provides clear examples of caspase activities that promote cellular

remodeling via limited destruction such as sperm maturation (Arama et al., 2003; Huh et al., 2004),

remodeling of neurites (Yan et al., 2001; Finckbone et al., 2009), and enucleation of certain termi-

nally differentiating cells, such as erythrocytes and lens epithelial cells (Connolly et al., 2014). In

such tissues one would also expect to see CasExpress activated in a reproducible temporal and spa-

tial pattern. Metamorphosis is a period of insect development during which extensive tissue remod-

eling occurs. The CasExpress activity that we detected during pupal life in the nervous system for

example could be a consequence of remodeling.

In contrast, in imaginal discs and the brain CasExpress was activated sporadically in both space

and time, during periods of development when apoptosis is known to occur. This pattern seems

most consistent with developmental anastasis. Anastasis was first described in cultured cells and is

defined as the recovery of cells from the brink of apoptotic cell death after caspase-3 activation

(Tang et al., 2012). During normal development of many tissues including Drosophila imaginal discs

and mammalian blastocysts, cells are thought to compete for survival based on differential fitness

(Moreno and Rhiner, 2014; Merino et al., 2015; Kolahgar et al., 2015; Vincent et al., 2013;

de Beco et al., 2012). Differences in fitness can be detected amongst cells with artificially induced

differences in growth rates, caused by differential ribosomal protein levels (Morata and Ripoll,

1975), c-Myc expression levels (de la Cova et al., 2004), or access to trophic factors (de Beco et al.,

2012). In the nervous system for example, those cells that obtain sufficient growth factor signaling

survive and those that receive too little undergo apoptosis. This has generally been considered an

all-or-nothing decision. However the observation that cultured cells exposed transiently to a lethal

toxic stimulus can recover after caspase-3 activation, or survival of cells exposed to a sublethal dose

of radiation or mitochondrial permeabilization (Liu et al., 2015; Ichim et al., 2015), raise the ques-

tion as to whether cells might actually bounce back from transient caspase activation during devel-

opment as well. Our results show that cells can survive caspase-3 activation during normal

development, perhaps due to recovery from a transient apoptotic stimulus.
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Another possibility is that cells in a population differ in their sensitivities to apoptosis due to varia-

tion in epigenetic states (Flusberg and Sorger, 2015; Spencer and Sorger, 2011). In mammals the

E3 ubiquitin ligase PARC can target cytoplasmic cytochrome c for ubiquitin-mediated degradation,

providing one molecular mechanism by which cells can recover from an apoptotic stimulus

(Gama et al., 2014). Differential expression of PARC may confer different levels of resistance to exe-

cutioner caspase activity. Other, as yet unknown, epigenetic differences between cells may also con-

fer differing sensitivities to caspase activation.

Our results suggest that the ability of cells to survive caspase activation changes during develop-

ment. Many cells in the embryo activate caspase-3, yet we detected no GFP expression in embryos,

except in the salivary gland. Our temperature shift experiments revealed that, in imaginal discs for

example, more and more cells survived as development progressed, and cells that activated the sen-

sor in early stages produced large numbers of progeny such that by the end of the third larval instar,

the majority of cells expressed GFP.

A number of studies report immunoreactivity against cleaved caspase-3 in neurons that appear to

be dividing, differentiating or migrating (Yu and Schuldiner, 2014; Yan et al., 2001;

Finckbone et al., 2009; Schoenmann et al., 2010). While tantalizing, the studies were carried out in

fixed tissue so the ultimate fates of such cells could not be determined. In the current study we were

able to follow the fates of cells that survived caspase activation, and these results demonstrate that

in many tissues of the adult the majority of cells arise from cells that experience transient caspase

activity at some point during their development. Therefore such events are not the exception; rather

they are the rule.

Autonomous versus non-autonomous survival
When extra apoptosis is artificially induced in Drosophila imaginal disc cells, it stimulates surviving

cells to proliferate (Fan and Bergmann, 2008). Dying cells secrete growth factors to facilitate the

survival and proliferation of their neighbors in the process known as compensatory cell proliferation

(Xing et al., 2015; Kuranaga et al., 2011). The marking system that we report here demonstrates

cell autonomous survival of caspase activation. Both autonomous and non-autonomous survival and

proliferation may cooperate to promote recovery of tissues from insults that kill some but not all

cells.

A role for caspases in injury repair and tissue regeneration has been demonstrated in Hydra, Xen-

opus, planaria, newts and in mouse liver (reviewed in [Connolly et al., 2014]), indicating that this is a

well-conserved and general phenomenon. Our observation that the majority of cells in the adult fly

descend from cells that survive caspase activation at some point suggests that, in addition to the

well-documented compensatory proliferation in response to injury, there may autonomous compen-

satory proliferation in cells that survive caspase-3 activation during normal development. The idea is

that some cells die and need to be replaced so the cells that survive proliferate. Such an autono-

mous increase in proliferation might explain the abundance of GFP-expressing cells in the adult. It

could also explain the otherwise paradoxical result that inhibition of executioner caspase activity in

the wing imaginal disc by p35 reduced wing area in the adult. If inhibiting caspases only blocked

apoptosis, one would expect the tissue to contain excess cells and to be either larger, abnormally

patterned, or both. In contrast we observed a small decrease in wing area, consistent with the idea

that inhibiting caspase activity might also inhibit compensatory cell proliferation during normal

development. An earlier study (de la Cova et al., 2004) showed that inhibiting apoptosis in the wing

disc led to variability in the size of the disc later in development; however this study did not address

the ultimate effect on the size of the adult wing. It will be interesting in the future to examine CasEx-

press in models of injury, repair and regeneration to determine if cell autonomous compensatory

proliferation occurs in those settings as well.

Additional examples of developmental anastasis
Two papers document examples of cell recovery from apoptosis during C. elegans development

(Reddien et al., 2001; Hoeppner et al., 2001). When phagocytosis is impaired, a fraction of cells

that normally die are able to reverse the morphological signs of apoptosis, which are caused by cas-

pase-3 activity. These cells not only survive, they differentiate. One interpretation of these findings is

that phagocytosis normally occurs so early in the death process that it prevents anastasis. However
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development in C. elegans is far more stereotyped than it is in most organisms. In C. elegans the

fate of every single cell is precisely determined. However in organisms with greater numbers of cells,

cell survival or death is not thought to be a predetermined cell fate; rather there is a selection pro-

cess in which cells compete (Moreno and Rhiner, 2014; Merino et al., 2015; Vincent et al., 2013;

de Beco et al., 2012). Our results indicate that many cells in adult flies derive from cells that survive

caspase activity at some point during their development. An alternative interpretation of the C. ele-

gans studies is that the ability to survive and recover even after caspase-3 activation is a fundamental

and ancient cellular property that evolved early and still exists in a latent form, even in an animal

that does not normally need it. Even in C. elegans, the precise moment of engulfment is not prede-

termined; and it is not always the same cell that consumes the dying cell. Therefore in organisms

with larger numbers of cells whose fates are far less predictable, it is unlikely that engulfment always

occurs at a precise time point during the apoptotic process. The results presented here demonstrate

that it is not rare for cells to survive caspase-3 activation during normal Drosophila development,

and such cells make a major contribution to normal adult tissues.

Materials and methods

Fly strains
The following transgenic and mutant strains were used:

The CasExpress biosensor (pattB-Ubi-CasExpress-DQVD) and caspase-insensitive control (pattB-

Ubi-CasExpress-DQVA) were newly generated as follows. First, a backbone pattB-synaptobrevin-7-

QFBDAD-hsp70 (gift from Christopher J. Potter lab) was linearized with restriction enzymes AatII

and BamHI. The poly-ubiquitin promoter was cloned by PCR from pUWR

(Addgene, Cambridge, MA), and the product was inserted to backbone by In-Fusion Cloning Kit

(Clontech Laboratories, Mountain View, CA). The product, which was verified by sequencing was

named pattB-Ubi. Second, pattB-Ubi was linearized with restriction enzymes NdeI and PstI as a

backbone. An insert consisting of the sequence of MCD8, DIAP1 (residues 2–147) and Gal4 in 5’ to

3’ order and two 15 bp sequences overlap with backbone on both 3’ and 5’ end was generated by

PCR and In-Fusion cloning. Residues 21 and 22, immediately following the DQVD cleavage site in

DIAP1, were mutated from sequence NN to GV, in order to protect the cleaved product from possi-

ble N-end rule degradation. Third, the insert and backbone were ligated using the In-Fusion kit. A

product verified by sequencing was named pattB-Ubi-CasExpress-DQVDGV. Finally, nucleotide 59

of DIAP1 sequence in pattB-Ubi-CasExpress was mutated to change amino acid 20 from D to A by

single point mutagenesis. A product verified by sequencing was named pattB-Ubi-CasExpress-

DQVAGV. CasExpress and control plasmids were sent to BestGene Inc., inserted to Perrimon strain

P{CaryP}attP40 through a PhiC31 integrase mediated transgenesis. Random insertions of CasEx-

press-DQVDNN and CasExpress-DQVANN were also generated. DroncI29 was a gift from Kenneth

D. Irvine. The following strains were obtained from the Bloomington Stock Center: G-Trace (Bloo-

mington #28280); tub-Gal80ts (Bloomington #7018); GMR-p35 (Bloomington #5774); UAS-p35 BH1

and BH2 (Bloomington #5072 and 5073). All lines and crosses were kept at 25˚C except where other-

wise indicated.

Dissection, immunohistochemistry and imaging
Larval intestines, oenocytes (together with surrounding cuticle) and adult muscles, brains, eyes, ova-

ries, oviducts, uteri, tissues were dissected in PBS. For adult ventral nerve cords, whole thoraxes

were used for fixation. For larval tissues, the anterior 1/3 part of larvae was cut off and turned inside

out, all tissues remained attached to cuticle during fixation. Tissues were fixed in 4% paraformalde-

hyde in PBS at room temperature for 10 min (larval cuticles with CNS and imaginal discs) 30 min

(adult thoraces). Other tissues were fixed for 15 min. After fixation, adult ventral nerve cords were

dissected from adult thoraces. The samples were then washed with PBS/0.3% Triton X-100 (PBSt) for

3 x 10 min and blocked with 5% goat serum for 30 min. Fluorescence of RFP and GFP were detected

directly without antibody staining. Mouse anti-mCD8 (Santa Cruz, Dallas, TX, #51735, 1:50), and rab-

bit anti-Cleaved Dcp-1(Asp216) (Cell Signaling, Danvers, MA, #9578, 1:100) were incubated with dis-

sected tissues overnight at 4˚C, followed by 3 x 10 min PBSt washing and secondary antibody

incubation for 2 hr at room temperature. Samples then were washed twice for 15 min each with
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PBSt and incubated for 15 min with 10 ng/ml Hoechst 33,342 in PBSt. After Hoechst staining, larval

CNS and imaginal discs were dissected away from cuticle. All samples were mounted in Vectashield

mounting media (Vector Laboratories, Burlingame, CA, H-1000).

A Zeiss AxioZoom microscope was used for imaging whole larvae. A Zeiss LSM 780 confocal

microscope was used for the rest of images. Embryo collections, fixation and acridine orange

(Sigma-Aldrich, St. Louis, MO, A6014) staining of embryos are as described (McCall and Peterson,

2004)

Image analysis and quantification
Images were processed with Fiji. A threshold for each channel of interest (COI, e.g. RFP, GFP) was

set by auto-threshold (method: Default, Dark). For anti-cDcp1 the threshold was set using MaxEn-

tropy. Area above threshold was measured as S[COI]. The area of DNA was measure in the same

manner as S[DNA]. A ratio of S[COI]/S[DNA] was then calculated.

GMR-p35 suppression of CasExpress in antennal-eye disc
To test suppression of CasExpress by the caspae inhibitor p35, larvae with the genotype GMR-p35;

CasExpress/G-Trace; TubGal80ts were raised in 18˚C until early third instar. Larvae were then trans-

ferred to 29˚C and incubated for 48 hr. Antennal-eye discs were then dissected, fixed and stained

with Hoechst 33342, followed by a Z-stack imaging on LSM780 microscope (Objective: 20x Zeiss

plan-apochromat dry, 0.8 NA; step-size: 1.46 mm).

Images were process with Fiji. A Z-projection of each image was generated by maximum intensity

algorithm. An ROI was drawn to define the boundary of the antennal disc. A threshold for the RFP

channel was determined by auto-threshold (method: Default, Dark). Another ROI was then drawn to

define the boundary of region of the eye disc posterior to the morphogenetic furrow. Threshold of

RFP channel of original image without Z-projection was set as (0.5a, b). Area of RFP above threshold

was measured for each layer and summed. Area of DNA above threshold determined by auto-

threshold (method: Default, Dark) was also measured for each layer and summed. The ratio of

summed areas of RFP and DNA was then calculated.

Wing size quantification
Crosses were maintained at 25˚C. The progeny of the desired genotypes were collected and dehy-

drated in 100% ethanol. The wings were then mounted in Canada balsam (Gary’s magic mountant,

Sigma) and photographed using a Zeiss AxioZoom microscope. Wing sizes were quantified using

ImageJ software.

Statistical analysis
Statistical significance was determined using the unpaired two-tailed t test for two-sample compari-

son or one-way ANOVA for multiple samples analysis, with p<0.05 set as the threshold for signifi-

cance. The Tukey test was used to derive adjusted P values for multiple comparisons. In figures, ***

indicates p<0.001, and **** indicates p<0.0001. Error bars show standard error of the mean.
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