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Abstract The polyglutamine expansion in huntingtin protein causes Huntington’s disease. Here,

we investigated structural and biochemical properties of huntingtin and the effect of the

polyglutamine expansion using various biophysical experiments including circular dichroism, single-

particle electron microscopy and cross-linking mass spectrometry. Huntingtin is likely composed of

five distinct domains and adopts a spherical a-helical solenoid where the amino-terminal and

carboxyl-terminal regions fold to contain a circumscribed central cavity. Interestingly, we showed

that the polyglutamine expansion increases a-helical properties of huntingtin and affects the

intramolecular interactions among the domains. Our work delineates the structural characteristics

of full-length huntingtin, which are affected by the polyglutamine expansion, and provides an

elegant solution to the apparent conundrum of how the extreme amino-terminal polyglutamine

tract confers a novel property on huntingtin, causing the disease.

DOI: 10.7554/eLife.11184.001

Introduction
Huntingtin is the entire large protein product (>350 kDa MW) of the Huntingtin gene (HTT previ-

ously HD). Huntingtin has a segment of polyglutamine near its amino terminus (Amino-terminal) that

is encoded by a polymorphic CAG trinucleotide repeat. If expanded above 38-residues, this muta-

tion causes Huntington’s disease (HD), a dominant neurodegenerative disorder

(Huntington’s Disease Collaborative Research Group, 1993). The strong correlation between the

size of the expanded repeat and the age at diagnosis of HD motor, cognitive and psychiatric symp-

toms shows that CAG repeat-size is the primary determinant of the rate of the disease progression

(Brinkman et al., 1997; Snell et al., 1993). This biological relationship also provides a human

patient-based rationale for delineating the HD disease-trigger in studies with an allelic series
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designed to determine the effects of progressively increasing the size of the mutation. Consistent

with genetic studies in distinct CAG-expansion neurodegenerative disorders and CAG knock-in mice

that replicate the HD mutation, the mechanism that triggers the disease process that leads to the

characteristic vulnerability of striatal neurons in HD is thought to involve a novel gain of function that

is conferred on mutant huntingtin by the expanded polyglutamine segment (Gusella and MacDon-

ald, 2000; Nucifora et al., 2001; Trettel et al., 2000).

By analogy with other members of the HEAT/HEAT-like (Huntingtin, Elongation factor 3, protein

phosphatase 2A, Target of rapamycin 1) repeat family (Andrade and Bork, 1995; Perry and Kleck-

ner, 2003), huntingtin is likely a HEAT domain solenoid that functions as a mechanical scaffold for

multi-member complexes (Grinthal et al., 2010; Takano and Gusella, 2002). Huntingtin’s large size

and predicted predominant HEAT/HEAT-like repeat domain structure is well conserved through 500

million years of evolution (Seong et al., 2010). The polyglutamine region is not conserved in some

huntingtin orthologues (Seong et al., 2010), implying a role as an extra feature that fine-tunes hun-

tingtin structure and function. Indeed, testing this idea, we have previously demonstrated, with puri-

fied recombinant human huntingtins in a cell-free assay, that lengthening the polyglutamine tract

quantitatively enhances the basal function of huntingtin in stimulating Polycomb repressive complex

2 (PRC2) histone methyltransferase (Seong et al., 2010).

The structures of smaller HEAT/HEAT-like repeat solenoid scaffold proteins, such as PR65/A and

Importin b, have been solved to high-resolution, and each has been shown to assume a distinctive

extended curvilinear shape determined by the specific stacking characteristics of its HEAT/HEAT-like

repeats (Cingolani et al., 1999; Groves et al., 1999). The topology of the huntingtin solenoid is

expected to reflect the specific stacking characteristics of a-helical HEAT/HEAT-like repeats that

eLife digest Huntington’s disease is an inherited disorder that occurs in adulthood and

sometimes in children. It causes progressive damage to the brain and people with the condition

develop memory loss, movement difficulties, confusion, and other symptoms of mental decline.

Eventually, the disease leads to death. Mutations in the gene that encodes a protein called

huntingtin cause Huntington’s disease. Individuals who inherit just one copy of the mutated gene

develop the condition. No treatments currently exist that can slow or stop disease progression.

Genetic and molecular studies are beginning to shed light on how mutations in the gene

encoding huntingtin cause the disease. Normally, the protein has a section near its tail end made up

of the amino acid glutamine repeated around 23 times. Mutations that increase the number of

glutamines to more than 38 cause Huntington’s disease. The more extra glutamines there are in this

region of the protein, the earlier in life the disease symptoms begin. But it was not clear how these

extra glutamines near the tail of huntingtin affect the structure and behavior of a protein that is

more than 3,000 amino acids long.

Now, Vijayvargia et al. have revealed why the tail end of huntingtin is so important. Several

biophysical methods were used to determine the three-dimensional structure of the huntingtin

protein. These methods revealed that the protein folds up into a hollow sphere and that its tail end

is able to interact with the entire length of the protein and physically touches its opposite end.

To see this in more detail, Vijayvargia et al. used another experimental technique called

crosslinking mass spectrometry to confirm which parts of the huntingtin protein are in close contact

with each other. Together with the structural data, these experiments suggest that the stretch of

glutamines is in the position to bring about subtle, but widespread, changes throughout the

huntingtin protein. That is to say, that having more glutamines slightly changes the curve of the

sphere and alters the way different parts of the protein interact.

Together the new findings explain why mutations that alter the tail of huntingtin affect the rest of

the protein. Further work will now aim to provide a more-detailed structure of the huntingtin protein

and to investigate what other roles of huntingtin are affected by the increased number of

glutamines in the protein’s tail. These insights may help scientists understand how the mutated

protein causes brain decline.

DOI: 10.7554/eLife.11184.002
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Figure 1. Huntingtin secondary structure is modulated by the length of polyglutamine tract. (A) Human huntingtin amino acid sequence (Homo

sapiens; NP_002102) was analyzed for predicted secondary structure using: NORSp (Liu and Rost, 2003) and PROF (Profile network prediction

Heidelberg) (Rost et al.,1994). Stick model of human huntingtin protein (3144 amino acids) was generated depicting the predicted alpha helical (red),

random coil (yellow) and beta sheet (grey) regions. The polyglutamine tract in the amino-terminus is indicated in purple. (B) The far UV-wavelength scan

at 25˚C of these purified huntingtin proteins generates a curve typical of a-helical proteins. (C) Thermal behavior of Q23-, Q46- and Q78-huntingtin. The

heat denaturation curves, from 25 to 95˚C, of all proteins showed the similar pattern of irreversible thermal denaturation starting their denaturation

above 40˚C by MRE values at 222 nm. Due to inherent variation caused by inefficient mixing in the cuvette with taking readings every five degrees of

heating, their heat denaturation curves were acquired in duplicates. Solid line represents heating to 95˚C; dotted line represents cooling from 95˚C. (D)
An average (MRE) in units of deg.cm2/dmol, at 222 nm wavelength characteristic of an a-helix), from two independent experiments, was plotted against

the length of the polyglutamine tract of huntingtin proteins (bars represent mean ± SEM). Temperature was 25˚C.
DOI: 10.7554/eLife.11184.003

The following figure supplement is available for figure 1:

Figure supplement 1. Normalization of purified huntingtin proteins with varied polyglutamine tract length.

DOI: 10.7554/eLife.11184.004
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span the molecule. The shape imparted by intramolecular stacking cannot be predicted because of

the idiosyncratic nature of HEAT/HEAT-like repeats, which are loosely conserved ~34 amino acid

bipartite a-helical units (Takano and Gusella, 2002). Nevertheless this shape must enable modula-

tion by the amino-terminal polyglutamine segment. It seems reasonable that this may involve some

structural feature that is critical to huntingtin function. One possibility is structure-dependent post-

translational modification. Human huntingtin is phosphorylated, at more than seventy modified ser-

ine, threonine and tyrosine residues (Hornbeck et al., 2012). Indeed, a comparison of lines of trans-

genic modified HTT BAC mice has implicated unique amino-terminal serine phosphorylation in

protection against deleterious effects of mutant huntingtin (Gu et al., 2009) and the polyglutamine

expansion at the amino-terminal causes a trend of hypo-phosphorylation in all sites, including sites

near the carboxyl-terminus (Anne et al., 2007; Schilling et al., 2006; Warby et al., 2005), indirectly

implying a long-range impact of the amino-terminal region on huntingtin structure and function.

In order to solve the apparent puzzle of how huntingtin’s solenoid structure may enable quantita-

tive or qualitative (or both) modulation of huntingtin function, according to the size of the amino-ter-

minal polyglutamine tract, we have extended initial observations showing a likely flexible a-helical

structure by conducting systematic biophysical and biochemical analyses of members of a panel of

highly purified human recombinant huntingtins, with varied lengths of polyglutamine tracts

(Fodale et al., 2014; Huang et al., 2015; Li et al., 2006).

Results

Huntingtin a-helical structure is quantitatively altered with
polyglutamine tract size
It has been reported previously that purified huntingtin exhibits a predominantly a-helical secondary

structure but among studies the impact of polyglutamine size has been inconsistent (Fodale et al.,

2014; Huang et al., 2015; Li et al., 2006). To carry out a standardized evaluation, we performed cir-

cular dichroism (CD) analysis of a series of recombinant human huntingtins with different polyglut-

amine tract lengths (Q2-, Q23-, Q46-, Q67-, Q78-huntingtin, respectively) purified to homogeneity

(Figure 1—figure supplement 1). The CD spectra (Figure 1B) of all of the huntingtins are consistent

with a predominant a-helical secondary structure (Liu and Rost, 2003; Rost et al., 1994)

(Figure 1A), with typical minima at 222 and 208 nm and a positive peak at 195 nm, and all exhibited

the same irreversible thermal denaturation pattern, with secondary structure stable up to ~38–40˚C,
a gradual slow denaturation as the temperature is increased to 65–70˚C, followed by aggregation

and some precipitation (Figure 1C). These results imply the same basic core structure and stability

regardless of the size of the expanded polyglutamine segment. Plotting an average of the Mean

Residue Ellipticity (MRE) at 222 nm (characteristic of an a-helix) reveals an incremental quantitative

effect of lengthening the polyglutamine tract at the amino terminus on the a-helicity of the entire

molecule (Figure 1D).

3D EM analysis reveals a spherical shape with a central cavity and
overlying Amino-terminus
We then investigated the proposal that huntingtin’s shape may enable a structural impact of the

amino-terminal polyglutamine tract, by performing single-particle electron microscopy (EM) of

recombinant human huntingtins with polyglutamine tract lengths of 23- and 78-residues. These were

purified to high homogeneity using a gradient purification method with mild crosslinking (GraFix)

(Kastner et al., 2008), collecting only the monomer fraction for analysis to eliminate potential contri-

butions from oligomeric structures that would confound interpretation of the results (Figure 2—fig-

ure supplement 1). Negative-stained micrographs of these proteins confirmed that the samples

were highly homogeneous (Figure 2—figure supplement 2). A total of 10,169 particles were chosen

for generating 2D class averages and 30 class averages were used for reconstructing a 3D EM map

of Q23-huntingtin (Figure 2—figure supplement 3A). The EM map of Q23-huntingtin at about 30 Å

resolution, estimated from Fourier shell correlation analysis, shows that the molecule adopts an over-

all spherical shape with 130 Å height and 100 Å width (Figure 2A and Figure 2—figure supplement

4). The overall shape of huntingtin was not apparently affected either through crosslinking or by the

tag as 2D class averages of huntingtin with no cross linker or without tag also showed a similar
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Figure 2. Three-dimensional reconstruction of negatively-stained Q23- and Q78-huntingtin. (A) 3D EM map of

Q23-huntingtin was reconstructed from negatively-stained particles of Q23 monomer separated by GraFix. The

resolution was estimated as 33.5 Å at 0.5 FSC. 3D map of Q23-huntingtin is shown in different orientation rotated

about the y axis (0˚, 90˚, 180˚, 270˚). (B) Sectioned view of 3D EM map of Q23-huntingtin in the same orientation as

in A revealing a large cavity inside of Q23-huntingtin. (C) 3D EM map of Q78-huntingin (32.0 Å at 0.5 FSC) was

reconstructed as for Q23-huntingtin and shown in different angles rotated about the y axis (0˚, 90˚, 180˚, 270˚). (D)
Sectioned view of 3D EM map of Q78-huntingtin in the same orientation as in C also showing a large cavity inside

of Q78-huntingtin. This figure has additional supplement files: Figure supplement 1, 2, 3, 4, and 5

DOI: 10.7554/eLife.11184.005

The following figure supplements are available for figure 2:

Figure supplement 1. Purification of huntingtin by GraFix.

DOI: 10.7554/eLife.11184.006

Figure supplement 2. Negatively-stained micrographs of huntingtin at 50,000X magnification.

DOI: 10.7554/eLife.11184.007

Figure supplement 3. 2D Class averages of Q23- and Q78-huntingtin.

DOI: 10.7554/eLife.11184.008

Figure supplement 4. Fourier Shell Correlation (FSC) curves.

DOI: 10.7554/eLife.11184.009

Figure supplement 5. Superimposition between 3D EM maps of Q23 and Q78-huntingtin.

DOI: 10.7554/eLife.11184.010
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Figure 3. Detection of the amino-terminus region of huntingtin by electron microscopy. 3D reconstitutions of Q23-

huntingtin and Q23-huntingtin antibody complex (A) or Q78-huntingtin and Q78-huntingtin antibody complex (B)

are shown in gray and yellow or in green and brown, respectively. 2D class averages corresponding to each

huntingtin and its antibody complex are shown below the 3D reconstituted EM map and the extra density is

marked with a red triangle. The extra-density indicating antibody on 3D EM map is colored in black (A) or dark

brown (B) with red triangles.

DOI: 10.7554/eLife.11184.011

The following figure supplements are available for figure 3:

Figure supplement 1. Producing huntingtin-FLAG-Aantibody complex.

DOI: 10.7554/eLife.11184.012

Figure supplement 2. Negatively-stained micrographs of huntingtin-antibody complexes at 50,000X

magnification.

DOI: 10.7554/eLife.11184.013
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Figure 4. Cross-linking mass spectrometry analysis shows the intra-molecular interactions of Q23-, Q78- and Q46-huntingtin. The 3,144 amino acid

primary huntingtin sequence (by convention Q23-huntingtin) is depicted as a yellow bar with the location of the polyglutamine tract indicated by the

green arrowhead (A). The short-, mid- and long-range Lys-Lys cross-links by DSS identified in Q23-huntingtin (above the bar, Q23) and Q78-huntingtin

(below the bar, Q78) by XL-MS are depicted by the green, blue and red-colored lines, respectively. Below that is a schematic view of huntingtin with

five sub-domains delineated by the shared patterns of intra-molecular interactions; two amino-terminal (NTD-I, NTD-II) and three carboxyl-terminal

(CTD-I, UCD and CTD-II), as defined relative to the landmark major protease-sensitive site at ~ residue 1200 identified previously (Seong et al., 2010),

which is denoted by the large red arrowhead, while the secondary minor cleavage site is denoted by the small red arrowhead. The cross-links of Q46

huntingtin (Q46) identified in XL-MS analysis are also shown under the five sub-domains schematic. Lys-Lys cross-links by DSS unique to Q23-huntingtin,

Q78-huntingtin and Q46-huntingtin are shown in cyan, pink, and orange, respectively in each pair-wise comparison of Q23 vs Q78 (B), Q23 vs Q46 (C)

or Q46 vs Q78 (D). The amino-terminal (yellow) and carboxyl-terminal (blue) sub-domains are depicted in cartoons (E) to show more substantial

interactions (red thicker dashed arrows) between NTD-I and CTD-I in Q23-huntingtin (left) and between CTD-II and NTD-II or CTD-I in Q78-huntingtin

(right) and throughout both amino- and carboxyl-terminal sub-domains in Q46-huntingtin (middle). In all three huntingtins (all red dashed arrows), NTD-

I folds to contact CTD-I and CTD-II also contacts CTD-I as well as NTD-II, implying that the physical impact of the polyglutamine tract at the very

amino-terminal end has the opportunity to subtly but globally alter the entire huntingtin structure and function in a polyglutamine length-dependent

manner.

DOI: 10.7554/eLife.11184.014

Figure 4 continued on next page
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spherical shape (Figure 2—figure supplement 3). The outer volume of the structure can be roughly

estimated as 861,829 Å3 and a Mathew’s coefficient (VM) of 2.48, assuming that Q23-huntingtin is a

sphere with 115 Å diameter with 348 kDa molecular weight. Considering the VM=1.23 for the pro-

tein itself, Q23-huntingtin appears to contain a large solvent cavity (up to 50% by volume). Consis-

tent with this estimation, the 3D EM reconstruction of Q23-huntingtin shows a large cavity in the

core (Figure 2B). The analysis of negatively-stained Q78-huntingtin (Figure 2C and Figure 2—figure

supplement 3B) disclosed a 3D map showing a similar overall spherical shape, with a large cavity in

the core (Figure 2D). Although 3D maps were reconstructed de novo without other experimental

methods such as random conical tilt, the high similarity of the shapes between Q23- and Q78-hun-

tingtin 3D maps attests that huntingtin has the spherical structure with a cavity (Figure 2—figure

supplement 5). Notably, manual superimposition of the 3D maps of Q23-huntingtin and Q78-hun-

tingtin reveals potential differences in the two structures (Figure 2—figure supplement 5), which

may reflect technical variation (image processing, stain distribution, sample heterogeneity), in addi-

tion to the structural effects of the lengthened polyglutamine segment that were foreshadowed by

the altered CD spectra (Figure 1D).

We then attempted to locate the amino-terminus (17 residues adjacent to the polyglutamine

tract) of huntingtin in the EM maps, by collecting images of negatively-stained purified complexes of

antibody-bound amino-terminal FLAG-tags of the Q23- and Q78-huntingtin (Figure 3 and Figure 3—

figure supplement 1 and 2). We also proceeded to reconstitute 3D structure of Q23- and Q78-hun-

tingtin-antibody complexes. Comparisons of the 2D class averages and 3D reconstituted structures

between huntingtin alone and the huntingtin-FLAG-antibody complex pairs clearly reveals an extra

density at the top of the structure (in the view shown) for both Q23- and Q78-huntingtin (Figure 3).

These observations strongly imply that the extreme N-terminus, and by inference the adjacent poly-

glutamine tract, is folded back, forming a spherically shaped solenoid with an internal cavity, but is

accessible at the outside surface, regardless of its length.

Cross-linking-MS analysis reveals a modulated network of
intramolecular contacts
To further examine structural characteristics such as folding, we then assessed intramolecular interac-

tions within huntingtin as estimated from the spatial proximity of lysine residues in sucrose-gradient-

selected monomeric Q23- and Q78-huntingtin, determined by disuccinimidyl suberate (DSS) cross-

linking mass spectrometry (DSS XL-MS) analysis (Leitner et al., 2014) (Figure 4—figure supplement

1, Supplementary file 1). Based upon the spacing between the DSS-cross-linked lysine residues in

the primary sequence, the interactions that were detected for either huntingtin can be grouped into

three categories, depicted in Figure 4A. These comprise: #1) short-range interactions (within a 200

amino acid interval), which seem likely to occur within the same secondary structure element, includ-

ing the contacts between pairs of adjacent lysines (e.g. K174-K178 and K664-K669), and the interac-

tions between K220, K255 and K262; #2) mid-range interactions (201 to 1000 amino acid interval),

such as K826-K1559, K943-K1559 and K2548-K2934; and #3) long-range contacts (interval of >1000

amino acids), including between the carboxyl-terminal K2969 and amino-terminal K943 residue.

Inspection of the depiction of the short-range cross-link contact sites relative to the location of the

protease-sensitive sites (Seong et al., 2010) indicates that huntingtin is likely to be composed of five

distinct domains (Figure 4A upper panel). The location of the protease-sensitive major hinge region

located at residues 1184–1254 defines the 150 kDa amino-terminal domain (NTD) and the 200 kDa

carboxyl-terminal domain (CTD). A minor-protease sensitive site located at ~ residue 500 demarcates

the NTD into NTD-1 and NTD-II. Interestingly, a region centrally located within the CTD showed

strikingly few crosslinks, despite the presence of several lysine residues, strongly implying a distinct

sub-domain that we call ‘uncrosslinked’ sub-domain (UCD), which, given the paucity of short range

intramolecular contacts, may adopt a largely unfolded structure. The UCD is flanked by regions with

numerous intramolecular contacts; the CTD-I in proximity to the major proteolysis site and the

Figure 4 continued

The following figure supplement is available for figure 4:

Figure supplement 1. Purification of huntingtin by ultracentrifugation after DSS cross-linking.

DOI: 10.7554/eLife.11184.015
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carboxyl-terminal CTD-II (Figure 4A). Consistent with the hypothesis of five discernable huntingtin

sub-domains, the results of hydrophobicity analysis show a transition in hydrophobicity prediction at

the edge of each sub-domain (data not shown).

The mid- and long-range interactions occur between these sub-domains in a pattern that indi-

cates close-proximity of the extreme amino- and carboxyl-terminal sub-domains. Specifically, NTD-I

mainly interacts with CTD-I, while CTD-II interacts with NTD-II and notably with CTD-1. Thus, the

pattern of mid- and long-range contacts supports a view of huntingtin folding such that the extreme

amino-terminal subdomain (NTD-I), with its polyglutamine tract, and the extreme carboxyl-terminal

subdomain (CTD-II) are close to each other by virtue of contacts that each makes with the NTD-II

and CTD-I sub-domains that flank the major cleavage site.

Notably, the overall contact-patterns for the Q23- and Q78-huntingtin were similar, supporting

observations of a generally similar core-stability (Figure 1) and shape (Figures 2 and 3). However,

subtraction of the 38 crosslinks common to both proteins highlight networks of contacts that are rel-

atively specific for either Q23-huntingtin (13 crosslinks) or Q78-huntingtin (8 crosslinks), as depicted

in Figure 4B. To further examine the patterns of the internal interaction depending on its polyglut-

amine length, we also performed XL-MS analysis of Q46-huntingtin. First, the overall contact-pat-

terns of Q46-huntingtin were similar and consistent with the five distinct domains (Figure 4A lower

panel). Compared with those of Q23- and Q78-huntingtin, the unique contacts of Q46 reveal wide-

spread interactions across the entire region of the protein (Figure 4C and D). These unique, largely

mid- and long-range contacts disclose that Q23-huntingtin exhibits more unique interactions of the

NTD-I with the CTD-I, and Q78-huntingtin displays more unique contacts between the CTD-II and

the CTD-I and on occasion with NTD-II. On the other hand, the unique crosslinks of Q46-huntingtin

reveal that CTD-I seems to interact with both NTD-I and CTD-II as if Q46-huntingtin posits an inter-

mediate conformation between Q23- and Q78-huntingtin. (Figure 4E). These observations imply a

subtle but detectable 3-dimensional structural impact of polyglutamine tract length as it increases.

Discussion
We applied a systematic structure-function approach to delineate the features of huntingtin that

conspire with its polyglutamine tract to comprise, in conjunction with some as yet unknown target,

the dominant gain of function mechanism that triggers the pathogenic process in patients with HD.

Our biophysical analyses of an allelic series of native recombinant human huntingtins now provide a

satisfying solution to the mystery of how the amino-terminal polyglutamine tract may be in a position

to modulate huntingtin structure and function. The results of EM and XL-MS analyses provide coher-

ent support for a HEAT/HEAT-like repeat solenoid comprising a major hinge that delimits two large

nearly equal-sized domains that fold such that the ends of each arm are in close proximity and the

whole circumscribes an extensive internal cavity. Other HEAT repeat proteins such as nuclear impor-

tin and exportins have functional protein-protein binding interfaces located at the inner side of the

solenoid structure (Chook and Blobel, 2001; Cingolani et al., 1999). Considering that the size of

huntingtin is much bigger than other HEAT repeat proteins, we can imagine that the HEAT repeat

domains can be folded back to form a closed structure that we have observed in huntingtin, having

functional sites located in the internal cavity. This shape classifies huntingtin as a closed helical sole-

noid, contrasting with the shorter open curvilinear HEAT/HEAT-like repeat solenoids whose native

structures have been solved at high resolution (Cingolani et al., 1999; Groves et al., 1999). Hun-

tingtin’s distinctive shape is predicted to provide both internal and external surface topologies that

may mediate the binding of proteins or nucleic acids, as befitting a mechanical HEAT/HEAT-like

repeat interaction-scaffold (Takano and Gusella, 2002).

Our biophysical analyses also provide basic insights for future higher-resolution studies that will

be needed to more precisely delineate huntingtin structure and its modulation by the polyglutamine

tract. The DSS-XL-MS intramolecular cross-linking data, together with our previously reported lim-

ited proteolysis analysis (Seong et al., 2010) provide a general sense of how rod-like a-helical

HEAT/HEAT-like repeat domains, may fold to delimit the closed shape that we observe. The pattern

of proteolysis, regardless of polyglutamine tract length, revealed a single major cleavage-sensitive

site at ~ residue 1200, strongly predicting a major hinge or pivot that roughly parses the protein into

two nearly equal ‘arms’, a 150 kDa NTD and a 200 kDa CTD. This is supported by the patterns of

short- and mid-range intramolecular DSS-XL-MS delineated intramolecular contacts that are shared
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by the Q23-, Q46- and Q78-huntingtin, which are mainly located within and between each of the

regions that immediately flank this location, implying extensive local internal folding and close prox-

imity of the ‘arms’ around the pivot-point. Multiple short- and mid-range interactions are also

detected at the ends of the NTD-I and CTD-II. These contacts imply internal folding near the ends of

each arm. Limited proteolysis of the amino-terminal domain did reveal an internal cleavage site,

located at ~ residue 500, which is consistent with internal pivot points, along with other internal fold-

ing, that may explain the short- and mid-range contacts detected by XL-MS near the terminus. How-

ever, the carboxyl-terminal domain lacked internal cleavage-accessible sites (Seong et al., 2010),

implying a paucity of accessible hinge-points. Consistent with this, XL-MS fails to detect short- or

mid-range cross-linked lysine residues in the sub-region spanning amino acids ~1800 to ~2300,

except one long distance contact and one short distance contact only in Q46-huntingtin. This sub-

region contains 13 lysine residues. It is possible that these residues are not DSS-accessible although

we did observe DSS modified, but not cross-linked peptides in this region (data not shown), implying

instead a more extended 3D structure that maximizes the surface area available for interaction with

binding-partners, as in other HEAT repeat solenoid proteins (Cingolani et al., 1999; Grinthal et al.,

2010; Groves et al., 1999). By contrast, the adjacent extreme C-terminus does display some inter-

nal short- and mid-range cross-linking interactions that suggest internal folding, though apparently

without a well-defined proteolysis-accessible hinge-point. However, perhaps the most striking find-

ing is the multiple long-range interaction cross-links between the CTD-II and CTD-I or NTD-II, as well

as the long-range contacts of the NTD-I with the CTD-I close to the major hinge-pivot, which places

the ends of each arm in close proximity to each other on the carboxyl-terminal domain arm, above

the major hinge. Of note, EM analysis of the amino-terminal FLAG-antibody-huntingtin complex

strongly suggests accessibility of the extreme N-terminus, and likely the adjacent polyglutamine

tract, at the external surface. Thus, folding of the two main HEAT/HEAT-like domains forms an

extensive internal cavity consistent with the shape that we observe in EM analysis, while providing

an elegant explanation for the conundrum of how the polyglutamine tract located at the end of the

amino-terminal arm may affect change throughout the entire protein.

All of the huntingtins, regardless of polyglutamine tract length, appear to have the same basic

core structure. Our CD data demonstrates that they are all a-helical and have the same pattern of

thermal stability, denaturing over the same temperature range. They have similar shapes in EM anal-

ysis and display mostly shared DSS-XL-MS intramolecular interactions, as discussed above. Neverthe-

less the differences among huntingtins with different polyglutamine lengths (Q23, Q46 and Q78) are

telling. Each displays a unique intramolecular interaction pattern that is most evident in the long-

range contacts detected by DSS-XL-MS analysis. Q23-huntingtin features unique additional contacts

between the end of the amino-terminal domain arm with the carboxyl-terminal arm, near the hinge

region, whereas Q78-huntingtin is characterized by additional interactions of the end region of the

carboxyl-terminal arm with itself near the hinge region, in proximity to the location of the contacts

made by the end region of the amino-terminal arm, or with the amino-terminal arm near the hinge.

It is intriguing that most of these unique normal and mutant huntingtin folding characteristics involve

contacts at the locations on the CTD-I near the major hinge where many other contacts that are

common to both proteins converge. While Q23- and Q78-huntingtin show unique crosslinks skewed

toward either amino-terminal or carboxyl-terminal region respectively, the wide-spread intramolecu-

lar interactions of Q46-huntingtin prompt us to hypothesize that the polyglutamine tract expansion

induces subtle but progressive structural changes in huntingtin. This implies that polyglutamine tract

length may subtly alter the basic structure by influencing the degree to which the end of the car-

boxyl-terminal arm is folded back upon itself onto the region around the major hinge: the longer the

polyglutamine tract, the more are the contacts. This suggests a location of torsion or tension on the

major hinge region that may be exerted by a balance between the positions of the amino-terminal

end region contacts and carboxyl-terminal end region contacts. Consistent with our data, particularly

including long-range interaction affected by the polyglutamine expansion, a few studies previously

implied and reported the global structural and functional influence by the polyglutamine tract size:

the interaction with HAP40 at the extreme carboxyl-terminus of huntingtin was influenced by the

polyglutamine expansion (Pal et al., 2006); the proteolytically cleaved amino-terminal fragment

interacted with the carboxyl-terminal fragment of huntingtin (El-Daher et al., 2015); the proximity

between the first 17 residues and the polyproline region has been shown to change by the polyglut-

amine tract size both in exon 1 fragment and endogenous full-length huntingtin (Caron et al.,
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2013). Perhaps huntingtin binding involves internal surface features that are accessed by a spring-

loaded action of the major hinge-region that entails the end-region contacts of each arm. Importin

HEAT/HEAT-like solenoid proteins undergo substantial conformational change around a hinge-pivot

region upon cargo binding (Cingolani et al., 1999). The impact of the polyglutamine tract on hun-

tingtin basic structural features strongly suggests that it is possible that huntingtin may also undergo

dramatic conformational change upon interaction with its binding partners.

The success of our structural analysis using an allelic series of huntingtins with different polyglut-

amine tract lengths suggests that this approach applied to high-resolution analyses will continue to

yield insights into the huntingtin disease trigger-mechanism.

Materials and methods

Human FLAG-huntingtin insect vector expression clones
All recombinant human FLAG-huntingtin cDNA used in this study were cloned in insect expression

vector systems that were modified as previously described (Seong et al., 2010). Essentially, the orig-

inal polylinker region of pFASTBAC1 vector (Invitrogen, Carlsbad, CA) was swapped with the modi-

fied polylinker containing 1X FLAG, 6X histidine tag, TEV protease recognition site, and several

restriction enzyme sites, including NcoI, XhoI and SacII, using BamHI-KpnI sites. Full-length HTT

cDNA was cloned in two steps. First, the NcoI-XhoI HTT cDNA fragment (Faber et al., 1998;

Seong et al., 2010), encoding huntingtin amino acids 1–171 with varying polyglutamine tracts (Q2,

23, 46, 67, 78), was inserted between the unique NcoI and XhoI restriction sites in the modified

linker. Second, the 9,046 bp XhoI-SacII HTT cDNA fragment from a full huntingtin cDNA clone, pBS-

HD1-3144Q23 (Faber et al., 1998; Seong et al., 2010), encoding huntingtin amino acids 172–3,144

was inserted in frame using XhoI-SacII into the linker region. We confirmed by sequencing that this

XhoI-SacII cDNA differs from the reference cDNA (Genbank accession number L12392) in two loca-

tions, reflecting polymorphisms: Lys1240Arg and the Delta2642 polymorphism (Ambrose et al.,

1994) encoding Glu amino acids 2640–2645 in a run of five rather than six residues. The SacII site in

the linker was unique because the original SacII site in pFASTBac1 vector had been removed before

adding the linker. All final clones, namely pALHDQ2, pALHDQ23, pALHDQ46, pALHDQ67 and

pALHDQ78 encoding full-length human FLAG-Q2-, 23-, 46-, 67- and Q78- huntingtin, respectively,

were verified using full DNA sequence analysis. By convention, the amino acid numbering through-

out the text follows the numbering of L12392 (Q23) regardless of the length of the polyglutamine

tract.

Full-length human huntingtin purification
Purification of FLAG-tag huntingtin was carried out as previously described (Seong et al., 2010).

Briefly, FLAG-tag huntingtin was expressed from pALHD(Q2,23,46,67,78) in the Baculovirus Expres-

sion system (Invitrogen, Carlsbad, CA). The Sf9 cell lysate, obtained by freezing/thawing in buffer A

(50 mM Tris-HCl pH 8.0, 500 mM NaCl, and 5% glycerol) containing complete protease inhibitor

cocktail and PhosSTOP phosphatase inhibitor cocktail (Roche Applied Science, Branford, CT), was

spun at 25,000 xg (2 hr). The supernatant was incubated with M2 anti-FLAG beads (Sigma-Aldrich,

St. Louis, MO) (2 hr, 4˚C). The non-specifically bound proteins were removed by washing extensively

with buffer A. FLAG-huntingtin was eluted with buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 5%

glycerol) containing 0.4 mg/ml FLAG peptide and loaded onto a calibrated Superose 6 10/300 col-

umn (GE Healthcare, Little Chalfont, UK) equilibrated with 50 mM Tris-HCl pH 8.0 and 150 mM

NaCl. FLAG-huntingtin eluted discretely and was estimated to be at least 90% pure by Coomassie

staining. To generate non-FLAG-tagged huntingtin, M2-bead bound huntingtin proteins were resus-

pended in buffer (20 mM HEPES, 150 mM NaCl, 0.5 mM EDTA, 0.25 mM DTT) and incubated with

AcTEV protease (Invitrogen) for 5 hr at 25˚C. The huntingtin proteins without FLAG-tag were

released from the M2-bead and further purified using the same procedure as mentioned above.

Comparative analyses of huntingtin proteins with varying polyglutamine sizes were performed

with an equal amount of each protein, verified by Bio-Rad DC protein assay (Bio-Rad Laboratories

Inc, Hercules, CA) and R-250 Coomassie blue staining of bands on 10% SDS PAGE to control for

potential differences in protein purity and amount. The molarity for all huntingtins was calculated

using a molecular weight of 350 kDa deduced from the human cDNA sequence.
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Immunoblot analysis
50–100 ng of purified protein was run on a 10% Bis-Tris gel and transferred onto nitrocellulose mem-

branes. All antibodies were blocked with 5% milk/TBST. Anti-huntingtin antibodies were used at

dilutions of 1:2000 (mAB2166) and 1:5000 (HF-1). mAb1F8 antibody targeting the polyglutamine

region was used at 1:10,000 dilution. After washing, the blots were probed with anti-Rabbit HRP

secondary antibodies and developed using the ECL system. mAb2166 was purchased from Millipore

(EMD Millipore, Darmstadt, Germany), whereas rabbit polyclonal antibodies HF-1 (against amino

acids 1981–2580) were generated in the laboratory against the fusion protein, as previously reported

(Persichetti et al., 1995; Persichetti et al., 1996). mAb1F8 antibody was also generated in the lab-

oratory as previously reported (Persichetti et al., 1999). Streptavidin-HRP was obtained from Cell

Signaling Technology (Danvers, MA).

Circular dichroism
Purified full-length human huntingtins with different polyglutamine tract lengths (0.2 mg/ml) were

dialyzed against 100 mM phosphate buffer pH 7.2 before CD analysis. Far-UV CD spectra were

obtained by scanning from 260 nm to 185 nm at 25˚C on a 410 AVIV spectropolarimeter (Lakewood,

NJ) using a 1 mm quartz cuvette (Hellma, Plainview, NY) placed in a thermally controlled cell holder.

The machine was equipped with a Peltier junction thermal device and a Thermo Neslab M25 circulat-

ing bath. Spectra were obtained with a wavelength step of 1 nm, an averaging time of 3 s for each

data point and 30 s equilibration time between points. The data were calculated and plotted with

Graphpad Prism software v.4.01. Concentrations of proteins were checked by absorbance at 280 nm

prior to the experiment. The CD data was normalized for concentration to allow for a comparative

analysis, and presented in the units of deg. cm2/dmole. The thermal dependence of the CD was car-

ried out for each protein by heating in 5˚C steps from 25 to 95˚C, with the wavelength set at 222

nm. The deconvolution of the CD curves to estimate secondary structure is not presented, as there

is currently no reference database of HEAT-repeat proteins with known X-ray structure to make an

accurate evaluation.

Electron microscopy
Full-length FLAG-tag huntingtins were applied to ultracentrifugation at 74,329 xg for 16 hr with a 5–

20% sucrose gradient in presence of a 0–0.2% glutaraldehyde gradient. A fraction containing only

the monomeric huntingtin was collected and the protein was then negatively-stained with 2% (w/v)

uranyl acetate for 2 min on 400 mesh carbon grids. Images were collected at 50,000x magnification

with a defocus value of 0.5–1.5 mm on a 4x4K CCD camera (Tietz Vieo and imaging Processing Sys-

tem) attached to a Jeol JEM2100F filed emission gun transmission electron microscope at 200 kV.

Data were processed using EMAN2 program (Thakur et al., 2009). For the huntingtin-FLAG Anti-

body complexes, FLAG-antibody (Sigma-Aldrich, St. Louis, MO) and huntingtin were incubated over-

night at 4˚C and only the antibody bound monomer of huntingtin was isolated as for huntingtin

alone. Total 10,169, 9368, 4714, and 3239 particles were selected for Q23-huntingtin, Q78-hunting-

tin, Q23-huntingtin FLAG-antibody, and Q78-huntingtin FLAG-antibody, respectively. The selected

particles were used for further processing to generate reference-free class-averages. The models

were further iteratively refined with a low-pass-filter (cutoff=0.033). Four refined models were super-

imposed and difference maps between Q23-huntingtin, Q78-huntingtin alone and Q23-huntingtin-,

Q78-huntingtin-Flag antibody complex, were calculated by Chimera (Pettersen et al., 2004),

respectively.

Cross-linking mass spectrometry analysis
In order to prepare the cross-linked huntingtins, Q23-, Q46- or Q78-huntingtin (200 mg, 1.0 mg/ml)

were incubated with 1 mM of DSS-H12/D12 (Creative Molecules Inc.) for 20 min at 37˚C with mild

shaking. The cross-linking reaction was stopped by adding ammonium bicarbonate to a final concen-

tration of 50 mM. Then, each cross-linked huntingtin was separated by ultracentrifugation at

111,541 xg for 16 hr with 10–30% sucrose gradient in 20 mM HEPES and 100 mM NaCl buffer. Only

the monomeric population was collected (Figure 4—figure supplement 1) and evaporated to dry-

ness for XL-MS analysis.
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Approximately 50 mg of cross-linked huntingtins (Q23, Q46 and Q78) forms were separately

redissolved in 75 ml 8 M urea. Potential disulfide bonds were reduced by addition of 5 ml of 50 mM

tris(2-carboxyethyl)phosphine, followed by incubation for 30 min at 37˚C, and free thiol groups were

subsequently alkylated by the addition of 5 ml of a 100 mM iodoacetamide solution and incubation

for 30 min at 23˚C in the dark. For the two-step protease digestion, the samples were first diluted

with 50 ml of 150 mM ammonium bicarbonate solution and 0.6 mg of endoproteinase Lys-C (Wako,

Richmond, VA) was added. Lys-C digestion was carried out for 3 hr at 37˚C. The samples were then

further diluted by addition of 640 ml of 50 mM ammonium bicarbonate solution (final urea concentra-

tion = 1 M) and 1.2 mg of sequencing-grade trypsin (Promega, Madison, WI) was added. Trypsin

digestion proceeded overnight at 37˚C.
Enzymatic digestion was stopped by addition of pure formic acid to 2%, v/v, and samples were

purified by solid-phase extraction (SPE) using 50 mg Sep-Pak tC18 cartridges (Waters, Milford, MA)

using standard procedures. The SPE eluates were evaporated to dryness in a vacuum centrifuge.

Digests of cross-linked huntingtins were fractionated by size exclusion chromatography (SEC) as

described (Leitner et al., 2012; 2014). Three fractions were collected and subjected to LC-MS/MS

analysis on a Thermo Orbitrap Elite mass spectrometer as described previously (Greber et al.,

2014). Cross-linked peptides were identified from the MS/MS spectra using xQuest

(Walzthoeni et al., 2012) with the following settings: Enzyme = trypsin, maximum number of missed

cleavages = 2, cross-linking site = K and mass shifts for the cross-linking reagent DSS-d0/d12. A

sequence database was constructed from an independent search of an unfractionated sample

against the UniProt/SwissProt database with Mascot (Perkins et al., 1999). The final database con-

tained the huntingtin sequence and 13 identified low-level contaminants. xQuest search results were

filtered according to the following criteria: mass error < 4 ppm, minimum peptide length = 6 resi-

dues, delta score < 0.9,% TIC � 0.1, minimum number of bond cleavages per peptides = 4. An

xQuest score cut-off of 17 was selected, corresponding to an estimated false discovery rate of < 5%.

In addition to the cross-links on huntingtin, only one cross-link on a contaminant protein

(HSP7C_DROME) was identified.
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