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Abstract Biological factors that influence the host range and spillover of Ebola virus (EBOV) and

other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report

that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection.

This could be explained by a single amino acid change in the filovirus receptor, NPC1, which

greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in

bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same

residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic

determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host

adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape

from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue

for expansion of filovirus host range in nature.

DOI:10.7554/eLife.11785.001

Introduction
Ebola virus (EBOV) and some of its relatives in the family Filoviridae (filoviruses) cause sporadic out-

breaks of a highly lethal disease. These outbreaks are thought to be initiated by viral spillover from
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an animal reservoir to a highly susceptible accidental host, such as a human or nonhuman primate

(Feldmann and Geisbert, 2011; Leroy et al., 2005; Towner et al., 2009). Recent work suggests

that some filoviruses infect bats in nature, and that these viruses may be distributed more widely

than previously recognized. Very short RNA fragments corresponding to portions of ebolavirus

genomes were detected in several frugivorous bats of the family Pteropodidae (‘Old World fruit

bats’) in both Africa and Asia (Leroy et al., 2005; Jayme et al., 2015), and longer filovirus RNA frag-

ments and near-complete RNA genomes were isolated from insectivorous Schreibers’s long-fingered

bats in Asia and Europe, respectively (Negredo et al., 2011; He et al., 2015). However, despite

considerable efforts, infectious ebolaviruses have never been recovered from bats. By contrast, Mar-

burg (MARV) and Ravn (RAVV) viruses were found to circulate in Egyptian rousettes (Rousettus

aegyptiacus), indicating that these bats are susceptible to MARV/RAVV and encounter them fre-

quently in nature. Egyptian rousettes have been proposed as natural hosts for these viruses

(Amman et al., 2012; Towner et al., 2009). This progress notwithstanding, many key questions

remain. For example, the biological factors that influence filovirus host range and interspecies trans-

mission are still poorly understood, as are the virus-host relationships that determine which species

of bats are susceptible to infection by EBOV and other filoviruses.

Viral entry receptors are key determinants of tissue tropism and host range (Radoshitzky et al.,

2008; Sheahan et al., 2008; Hueffer et al., 2003; Demogines et al., 2013). Niemann-Pick C1

(NPC1), a highly conserved endo/lysosomal protein involved in cellular cholesterol trafficking, was

recently identified to be an essential entry receptor for all known filoviruses (Côté et al., 2011;

Carette et al., 2011; Miller et al., 2012; Ng et al., 2014). In this study, we uncover a pattern of

virus and host species specificity in the filovirus susceptibility of bat cells, which can be explained by

eLife digest Ebola virus and other filoviruses can cause devastating diseases in humans and

other apes. Numerous small outbreaks of Ebola virus disease have occurred in Africa over the past

40 years. However, in 2013–2015, the largest outbreak on record took place in three Western

African nations with no previous history of the disease.

Human outbreaks of Ebola virus disease likely begin when a person encounters an infected wild

animal. Though it remains unclear precisely which animals harbor Ebola virus between outbreaks,

and how they transmit the virus to humans or other primates, recent work showed that some

filoviruses do infect specific types of bats in nature.

Ng, Ndungo, Kaczmarek et al. sought to identify the genes that influence whether or not a type

of bat is susceptible to infection by Ebola virus and other filoviruses. Several filoviruses, including

Ebola virus, were tested to see if they could infect cells that had been collected from four types of

African fruit bats. These bats are all found in areas where outbreaks have occurred in the past.

The tests revealed that a small change in the sequence of the NPC1 gene in some bat cells

greatly reduced their susceptibility to Ebola virus. NPC1 encodes a protein that mammals need in

order to move cholesterol within their cells. In humans, the loss of the protein encoded by NPC1

causes a rare but very severe disease called Niemann-Pick type C disease. This protein also turns out

to be a receptor that the filoviruses must bind to before they can infect the cells. Further analysis

then revealed that NPC1 has evolved rapidly in bats, with changes concentrated in the parts of the

receptor that interact with Ebola virus.

Ng, Ndungo, Kaczmarek et al. went on to discover some changes in the genome sequence of

Ebola virus that could compensate for the changes in the bat’s NPC1 gene. These findings hint at

one way that a filovirus could evolve to better infect a host with receptors that were less than

optimal.

Following on from this work, the next challenges will be to expand the investigation to include

additional types of bats, other types of mammals, and other host genes that could influence filovirus

infection and disease. Further studies could also examine the other side of the arms race – that is,

the evolution of viral genes in bats. However, such studies would be complicated by the lack of viral

sequences that have been collected from bats, because to date most have been isolated from

humans and other primates instead.

DOI:10.7554/eLife.11785.002
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changes in the affinity of the essential interaction between NPC1 and the filovirus entry glycoprotein,

GP. Crucially, genetic analyses reveal that NPC1 is under positive selection in bats, with a strong sig-

nature of selection at precisely the same residue that influences the filovirus-receptor interaction.

Our findings suggest that amino acid sequence changes in NPC1 at these positively-selected sites

represent host adaptations to resist filovirus infection, and reveal one pathway by which a filovirus

could escape from receptor control. In sum, our results support the hypothesis that bats and filovi-

ruses have been engaged in a long-term co-evolutionary relationship, one facet of which is a molecu-

lar arms race between the viral glycoprotein and its entry receptor, NPC1.

Figure 1. African straw-colored fruit bat cells are refractory to EBOV entry and infection. (A) Ranges of African pteropodids Rousettus aegyptiacus

(pink), Hypsignathus monstrosus (blue), Epomops buettikoferi (green) and Eidolon helvum (yellow) (source: IUCN Redlist). (B) Locations of known

filovirus outbreaks. (C) Infection of pteropodid kidney fibroblast cell lines with authentic filoviruses. Means ± standard deviations (n � 3) from two

biological replicates are shown. (D) Infections with recombinant vesicular stomatitis viruses (rVSVs) bearing filovirus glycoproteins. BDBV, Bundibugyo

virus; TAFV, Taı¨ Forest virus; SUDV, Sudan virus; RESTV, Reston virus; LLOV, Lloviu virus. Means ± SD (n = 3–4) from two biological replicates are

shown. In panels C and D, the infectivity of each virus was normalized to that obtained in Vero grivet monkey cells. Means for infection of the different

cell lines by each virus were compared by one-way ANOVA (p-value indicated above each group of bars). Tukey’s post hoc test was used to compare

infection means on Hypsignathus monstrosus vs Eidolon helvum cells (*p < 0.05; ****p < 0.0001; ns, no statistical significance).

DOI: 10.7554/eLife.11785.003

The following figure supplements are available for Figure 1:

Figure supplement 1. Two additional African straw-colored fruit bat cell lines are selectively refractory to EBOV entry and infection.

DOI: 10.7554/eLife.11785.004
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Results

African straw-colored fruit bat cells are selectively refractory to EBOV
infection
We first explored the possibility that there exist virus- and/or bat species-dependent differences in

the cellular host range of filoviruses. Kidney fibroblast cell lines derived from three African pteropo-

dids whose ranges overlap the locations of known African filovirus disease outbreaks (Figure 1A,B)

were exposed to authentic EBOV and MARV (Figure 1C). We observed a large EBOV infection

defect in African straw-colored fruit bat (Eidolon helvum) cells but not in cells from Büttikofer’s epau-

letted fruit bats (Epomops buettikoferi) and Egyptian rousettes. By contrast, cells from bats of all

three species were similarly susceptible to infection by MARV (Figure 1C). Thus, cells from African

straw-colored fruit bats appear to be selectively refractory to EBOV infection.

An NPC1-dependent block to cell entry accounts for the EBOV
infection deficit in African straw-colored fruit bat cells
The viral spike glycoprotein, GP1,2 (herein termed GP) mediates all steps of filovirus entry into the

cytoplasm of host cells (Lee et al., 2008; Miller and Chandran, 2012). Vesicular stomatitis viruses

bearing filovirus GP proteins (VSV pseudotypes) provide a highly validated surrogate system to reca-

pitulate filovirus entry under biosafety level 2 containment (Takada et al., 1997; Jangra et al.,

2015). To assess whether the EBOV infection defect in the African straw-colored fruit bat cells occurs

at the viral entry step, we exposed an expanded panel of kidney fibroblast cell lines from four Afri-

can pteropodids to VSV pseudotypes bearing GP spikes (VSV-GP) from seven filoviruses, including

two non-African viruses, Reston virus (RESTV) and Lloviu virus (LLOV) (Figure 1D). As observed with

authentic EBOV, VSV-EBOV GP infection was substantially reduced in the African straw-colored fruit

bat cells; however, this virus could efficiently infect cells derived from the other pteropodids, includ-

ing those of a proposed EBOV host, the hammer-headed fruit bat (Hypsignathus monstrosus)

(Leroy et al., 2005). Strikingly, only VSVs bearing EBOV GP, and to a lesser degree, those bearing

BDBV and TAFV GP, were deficient at infecting African straw-colored fruit bat fibroblasts. Similar

strong but EBOV-specific reductions in infection were measured in two kidney and lung cell lines

derived from additional African straw-colored fruit bats (Figure 1—figure supplement 1). Therefore,

reduced infection of these bat cells by EBOV reflects a virus- and host species-specific restriction at

the cell entry step.

We surmised that the filovirus receptor, NPC1, might explain the selective resistance of the Afri-

can straw-colored fruit bat cells to EBOV entry and infection. Accordingly, we engineered these cells

to stably express human NPC1 (HsNPC1) (Figure 2—figure supplements 1,2), and then exposed

them to EBOV (Figure 2A). Provision of HsNPC1 substantially enhanced authentic EBOV infection in

the African straw-colored fruit bat cells. By contrast, we found no evidence that either MARV infec-

tion in these cells, or EBOV/MARV infection in permissive Büttikofer’s epauletted fruit bat cells was

limited by receptor availability (Figure 2A). Finally, similar results were obtained with VSVs bearing

filovirus glycoproteins (Figure 2B). Taken together, these findings indicate that EBOV infection is

reduced in African straw-colored fruit bat cells because of a specific molecular incompatibility

between the EBOV glycoprotein and the filovirus entry receptor.

NPC1-dependent cell entry is reduced, but not completely eliminated,
in African straw-colored fruit bat cells
Although EBOV entry and infection in African straw-colored fruit bat cells was consistently reduced

to 0.1–1% relative to that in cells from the other pteropodids, we noted that infection was not

completely blocked. To determine if EBOV could inefficiently infect these bat cells via an NPC1-inde-

pendent mechanism, we used CRISPR/Cas9 genome engineering to derive an African straw-colored

fruit bat cell line fully deficient in NPC1. We identified a single cell clone (Eidolon helvum NPC1–#1

[EhNPC1–#1]) in which all NPC1 alleles bore insertions or deletions (indels) at the expected site

(Figure 3A). These indels were predicted to frameshift the NPC1 open reading frame at amino acid

position 81 (Homo sapiens HsNPC1 numbering), generating truncated polypeptides of 82, 83, and

109 residues that lacked the majority of the 1278-amino acid NPC1 sequence. EhNPC1–#1 cells

were deficient in clearance of lysosomal cholesterol, a well-established cellular function of NPC1
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(Carstea et al., 1997), but could be rescued by ectopic HsNPC1 expression, confirming that NPC1

had indeed been disrupted in these cells (Figure 3B).

We next exposed wild-type (WT) and EhNPC1–#1 fibroblasts to VSVs bearing EBOV or MARV

GP. No detectable infection was obtained with either virus in NPC1-deficient cells, indicating that

filovirus entry into these cells is absolutely dependent on the E. helvum NPC1 ortholog (Figure 3C).

Moreover, EBOV GP-dependent infection in EhNPC1–#1 cells reconstituted with HsNPC1 was dra-

matically enhanced over that observed in WT cells, whereas MARV GP-dependent infection was res-

cued by HsNPC1 expression to a level resembling that in WT cells (Figure 3C). Therefore, the low

levels of EBOV infection in African straw-colored fruit bat cells likely arise from the weak, but non-

zero, activity of EhNPC1 as an EBOV entry receptor.

EhNPC1 is poorly recognized by EBOV GP
Filovirus GPs must directly engage the second luminal domain of NPC1, domain C, during cell entry

(Krishnan et al., 2012; Miller et al., 2012). Accordingly, we postulated that the African straw-col-

ored fruit bat NPC1 ortholog is poorly recognized by EBOV GP. To test that hypothesis, we gener-

ated and sequenced NPC1 cDNAs from all four pteropodid cell lines. Alignment of their domain C

amino acid sequences with that of HsNPC1 revealed a high degree of conservation (>90%), with

identical arrangements of cysteine residues and similar predicted secondary structures suggestive of

a similar overall fold (Figure 3—figure supplement 1).

To examine GP-NPC1 binding, we engineered and expressed soluble forms of the four pteropo-

did NPC1 domain Cs, as described for HsNPC1 (Figure 4—figure supplement 1) (Miller et al.,

2012). A cleaved form of EBOV GP could capture HsNPC1 domain C in an ELISA, as shown previ-

ously (Miller et al., 2012). EBOV GP bound with similar avidity to NPC1 domain Cs derived from

Egyptian rousettes (RaNPC1), hammer-headed fruit bats (HmNPC1) and Büttikofer’s epauletted fruit

bats (EbNPC1), but poorly or not at all to that of African straw-colored fruit bats (EhNPC1)

(Figure 4A). Like the infection defect in African straw-colored fruit bat cells, this receptor binding

defect was selective for EBOV GP, since GPs derived from MARV and the European filovirus, LLOV

(Ng et al., 2014), bound equivalently to all four pteropodid domain Cs (Figure 4A). These findings

Figure 2. The NPC1-dependent entry and infection block in African straw-colored fruit bat cells is selective for

EBOV. (A) Infection of pteropodid kidney fibroblast cell lines stably expressing human NPC1 (HsNPC1) with

authentic filoviruses. (B) Infection of pteropodid kidney fibroblast cell lines with recombinant VSV (rVSVs) bearing

filovirus glycoproteins. IU/ml, infectious units per ml. Means ± SD (n = 3) from a representative experiment are

shown in each panel. Means for infection of cell lines lacking or ectopically expressing HsNPC1 were compared by

unpaired two-tailed Student’s t-test with Welch’s correction (***p< 0.001; ****p< 0.0001; ns, no statistical

significance).

DOI: 10.7554/eLife.11785.005

The following figure supplements are available for Figure 2:

Figure supplement 1. Detection of endogenous NPC1 in pteropodid kidney fibroblast cell lines.

DOI: 10.7554/eLife.11785.006

Figure supplement 2. Ectopic expression of human NPC1 in pteropodid kidney fibroblast cell lines.

DOI: 10.7554/eLife.11785.007
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strongly suggest that African straw-colored fruit bat cells are poorly susceptible to EBOV infection

because EBOV GP poorly recognizes their ortholog of the filovirus receptor, NPC1.

The restriction in EhNPC1-EBOV GP binding can be mapped to a single
amino acid change in EhNPC1
To define the molecular basis of the defect in interaction between EBOV and EhNPC1, we gener-

ated a panel of NPC1 domain C chimeras comprising sequences from permissive RaNPC1 and non-

permissive EhNPC1, and tested them in the GP-binding ELISA. A single chimera, EhNPC1 domain C

containing four EhNPC1fiRaNPC1 amino acid residue changes, regained the capacity to efficiently

recognize EBOV GP (Figure 4B). Further dissection revealed that only a single amino acid change,

F502D, in a central region of NPC1 domain C was needed to effect this complete restoration in GP-

Figure 3. The incompatibility between EBOV GP and Eidolon helvum NPC1 reduces, but does not eliminate, EBOV entry into African straw-colored

fruit bat cells. (A) CRISPR/Cas9 genome engineering was used to knock out the NPC1 gene in African straw-colored fruit bat kidney fibroblasts. WT

NPC1 gene sequence aligned with the sequences of all three alleles in the knockout (NPC1–#1) cell clone. The gRNA target sequence is marked in red,

and the protospacer adjacent motif (PAM) sequence of the gRNA target site is underlined. (B) The capacity of WT and NPC1–#1 cells, and NPC1–#1

cells stably expressing HsNPC1, to clear lysosomal cholesterol was determined by staining with filipin III complex from Streptomyces filipensis, as

described (Carette et al., 2011). Red arrowheads indicate lysosomes with accumulated cholesterol. (C) Infection of African straw-colored fruit bat cell

lines and Vero African grivet monkey cells (control) by VSVs bearing EBOV or MARV GP. Infected (eGFP-positive) cells were visualized by fluorescence

microscopy. Representative fields are shown. Scale bars, 20 mm.

DOI: 10.7554/eLife.11785.008

The following figure supplements are available for Figure 3:

Figure supplement 1. Alignment of bat NPC1 domain C amino acid sequences.

DOI: 10.7554/eLife.11785.009
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NPC1 binding (Figure 4C). The presence of residue F or D at position 502 for all four pteropodid

NPC1 proteins tested was fully concordant with EBOV GP-NPC1 binding and NPC1 receptor func-

tion, and was also true for HsNPC1 (D, permissive; F, restrictive) (Figures 1,2, Figure 3—figure sup-

plement 1). Finally, analysis of NPC1 sequences derived from nine additional wild-caught African

straw-colored fruit bats confirmed that the presence of residue F at position 502 is a conserved fea-

ture of EhNPC1 (Figure 4—figure supplement 2). We conclude that a species-specific defect in

virus-receptor interaction, caused by a single amino acid residue change in EhNPC1 relative to other,

permissive African pteropodid NPC1 orthologs, reduces EBOV infection in African straw-colored

fruit bat cells. Moreover, because residues in the NPC1-binding site are conserved among all avail-

able EBOV GP sequences (Supplementary file 1), this restriction is almost certain to be encountered

by all known EBOV variants and their isolates, including those detected in EBOV disease patients

during the recent epidemics in Western and Middle Africa (Park et al., 2015; Gire et al., 2014;

Tong et al., 2015; Carroll et al., 2015; Kugelman et al., 2015).

Figure 4. African straw-colored fruit bat NPC1 binds poorly to EBOV GP because of a single amino acid change relative to NPC1 from permissive

African pteropodids. (A) Binding of filovirus GP proteins to soluble NPC1 domain C proteins derived from African pteropodids measured by an ELISA.

RaNPC1, Egyptian rousette; EbNPC1, Büttikofer’s epauletted fruit bat; HmNPC1, Hammer-headed bat; EhNPC1, African straw-colored fruit bat. (B) A

chimera between RaNPC1 and EhNPC1 domain Cs fully rescues EBOV GP-EhNPC1 binding. (C) A single amino acid change in EhNPC1 domain C,

F502D, renders it fully competent to recognize EBOV GP. Means ± SD (n = 3) from a representative experiment are shown.

DOI: 10.7554/eLife.11785.010

The following figure supplements are available for Figure 4:

Figure supplement 1. Expression of soluble pteropodid NPC1 domain C proteins.

DOI: 10.7554/eLife.11785.011

Figure supplement 2. Amino acid residue 502 is conserved in NPC1 domain C sequences from additional wild-caught African straw-colored fruit bats.

DOI: 10.7554/eLife.11785.012
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NPC1 has evolved under positive selection in bats
Previous work has led to the hypothesis that bats in equatorial Africa and elsewhere harbor filovi-

ruses (reviewed in [Wahl-Jensen et al., 2013]). These results, together with our findings for virus-

and host species-specific differences in cellular susceptibility to filovirus infection, hinted at the possi-

bility of a deeper co-evolutionary relationship between filoviruses and bats. One hallmark of such a

relationship between a virus and its host is the evolution, under selective pressure to resist infection,

of host genes encoding proviral and antiviral factors. To evaluate whether the NPC1 gene has

evolved under positive selection in bats, we combined the NPC1 sequences obtained in this study

with those of bats from six other species (two non-African pteropodids, two phyllostomids, and two

vespertilionids) compiled through assembly of publicly available RNAseq data (Figure 5, Figure 5—

figure supplement 1, Supplementary files 2–4). We then analyzed this NPC1 multiple alignment

(Supplementary file 4) for codon positions enriched for nonsynonymous substitutions relative to

synonymous substitutions (dN/dS>1), indicative of positive, or diversifying, selection in favor of

amino-acid altering mutations. Using four common tests, we found strong evidence for positive

selection in bat NPC1 (Figure 5—figure supplement 1).

Examination of the specific NPC1 codons with dN/dS>1 shed light on the nature of this selective

pressure—18 codons were enriched but only one codon, position 502, was identified by all four tests

(Figure 5B,C, Figure 5—figure supplement 1). Strikingly, this is the same position in NPC1 at which

Figure 5. NPC1 is under positive selection in bats. (A) Bat species included in the evolutionary analysis of NPC1. Family relationships are indicated at

the right of the sequence alignment. (B) Positions identified with dN/dS>1 are illustrated on a cartoon schematic of NPC1. Sites in blue were identified

in at least one of the four evolutionary analyses performed, and the site in green was identified in all four analyses (Figure 5—figure supplement 1).

(C) The posterior probability that each codon in domain C has dN/dS>1 according to PAML. Position 502 is indicated (p = 0.921), and two clusters of

sites with elevated posterior probabilities are evident.

DOI: 10.7554/eLife.11785.013

The following figure supplements are available for Figure 5:

Figure supplement 1. Four tests for positive selection in bat NPC1.

DOI: 10.7554/eLife.11785.014

Ng et al. eLife 2015;4:e11785. DOI: 10.7554/eLife.11785 8 of 22

Research article Genomics and evolutionary biology Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.11785.013
http://dx.doi.org/10.7554/eLife.11785.014
http://dx.doi.org/10.7554/eLife.11785


a mutation in EhNPC1 reduces receptor binding to EBOV GP and viral infection, a phenotype that

could reasonably produce a selective advantage (Figure 4). Other codons identified in only some of

the tests for dN/dS>1, or at slightly lower significance levels, may still have functional significance.

For example, additional codons were identified in two regions of domain C that may form a part of

the recognition surface for EBOV GP (Figure 5C). Our finding that signatures of accelerated

sequence evolution localize to structural features in NPC1 that are important for virus binding

(domain C and position 502) leads us to postulate that mutations at these sites can protect bats

from infection or severe disease caused by filoviruses and/or other intracellular microbes.

A single mutation at residue 141 in EBOV GP enhances viral entry by
strengthening its interaction with EhNPC1
Co-evolutionary arms races between hosts and pathogens are thought to be driven by cycles of

genetic adaptation and counter-adaptation (Meyerson and Sawyer, 2011; Daugherty and Malik,

2012; Demogines et al., 2013). In this context, we postulated that mutation of residue 502 in

EhNPC1 could be countered by viral mutation. To identify such putative compensatory viral changes,

Figure 6. A sequence polymorphism in the NPC1-binding site of filovirus GP influences GP-EhNPC1 binding and EhNPC1-dependent filovirus entry.

(A) Binding of EBOV GP (WT and mutant V141A) to soluble NPC1 domain C proteins derived from African pteropodids measured by an ELISA.

RaNPC1, Egyptian rousette; EbNPC1, Büttikofer’s epauletted fruit bat; HmNPC1, Hammer-headed fruit bat; EhNPC1, African straw-colored fruit bat. (B)

Infection of African straw-colored fruit bat cells with VSV pseudotypes bearing EBOV GP (WT or V141A). Means ± SD (n = 3–4) from a representative

experiment are shown in each panel. Means for VSV-EBOV GP WT vs V141A infection were compared by unpaired two-tailed Student’s t-test with

Welch’s correction (**p < 0.01). (C) Surface-shaded representation of a single GP1-GP2 monomer (PDB ID: 3CSY (Lee, et al., 2008) highlighting key

residues in the NPC1-binding site (yellow) and residue 141 (red). GP1, blue. GP2, grey. (D) Alignments of GP1 sequences from a panel of filoviruses.

V141, orange; A141, white text on blue shading; other residues divergent from consensus sequence, black text on green shading. (E) Infection of

African pteropodid cells with VSV pseudotypes bearing SUDV GP (WT or A141V). Means ± SD (n = 4) from two biological replicates are shown. Means

for VSV-SUDV GP WT vs A141V infection on each cell line were compared by unpaired two-tailed Student’s t-test with Welch’s correction (*p < 0.05,

**p < 0.01, ****p < 0.0001).

DOI: 10.7554/eLife.11785.015
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we screened a panel of point mutants in the NPC1-binding site of EBOV GP by ELISA for enhanced

binders to EhNPC1 domain C. While no single point mutant bound to EhNPC1 as well as it did to

the other pteropodid NPC1s or to HsNPC1, GP(V141A) partially restored EhNPC1 binding

(Figure 6A). Infection by VSV particles bearing EBOV GP(V141A) was substantially enhanced in Afri-

can straw-colored fruit bat cells, commensurate with this mutant GP’s increased binding affinity for

EhNPC1 (Figure 6B). Examination of the X-ray crystal structure of EBOV GP (Lee et al., 2008)

revealed that V141 is located at the edge of the putative NPC1-binding site, where it forms part of a

raised rim (Figure 6C). The V141A mutation likely creates a more sterically favorable (open) NPC1-

binding site that can overcome the structural mismatch at the GP-NPC1 binding interface

(Figure 6C).

Naturally-occurring sequence variation at residue 141 in GP contributes
to virus- and bat species-specific patterns of cellular susceptibility to
filoviruses
Although no known EBOV isolate contains the V141A mutation, we observed that LLOV and Sudan

virus (SUDV) GP naturally possess A141 (Figure 6D). Because both GP proteins could mediate effi-

cient viral entry into African straw-colored fruit bat cells (Figure 1D) and bind to EhNPC1 (Figure 4A

data not shown for SUDV), we postulated that amino acid changes at position 141 in the GP recep-

tor-binding site broadly influence the capacity of filovirus glycoproteins to utilize EhNPC1 for viral

entry. Accordingly, we exposed pteropodid kidney fibroblasts to VSV pseudotypes bearing SUDV

GP(WT) or SUDV GP(A141V) (Figure 6E). Consistent with our hypothesis, the A141V mutation sub-

stantially reduced SUDV GP-dependent infection in African straw-colored fruit bat cells. Unexpect-

edly, this mutant virus also infected Egyptian rousette cells significantly less well than WT, pointing

to the existence of sequence context-dependent effects that selectively affect SUDV GP(A141V)

binding to RaNPC1 (Figure 6E). These findings provide evidence that GP residue 141 can influence

cellular susceptibility to infection by modulating NPC1 recognition in a manner that depends on the

sequences of both proteins. We speculate that sequence variation at residue 141 and potentially

other positions in the receptor-binding site of filovirus glycoproteins has been shaped by selective

pressure to utilize restrictive NPC1 receptors, with potential consequences for viral host range and

virulence.

Discussion
The ongoing, unprecedented Ebola virus disease epidemic in Western Africa highlights the urgent

need to uncover the biological and ecological factors that underlie the distribution, evolution, and

emergence of filoviruses. While a full answer to this question will require the integration of knowl-

edge across multiple levels of biological organization, from genes to populations to ecosystems,

previous work has shown that studies of molecular interactions between viruses and their host cells

can contribute important pieces to this puzzle. The essential interactions between viruses and their

entry receptors provide particularly cogent examples. A switch in receptor binding from the feline to

the canine ortholog of the transferrin receptor drove the emergence of a new virus, canine parvovi-

rus, and fueled a global disease pandemic in dogs (Allison et al., 2014). Analyses of interactions of

SARS-like coronaviruses with their receptor ACE2 have helped to trace the emergence of SARS coro-

navirus from bats to humans, and its use of civets as intermediate amplifying hosts

(Demogines et al., 2012; Ge et al., 2013; Ren et al., 2008).

In this study, we show that interactions between filoviruses and their entry receptor NPC1 can

influence the cellular susceptibility of bats to infection. This observation is especially striking in light

of previous findings that filoviruses could efficiently infect a broad range of mammalian cells, includ-

ing some derived from bats (Kuhn, 2008; Kuhl et al., 2011). Indeed, this prior work and the results

of experimental infection studies in rodents and bats have led to the hypothesis that interactions

between viral components and those of the host innate and adaptive immune systems constitute the

primary molecular variables influencing filovirus host range in nature (Ebihara et al., 2006;

Volchkov et al., 2000).

Here, we propose that NPC1 is also a genetic determinant of filovirus susceptibility in bats. The

essential nature of NPC1 for infection in cells derived from mammals of multiple species, including

bats (Figure 3), and for infection and in vivo pathogenesis in lethal EBOV infection mouse models
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argues against the existence of alternative filovirus entry receptors (Carette et al., 2011;

Miller et al., 2012; Herbert et al., 2015). Therefore, strong reductions in the affinity of virus-NPC1

recognition are predicted to reduce or eliminate infection in whole bat hosts, as observed in NPC1-

deficient mice (Carette et al., 2011; Herbert et al., 2015), barring viral mutation to enhance this

affinity. It is conceivable that even modest defects or delays in viral multiplication through such a

mechanism could help determine host range by accelerating viral immune clearance, as recently

observed in NPC1-heterozygous mice (Herbert et al., 2015), or by synergizing with other host-virus

barriers. The highly virus- and host species-specific nature of the virus-receptor mismatch uncovered

in this study warrants the determination of more bat NPC1 sequences for inclusion in genetic analy-

ses (see below), and a more comprehensive phenotypic examination of virus-bat pairs. Such studies

maydiscover additional interesting bat-filovirus dynamics, including incompatibilities between filovi-

ruses and NPC1 or other proviral/antiviral host factors. Such discoveries have potential implications

for our understanding of the molecular basis of filovirus infection, virulence, and host range.

We found that a single amino acid change, at residue 502, in the African straw-colored fruit bat

ortholog of NPC1 (EhNPC1) greatly diminished the susceptibility of cells from multiple tissues and

individuals to EBOV. These migratory pteropodids are widely distributed across sub-Saharan Africa

(Figure 1A), roost in large colonies near human settlements, and host other RNA viruses with zoo-

notic potential (Baker et al., 2013; Peel et al., 2013). Moreover, they are extensively hunted for

bushmeat in Western Africa (Kamins et al., 2011), making them ideal candidates to transmit viruses

directly to humans. Unfortunately, there is little information currently available on the susceptibility

of African straw-colored fruit bats to EBOV or their potential role as filovirus hosts. Serologic surveys

have found some evidence for exposure to one or more filovirus; however, neither infectious virus

nor coding-complete or full viral genomes—the gold standards—have been successfully obtained

from these bats, indicating they may only have been exposed to filoviruses, rather than being pro-

ductively infected (reviewed in [Wahl-Jensen et al., 2013; Olival and Hayman, 2014]). While more

extensive wildlife sampling and, if feasible, experimental infections of African straw-colored fruit bats

will be required to clarify this picture, we can extrapolate to several possible scenarios. First, these

bats are fully resistant to EBOV, and therefore cannot be the source of this virus in the 2013–present

EBOV disease outbreak in Western Africa or the 2014 outbreak in Middle Africa. Second, because

African straw-colored fruit bat cells do remain weakly susceptible to EBOV (Figure 3C), it is conceiv-

able that they support EBOV replication at low levels. Indeed, this is one hallmark of a sustaining

viral reservoir. Third, the filoviruses circulating in these bats, whether EBOV or otherwise, bear one

or more GP mutations (e.g., V141A) that circumvent the infection barrier imposed by EhNPC1.

Assessing this last hypothesis and understanding the nature of the selection pressures that drive GP

evolution in vivo will require the isolation of ebolavirus GP sequences from bats—there are none cur-

rently available.

Although these results suggest that African straw-colored fruit bats are selectively refractory to

EBOV, our genetic findings indicate that this is not merely a special relationship between one host

and one virus. Rather, we used a diverse set of bat NPC1 sequences, only one of which is from Afri-

can straw-colored fruit bats, to show that a number of codons, including residue 502, have evolved

under recurrent positive selection. This is a process in which resistant NPC1 variants are ‘serially

replaced’ in response to compensating viral mutations that restore susceptibility. We provide evi-

dence that the filovirus GP interaction surface in the second luminal domain of NPC1, domain C, is a

hotspot for such positive selection (Figure 5). By contrast, the vast majority of codons in mammalian

NPC1 have evolved under purifying selection. We propose that this pattern of selection is the signa-

ture of a long-term genetic conflict between filoviruses and NPC1 in bats, superimposed over the

normal evolutionary signature of a housekeeping gene with a critical role in cellular cholesterol traf-

ficking. Similar signatures of recurrent positive selection have been identified in other housekeeping

genes that encode viral receptors, including the transferrin receptor (Kaelber, et al.,

2012; Demogines et al., 2013) (TfR; receptor for New World arenaviruses [Radoshitzky et al.,

2007], the betaretrovirus murine mammary tumor virus [Ross et al., 2002], and parvoviruses

[Parker et al., 2001]), bat angiotensin-converting enzyme-2 (Demogines et al., 2012) (ACE2; recep-

tor for SARS-like coronaviruses [Li et al., 2003]), and mammalian dipeptidyl peptidase-4 (Cui et al.,

2013) (DPP4; receptor for MERS-like coronaviruses [Raj et al., 2013]). In these cases as well, the pre-

ponderance of positively-selected residues localize to virus-receptor interfaces. Interestingly, the

sequence polymorphism at NPC1 residue 502 did not impair cholesterol clearance from lysosomes
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(Figure 3), and none of the residues under positive selection were found to be mutated in Niemann-

Pick type C disease patients (Runz et al., 2008; Vanier and Millat, 2003). Thus, despite being con-

strained by its housekeeping function, NPC1 appears to retains a sizeable sequence space accessible

to adaptive mutation.

It is tempting to speculate that sequence variation at residue 141 (Figure 6) and potentially other

positions in the receptor-binding site of filovirus glycoproteins represents the other half of the

genetic arms race, shaped by selective pressure to utilize restrictive NPC1 receptors.

Although more data, especially filovirus sequences from bats, are needed, our findings raise the tan-

talizing possibility that filoviruses, including those yet undiscovered, are each adapted to specific bat

hosts, with co-evolved virus-receptor interactions constituting one potential biological barrier to

interspecies viral transmission. Alternatively, it is conceivable that repeated contacts between

unknown (non-bat) reservoir hosts carrying specific filoviruses, and bats of particular species, have

driven positive selection in bat NPC1 to limit infection (and selection of filoviruses with compensat-

ing sequence changes in GP). In this scenario, detection of anti-filovirus antibodies or filovirus

genome-derived oligonucleotides may reflect a type of spillover event from the actual filovirus reser-

voir hosts into bats.

Our hypothesis that NPC1 in bats has been genetically sculpted by filoviruses (and vice versa) pre-

supposes not only a long-term coevolutionary relationship, but also one in which these viruses have

imposed selective pressure on bats to limit or eliminate infection. The discovery of filovirus NP- and

VP35-related endogenous viral elements (EVEs) in bat genomes is consistent with such a long-term

relationship (Taylor et al., 2010; 2011; Katzourakis and Gifford, 2010). To further investigate the

deeper origins of filoviruses in bats, we screened all available bat genomes for filovirus-related EVEs.

We obtained evidence for synteny between a filovirus nucleoprotein (NP)-like EVE in the genome of

the big brown bat (Eptesicus fuscus) and those previously identified in three, more distantly-related,

myotis bats (Figure 7 and Supplementary file 5) (Taylor et al., 2011). This new discovery strongly

suggests that all four EVEs resulted from a single insertion event prior to the divergence of the Myo-

tis and Eptesicus genera, »25 million years ago (Miller-Butterworth et al., 2007). Therefore, bats

may have been exposed to filovirus-like agents for far longer than previously recognized (»13 million

years ago [Taylor et al., 2011]).

Available experimental exposure studies, although limited in number and scope, suggest that

some filoviruses isolated from humans can replicate in bats without causing substantial host pathol-

ogy (e.g., MARV and RAVV in Egyptian rousettes [Amman et al., 2015; Jones et al., 2015;

Paweska et al., 2012]). These observations therefore prompt a key question: what is the origin and

nature of the selective pressure that has driven accelerated NPC1 evolution in bats? Our scant

understanding admits a number of possibilities. First, it is conceivable that some filoviruses do

Figure 7. Orthologous endogenous viral elements (EVEs) derived from filovirus nucleoprotein (NP) genes indicate

that filoviruses have infected bats for at least 25 million years. The time-calibrated phylogeny shown to the left is

based on estimates obtained in Miller-Butterworth et al., 2007. The schematic to the right shows the

orthologous EVEs and empty insertion sites as they occur in each bat genome. Also see Supplementary file 5.

DOI: 10.7554/eLife.11785.016
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indeed replicate in a manner that is deleterious to their specific bat hosts—we may simply not have

identified the viruses and hosts in question. Indeed, the filovirus LLOV, discovered in Schreibers’s

long-fingered bat carcasses in Spain and Portugal, may exemplify this possibility (Negredo et al.,

2011). Alternatively, in some cases (e.g., ebolaviruses and Egyptian rousettes), the human viral iso-

lates used in challenge studies may differ from these bat isolates in important respects due to human

adaptation (human EBOV, BDBV, TAFV, RESTV, and SUDV isolates do not infect Egyptian rousettes

[Jones et al., 2015]). Second, filoviruses may have been more virulent in bats in the past. Thus, the

positive selection signatures observed in bat NPC1, which cannot be accurately dated, may repre-

sent fixed alleles that are the consequence of a selective process driven by ancient filoviruses with

properties distinct from their modern counterparts. Indeed, the lack of virulence observed in some

bats may reflect a détente that was shaped by precisely these historic genetic conflicts between filo-

viruses and bats. Third, we cannot rule out the (unlikely) possibility that the evolution of NPC1 in

bats was driven by an entirely different infectious agent that also utilizes (or utilized) NPC1 to multi-

ply in its hosts. Regardless of the mechanisms that genetically shaped NPC1, we propose that poly-

morphisms in this gene nevertheless impose host barriers that impede the colonization and spread

of present-day filoviruses in bats in Africa and elsewhere. Our findings set the stage for broader

explorations of species-specificity in filovirus interactions with proviral and antiviral host factors, with

an eye to uncovering new molecular arms races between filoviruses and bats and new genetic deter-

minants of filovirus host range and host switching.

Materials and methods

Bat cells and tissues
The following immortalized pteropodid fibroblast cell lines were used: RoNi/7.1 (kidney; Rousettus

aegyptiacus), HypNi/1.1 (kidney; Hypsignathus monstrosus) (Kuhl et al., 2011), EpoNi/22.1 (kidney;

Epomops buettikoferi) (Kuhl et al., 2011), EidNi/41.2, EidNi/41.3 (kidney; Eidolon helvum), and

EidLu/20 (lung; Eidolon helvum) (Biesold et al., 2011). The species origin of each cell line was con-

firmed in the publication in which it was first described (Kuhl et al., 2011).

Bat cell populations stably expressing human NPC1 (HsNPC1) were generated as described previ-

ously (Carette et al., 2011). Briefly, subconfluent monolayers of cells were transduced with a retrovi-

ral vector expressing HsNPC1 modified at the C–terminus with a triple flag epitope tag. Transduced

cells were selected by puromycin treatment (10 mg/mL).

Licenses for capturing and export of bats, as well as ethical review and clearances of animal han-

dling procedures were obtained from the Ghana Forestry Commission of the Ministry of Food and

Agriculture. Bat organ samples were obtained as described (Drexler et al., 2012). Bats were caught,

anesthetised with ketamine/xylazine and exsanguinated by heart puncture. Carcasses were trans-

ported on ice to a nearby laboratory facility, and organs were dissected and immediately snap-fro-

zen for long-term storage. Animals were typed morphologically and genetically as described

previously (Kuhl et al., 2011).

Other cell lines
Vero African grivet kidney cells and 293T human embryonic kidney fibroblast cells were obtained

from ATCC. Cell lines were maintained in Dulbecco’s modified Eagle medium (DMEM) (Life Technol-

ogies, Grand Island, NY) and supplemented with 10% fetal bovine serum (Atlanta Biologicals, Flow-

ery Branch, GA), and 1% penicillin-streptomycin (Life Technologies). All cell lines were maintained in

a humidified 37˚C, 5% CO2 incubator.

CRISPR/Cas9-mediated knockout of NPC1 ortholog in African straw-
colored fruit bat cells
We knocked out the NPC1 gene in the EidNi/41.3 cell line by CRISPR-Cas9-mediated genome edit-

ing as described previously (Mali et al., 2013). A CRISPR guide RNA (gRNA) sequence to target 5’-

GTTGTGATGTTCAGCAGCTTCGG-3’ in the E. helvum NPC1 mRNA was cloned into the gRNA clon-

ing vector (Addgene Plasmid #41824). EidNi/41.3 cells were co-transfected with plasmid encoding

human codon-optimized endonuclease Cas9 (hCas9, Addgene Plasmid #41815), gRNA cloning vec-

tor encoding the E. helvum NPC1-specific gRNA, a monomeric red fluorescent protein (mRFP1)
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expression plasmid (to monitor transfection efficiency), and pMX-IRES-Blasti (confers blasticidin resis-

tance to transfected cells) using Lipofectamine 2000 (Life Technologies). At 24 hr post-transfection,

transfected cells were selected with 50 mg/ml of blasticidin for 24 hr and then allowed to recover in

the absence of the selection agent.

Total RNA was isolated from surviving cells with the RNAeasy Mini kit (Qiagen, Valencia, CA) as

per the manufacturer’s directions. The E helvum NPC1 mRNA sequence flanking the gRNA target

site was amplified with the One-Step RT-PCR kit (Qiagen) and the following primers: Forward: 5’-AT-

TCTGGACTACCAAAATCTTTGCC-3’, and Reverse: 5’- ACATGGCATCCAAGCCCAAG-3’. Thermo-

cycling conditions used for the RT-PCR were: 50˚C for 30 min (reverse transcription), followed by

95˚C for 15 min (initial PCR activation), then 30 cycles of 94˚C for 30 sec, 60˚C for 30 sec, 72˚C for

1 min, then a final extension of 72˚C for 10 min. Amplified PCR products were tested for indels at

the target site with the SURVEYOR mutation detection kit for standard gel electrophoresis (Transge-

nomic, Omaha, NE), as per the manufacturer’s instructions. Once indels were confirmed, amplified

PCR products from single cell clones were cloned into a TOPO-TA vector (Life Technologies). Multi-

ple clones for each single cell population were sequenced to confirm disruption of NPC1 alleles.

VSVs and infections
Recombinant vesicular stomatitis Indiana viruses (VSVs) expressing eGFP, and EBOV, MARV, or

LLOV GP in place of VSV G have been described previously (Miller et al., 2012; Wong et al., 2010;

Ng et al., 2014). VSV pseudotypes bearing glycoproteins derived from VSV, EBOV, BDBV, TAFV,

SUDV, and MARV were generated essentially as described previously (Takada et al., 1997). VSV par-

ticles containing GPCL were generated by incubating rVSV-GP-EBOV with thermolysin (200 mg/mL)

(Sigma-Aldrich, St. Louis, MO) for 1 hr at 37˚C. The protease was inactivated by addition of phos-

phoramidon (1 mM) (Sigma-Aldrich), and reaction mixtures were used immediately. Infectivities of

VSV pseudotypes were measured by manual counting of eGFP-positive cells using fluorescence

microscopy at 16–24 hr post-infection, as described (Chandran et al., 2005). Infectivities of rVSVs

were measured in a similar manner, except that NH4Cl (20 mM) was added to infected cell cultures

at 1–2 hr post-infection to block viral spread, and individual eGFP-positive cells were manually

counted at 12–14 hr post-infection.

Authentic filoviruses and infections
The wild-type filoviruses Ebola virus/H.sapiens-tc/COD/1995/Kikwit-9510621 (EBOV/Kik-9510621;

“EBOV-Zaire 1995”) and Marburg virus/H.sapiens-tc/DEU/1967/Hesse-Ci67 (MARV/Ci67) used in

this study were described previously (Jahrling et al., 1999; Swenson et al., 2008). Cells were

exposed to virus at an MOI of 1 pfu/cell (Figure 1C) or 3 pfu/cell (Figure 2A) for 1 hr. Viral inoculum

was then removed, and fresh culture media was added. At 48 hr (Figure 2A) or 72 hr (Figure 1C)

post-infection, cells were fixed with formalin and blocked with 1% bovine serum albumin (BSA).

EBOV-infected cells and uninfected controls were incubated with EBOV GP-specific monoclonal anti-

body KZ52 (Maruyama et al., 1999). MARV-infected cells and uninfected controls were incubated

with MARV GP-specific monoclonal antibody 9G4 (Swenson et al., 2004). Cells were washed with

PBS prior to incubation with either goat anti-mouse IgG or goat anti-human IgG conjugated to Alexa

488. Cells were counterstained with Hoechst stain (Invitrogen, Carlsbad, CA), washed with phos-

phate-buffered saline (PBS), and stored at 4˚C. Infected cells were quantitated by fluorescence

microscopy and automated image analysis. Images were acquired at 20 fields/well with a 20� objec-

tive lens on an Operetta high content device (PerkinElmer, Waltham, NY). Operetta images were

analyzed with a customized scheme built from image analysis functions available in Harmony

software.

NPC1 sequences and evolutionary analyses
From bats of four species (Hypsignathus monstrosus, Eidolon helvum, Epomops buettikoferi, and,

Rousettus aegyptiacus), mRNA was collected from cell lines (or spleen samples for additional Eido-

lon helvum NPC1 domain C sequences; Figure 4—figure supplement 2), cDNA libraries were con-

structed, and the NPC1 transcript was sequenced (see Supplementary file 3 for primers). Using

available RNAseq read data (Supplementary file 2), we assembled bat transcriptomes and identified

NPC1 sequences in bats of six additional species (Myotis brandtii, Artibeus jamaicensis, Cynopterus
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sphinx, Myotis lucifugus, Pteropus alecto, and Desmodus rotundus). Transcriptome data were

cleaned with Trimmomatic (Bolger et al., 2014) and assembled using Trinity (Grabherr et al., 2011)

and Trans-ABySS (Robertson et al., 2010). The 10-species NPC1 alignment (Supplementary file 4)

was analyzed for positive selection using the M8 codon model in the codeml package in PAML

(Yang et al., 2000), REL, and FEL (Pond and Frost, 2005), and MEME (Murrell et al., 2012) avail-

able at http://datamonkey.org/ (Delport et al., 2010). All evolutionary analyses were done using

both the NPC1 gene tree and a species tree (Figure 5—figure supplement 1). The species tree rep-

resents the accepted relationships amongst the bats analyzed (Agnarsson et al., 2011;

Almeida et al., 2011).

Genome screening in silico
To identify orthologous filovirus-related EVE insertions, we screened bat genomes in silico for EVEs.

A representative set of filovirus protein sequences was obtained from GenBank, supplemented by

the putative protein sequences of previously identified filovirus EVEs (Taylor et al., 2014;

Taylor et al., 2011; Taylor et al., 2010; Katzourakis and Gifford, 2010). These sequences were

used as ‘probes’ in tBLASTn screens of whole genome shotgun (WGS) sequence data derived from

bats of ten species (Eidolon helvum, Eptesicus fuscus, Myotis brandtii, Myotis davidii, Myotis lucifu-

gus, Pteropus alecto, Pteropus vampyrus, Megaderma lyra, Pteronotus parnellii, and Rhinolophus

ferrumequinum). Statistically significant matches to filovirus probes were extracted, conceptually

translated, and aligned with homologous filovirus proteins. Orthologous flanking sequences were

identified by BLAST comparison of EVE-containing contigs. An alignment of the identified EVEs,

along with the flanking information in the relevant bat genomes, is shown in Supplementary file 5.

Generation of soluble NPC1 domain C proteins
A construct engineered to encode HsNPC1 domain C (residues 372–622) flanked by sequences that

form a stable, antiparallel coiled coil, and fused to a preprotrypsin signal sequence with flag and

hexahistidine tags at its N–terminus has been described (Deffieu and Pfeffer, 2011; Miller et al.,

2012). Similar constructs bearing bat NPC1 domain Cs were generated by replacing the human

domain C sequence with a sequence encoding domain C from each bat NPC1 ortholog. Soluble

domain C was expressed in human 293-Freestyle cells (Invitrogen) and purified from supernatants by

nickel affinity chromatography, as described previously (Miller et al., 2012). Alternatively, cell super-

natants containing soluble domain C were used directly for GP-NPC1 binding ELISAs following cali-

bration for domain C concentration (see below).

GP-NPC1 domain C binding ELISAs
NPC1 domain C concentrations used in the ELISAs were normalized as follows. Proteins were

resolved by SDS-PAGE followed by immunoblotting with an anti-flag antibody followed by an anti-

mouse Alexa-680 secondary antibody (Invitrogen). Blots were visualized using the LI-COR Odyssey

Imager, and the domain C band was quantified using the LI-COR Image Studio package (LI-COR Bio-

sciences, Lincoln, NE).

Thermolysin-cleaved VSV-EBOV GP particles were captured onto high-binding 96-well ELISA

plates (Corning, Corning, NY) using KZ52, a conformation-specific anti-EBOV GP monoclonal anti-

body. Plates were blocked with PBS containing 3% BSA, and serial dilutions of NPC1 domain C pro-

tein were then added. Bound domain C was detected with an anti-flag antibody conjugated to

horseradish peroxidase (Sigma-Aldrich) and Ultra-TMB substrate (ThermoFisher, Grand Island, NY).

All binding steps were carried out at 37˚C for 1 hr or at 4˚C overnight. ELISAs with VSVs bearing

LLOV and MARV GP were performed as above, but with the following modifications. VSV-LLOV GP

particles were cleaved by incubation with a reduced concentration of thermolysin (12.5 mg/mL, 37˚C,
1 hr) due to its enhanced protease sensitivity relative to ebolavirus GPs, as described (Ng et al.,

2014). The viral envelope was then labeled with biotin using a function-spacer-lipid construct (FSL-

biotin) (Sigma-Aldrich), as described previously (Ng et al., 2014). Biotinylated viral particles were

captured onto streptavidin-coated ELISA plates (0.65 mg/mL). The remainder of the steps in the

ELISA were performed as described above for VSV-EBOV GP. VSV-MARV GP particles were cleaved

by incubation with trypsin (150 mg/mL, 37˚C, 5 min; Sigma-Aldrich), modified as above using FSL-

biotin, and captured onto streptavidin-coated magnetic beads (Spherotech, Lake Forest, IL). Beads

Ng et al. eLife 2015;4:e11785. DOI: 10.7554/eLife.11785 15 of 22

Research article Genomics and evolutionary biology Microbiology and infectious disease

http://datamonkey.org/
http://dx.doi.org/10.7554/eLife.11785


were then aliquotted into a 96-well round-bottomed plate for the remaining ELISA steps. PBS con-

taining 5% nonfat dry milk was used for blocking and washing steps. Binding curves were generated

by nonlinear regression analysis using Prism (4-parameter logistic equation; GraphPad Software, La

Jolla, CA).

SDS-Page and immunoblotting
To detect NPC1 in primate or bat kidney fibroblasts, whole cell lysates were prepared as previously

described (Miller et al., 2012). Briefly, cells were washed with PBS and lysed in NTE-CHAPS buffer

(10mM Tris [pH 7.5], 140mM NaCl, 1mM EDTA, 0.5% vol/vol 3-[(3-cholamidopropyl)dimethylammo-

nio]-1- propanesulfonate) (Sigma-Aldrich) containing a protease inhibitor cocktail (Roche,

Basel, Switzerland), and placed on ice for 30 min. To assist in cell lysis, cell suspensions were vor-

texed every 10 min, and then placed on ice for 30 min. Samples were spun at 14,000 �g for 10 min,

and supernatants harvested for western blot. In some experiments, proteins were deglycosylated

with protein N–glycosidase F (New England Biolabs, Ipswich, MA) according to the manufacturer’s

instructions.

Proteins were resolved in 8% sodium dodecyl sulfate (SDS)-polyacrylamide gels and transferred

to nitrocellulose membranes. Endogenous NPC1 was detected using an anti-Niemann Pick C1 poly-

clonal antibody (1:1,000 dilution; ab36983, Abcam, Cambridge, MA), followed by incubation with a

donkey anti-rabbit antibody conjugated to horseradish peroxidase (1:5,000 dilution, Santa Cruz Bio-

technology, Dallas, TX). Endogenous cyclin-dependent kinase 4 (CDK4; loading control) was

detected with a rabbit polyclonal antibody (1:1,000 dilution; sc-260, Santa Cruz Biotechnology).

Ectopic expression of HsNPC1-flag was detected with an anti-flag antibody conjugated to horserad-

ish peroxidase (Sigma-Aldrich). Bands were visualized by incubation with an enhanced chemilumines-

cence reagent (ThermoFisher) followed by exposure to X-ray film.

Fluorescence microscopy and image analysis
In Figure 3, cells were visualized using an inverted fluorescence microscope under illumination with

a 63X high-numerical aperture oil objective (Figure 3B) or a 10X air objective (Figure 3C). Images

were captured with an Axiocam MRm CCD camera using AxioVision software (Zeiss USA, Thorn-

wood, NY), and imported into Photoshop (Adobe Systems, San Jose, CA) for processing. Images

were cropped, inverted (Figure 3B), and subjected to linear adjustment for overall brightness and

contrast using the Levels tool. Developed X-ray films were digitized with a flatbed scanner and proc-

essed in Photoshop as described above.

Statistical analysis
Statistical comparison of means among multiple independent groups was carried out by one-way

analysis of variance (ANOVA) with Tukey’s post hoc test for multiple comparisons. In some figures

(see Figure Legends), an unpaired two-tailed Student’s t-test with Welch’s correction for unequal

variances (Ruxton, 2006) was used for pairwise comparison of independent groups. All statistical

analyses were performed in GraphPad Prism.
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Drosten C. 2012. Bats host major mammalian paramyxoviruses. Nature Communications 3:796. doi: 10.1038/
ncomms1796

Ebihara H, Takada A, Kobasa D, Jones S, Neumann G, Theriault S, Bray M, Feldmann H, Kawaoka Y. 2006.
Molecular determinants of Ebola virus virulence in mice. PLoS Pathogens 2:e73. doi: 10.1371/journal.ppat.
0020073

Feldmann H, Geisbert TW. 2011. Ebola haemorrhagic fever. Lancet 377:849–862. doi: 10.1016/S0140-6736(10)
60667-8

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM,
Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of
a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535–538. doi: 10.1038/nature12711

Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, Jalloh S, Momoh M, Fullah M, Dudas G, Wohl S,
Moses LM, Yozwiak NL, Winnicki S, Matranga CB, Malboeuf CM, Qu J, Gladden AD, Schaffner SF, Yang X,
Jiang PP, Nekoui M, Colubri A, Coomber MR, Fonnie M, Moigboi A, Gbakie M, Kamara FK, Tucker V, Konuwa
E, Saffa S, Sellu J, Jalloh AA, Kovoma A, Koninga J, Mustapha I, Kargbo K, Foday M, Yillah M, Kanneh F,
Robert W, Massally JL, Chapman SB, Bochicchio J, Murphy C, Nusbaum C, Young S, Birren BW, Grant DS,
Scheiffelin JS, Lander ES, Happi C, Gevao SM, Gnirke A, Rambaut A, Garry RF, Khan SH, Sabeti PC. 2014.
Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345:
1369–1372. doi: 10.1126/science.1259657

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q,
Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K,
Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-seq data without a reference
genome. Nature Biotechnology 29:644–652. doi: 10.1038/nbt.1883

He B, Feng Y, Zhang H, Xu L, Yang W, Zhang Y, Li X, Tu C. 2015. Filovirus RNA in fruit bats, China. Emerging
Infectious Diseases 21:1675–1677. doi: 10.3201/eid2109.150260

Herbert AS, Davidson C, Kuehne AI, Bakken R, Braigen SZ, Gunn KE, Whelan SP, Brummelkamp TR, Twenhafel
NA, Chandran K, Walkley SU, Dye JM. 2015. Niemann-Pick C1 is essential for ebolavirus replication and
pathogenesis in vivo. mBio 6:e00565–15. doi: 10.1128/mBio.00565-15

Hueffer K, Parker JS, Weichert WS, Geisel RE, Sgro JY, Parrish CR. 2003. The natural host range shift and
subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin
receptor. Journal of Virology 77:1718–1726.

Ng et al. eLife 2015;4:e11785. DOI: 10.7554/eLife.11785 19 of 22

Research article Genomics and evolutionary biology Microbiology and infectious disease

http://dx.doi.org/10.1038/nature14594
http://dx.doi.org/10.1126/science.277.5323.228
http://dx.doi.org/10.1126/science.1110656
http://dx.doi.org/10.1186/1743-422X-10-304
http://dx.doi.org/10.1038/nature10380
http://dx.doi.org/10.1146/annurev-genet-110711-155522
http://dx.doi.org/10.1073/pnas.1110439108
http://dx.doi.org/10.1093/bioinformatics/btq429
http://dx.doi.org/10.1371/journal.pbio.1001571
http://dx.doi.org/10.1128/JVI.00311-12
http://dx.doi.org/10.1038/ncomms1796
http://dx.doi.org/10.1038/ncomms1796
http://dx.doi.org/10.1371/journal.ppat.0020073
http://dx.doi.org/10.1371/journal.ppat.0020073
http://dx.doi.org/10.1016/S0140-6736(10)60667-8
http://dx.doi.org/10.1016/S0140-6736(10)60667-8
http://dx.doi.org/10.1038/nature12711
http://dx.doi.org/10.1126/science.1259657
http://dx.doi.org/10.1038/nbt.1883
http://dx.doi.org/10.3201/eid2109.150260
http://dx.doi.org/10.1128/mBio.00565-15
http://dx.doi.org/10.7554/eLife.11785


Jahrling PB, Geisbert TW, Geisbert JB, Swearengen JR, Bray M, Jaax NK, Huggins JW, LeDuc JW, Peters CJ.
1999. Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental Ebola
virus infections. The Journal of Infectious Diseases 179 Suppl 1:S224–234. doi: 10.1086/514310

Jangra RK, Mittler E, Chandran K. 2015. Filovirus entry into susceptible cells.In: Whitt M. A, Pattnaik A. K eds
Biology and Pathogenesis of Rhabdo- and Filoviruses. Singapore: World Scientific Publishing Co. p; 487–514.

Jayme SI, Field HE, de Jong C, Olival KJ, Marsh G, Tagtag AM, Hughes T, Bucad AC, Barr J, Azul RR, Retes LM,
Foord A, Yu M, Cruz MS, Santos IJ, Lim TM, Benigno CC, Epstein JH, Wang LF, Daszak P, Newman SH. 2015.
Molecular evidence of Ebola Reston virus infection in Philippine bats. Virology Journal 12:107. doi: 10.1186/
s12985-015-0331-3

Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol ST, Towner JS. 2015. Experimental inoculation of
Egyptian rousette bats (Rousettus aegyptiacus) with viruses of the ebolavirus and marburgvirus genera. Viruses
7:3420–3442. doi: 10.3390/v7072779

Kaelber JT, Demogines A, Harbison CE, Allison AB, Goodman LB, Ortega AN, Sawyer SL, Parrish CR, Villarreal L.
2012. Evolutionary reconstructions of the transferrin receptor of caniforms supports canine parvovirus being a
re-emerged and not a novel pathogen in dogs. PLoS Pathogens 8:e1002666. doi: 10.1371/journal.ppat.
1002666

Kamins AO, Restif O, Ntiamoa-Baidu Y, Suu-Ire R, Hayman DT, Cunningham AA, Wood JL, Rowcliffe JM. 2011.
Uncovering the fruit bat bushmeat commodity chain and the true extent of fruit bat hunting in Ghana, West
Africa. Biological Conservation 144:3000–3008. doi: 10.1016/j.biocon.2011.09.003

Katzourakis A, Gifford RJ. 2010. Endogenous viral elements in animal genomes. PLoS Genetics 6:e1001191. doi:
10.1371/journal.pgen.1001191

Krishnan A, Miller EH, Herbert AS, Ng M, Ndungo E, Whelan SP, Dye JM, Chandran K. 2012. Niemann-Pick C1
(NPC1)/NPC1-like1 chimeras define sequences critical for NPC1’s function as a flovirus entry receptor. Viruses
4:2471–2484. doi: 10.3390/v4112471

Kugelman JR, Wiley MR, Mate S, Ladner JT, Beitzel B, Fakoli L, Taweh F, Prieto K, Diclaro JW, Minogue T,
Schoepp RJ, Schaecher KE, Pettitt J, Bateman S, Fair J, Kuhn JH, Hensley L, Park DJ, Sabeti PC, Sanchez-
Lockhart M, Bolay FK, Palacios G.. 2015. Monitoring of Ebola virus Makona evolution through establishment of
advanced genomic capability in Liberia. Emerging Infectious Diseases 21:1135–1143. doi: 10.3201/eid2107.
150522

Kuhn JH. 2008. Filoviruses. a compendium of 40 years of epidemiological, clinical, and laboratory studies.
Archives of Virology. Supplementum 20:13–360.
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