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Abstract Activity in prefrontal cortex (PFC) has been richly described using economic models of

choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing

dynamic neural processes has proven challenging due to the problem of indexing the internal state

of PFC and its trial-by-trial variation. Using primate neurophysiology and human

magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple

simultaneously recorded PFC subregions. This index can explain the origins of neural

representations of economic variables in PFC. It describes the relationship between neural

dynamics and behaviour in both human and monkey PFC, directly bridging between human

neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable

interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding

cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of

choice, providing formal links to mechanistic dynamical accounts of decision-making.

DOI: 10.7554/eLife.11945.001

Introduction
Correlates of decision variables are routinely found in prefrontal cortex (PFC) during value-guided

decision making (Clithero and Rangel, 2014; Kennerley and Walton, 2011). They have been richly

described using static, economic models of choice (Glimcher and Fehr, 2014). Neuroeconomic

accounts explain firing rates of single neurons or human neuroimaging data in terms of experimental

variables that motivate choice behaviour. These include the magnitude or likelihood of available

reward, and the costs involved in obtaining those rewards. By forming neural representations of

such quantities, it is argued that the brain can use these representations to guide selection of the

most valuable alternative. Our present understanding of economic decision formation has been

founded upon careful study of neural representations of value and how they differ across PFC subre-

gions (Glimcher and Fehr, 2014; Rushworth et al., 2012; Rangel and Hare, 2010).

However, an alternative perspective on the origins of neural representations during decision mak-

ing stems from choice models from mathematical psychology (Busemeyer and Townsend, 1993).

Such models seek to explain decisions in terms of their temporal evolution or dynamics. Whilst origi-

nally accounting for temporally varying features of behaviour, such as reaction times and eye gaze

(Busemeyer and Townsend, 1993; Ratcliff and Rouder, 1998; Krajbich et al., 2010), they have

also successfully captured temporally varying features of neural activity, most notably in the lateral
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intraparietal cortex (LIP) during perceptual choice (Shadlen and Newsome, 2001; Gold and Shad-

len, 2007). These psychological models can also be related to other dynamical models

(Bogacz et al., 2006) such as nonlinear attractor network models firmly rooted in neurobiology

(Wang, 2002). The common feature of both psychological and neurobiological accounts is that they

focus on the temporal evolution of a decision signal across time, rather than the strength with which

it represents decision variables at a particular fixed point in time.

Contrasting the two perspectives, it becomes apparent that even if neuronal activity underwent

the exact same physiological process on different trials (such as a ramp-to-threshold), it might never-

theless appear to represent certain economic features of a decision. Put simply, as the decision

unfolds, neural activity will be higher on trials that ramp quickly than on those that ramp slowly. It

will therefore correlate with any variable that affects the decision speed, and this effect will appear

most prominent at timepoints in the trial when the ramping process, or rate of change, is maximal.

Even in more complex dynamical situations, it is easy to see how economic variables that predict the

rate of change would appear to be represented in neural activity if analysed without knowledge of

the underlying dynamics. This might particularly be true of the value of the chosen item (‘chosen

value’), which strongly affects behavioural reaction times in economic choice tasks.

This should then influence how we interpret the meaning of such activity (Hunt, 2014; O’Doh-

erty, 2014). The neuroeconomic perspective often labels chosen value representations as a ‘post-

decision’ signal, arguing that chosen value signals do not reflect the decision competition itself but

instead the outcome of the comparison process (Cai and Padoa-Schioppa, 2012; Blanchard and

Hayden, 2014). One interpretation of such representations is that they are needed for subsequent

computation of a reward prediction error (Rangel and Hare, 2010). Yet the dynamical perspective

proposes that they may in fact originate as a consequence of time evolving decision processes.

Rather than casting a chosen value representation as signaling ‘pre-decision’ or ‘post-decision’

eLife digest In 1848, a railroad worker named Phineas Gage suffered an accident that was to

secure him a place in neuroscience lore. While constructing a new railway line, a mistimed explosion

propelled an iron bar into the base of his skull, where it passed behind his left eye before exiting

through the top of his head. Gage survived the accident, but those who knew him reported

significant changes in his personality and behaviour.

Gage’s ability to make decisions was particularly impaired by his injury. Decision-making involves

weighing up the costs and benefits associated with alternative courses of action. It entails looking

into the future to decide whether an anticipated reward will justify the effort or expense necessary

to obtain it. This process is dependent on a region of the brain called the prefrontal cortex, the area

that sustained the most damage in Phineas Gage.

While many studies have shown correlations between activity in particular parts of prefrontal

cortex and the outcome of decisions, little is known about how this activity evolves over time as a

decision is made. To explore this process, Hunt et al. trained macaque monkeys to choose between

pairs of images that were associated with specific rewards (quantities of fruit juice) and costs (either

amounts of work or fixed delays).

Electrode recordings revealed changes in prefrontal activity that varied over time as the monkeys

deliberated over each pair of images, choosing for example between a large reward after a long

delay versus a smaller reward immediately. This activity was consistent with a mathematical model of

decision-making, which also explains data from brain imaging experiments in humans. This provides

an important link between human data and electrode recordings in animals.

However, some of the patterns of activity observed in both macaques and humans appeared to

reflect the speed at which decisions were made, rather than the outcome of the decisions

themselves. By extracting information about decision speed on each decision from each region, it

was shown that communication between regions of prefrontal cortex changes when choices are

between two different amounts of work, as opposed to two different delays. Further experiments

are needed to explore this phenomenon and to determine how other brain regions interact with the

prefrontal cortex to support the decision-making process.

DOI: 10.7554/eLife.11945.002
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variables to downstream brain areas, it argues that such correlates inevitably emerge as a decision is

made. In its most extreme form, this hypothesis might contend that chosen value signals would be

fully accounted for by variation in underlying decision rates.

To assess this proposal more carefully, it becomes critical to index how neural dynamics unfold

on individual trials. In PFC, tackling this problem provides unique challenges. Several recent studies

have recovered single-trial dynamical information in structures close to motor output, based upon

neuronal spiking data (Thura and Cisek, 2014; Kaufman et al., 2015; Murakami et al., 2014;

Bollimunta et al., 2012; Kiani et al., 2014; Carnevale et al., 2015). Yet the distance of PFC from

either sensory input or motor output produces neural activity that is poorly aligned with simple fea-

tures of the experimental task (Rigotti et al., 2013). Attempts to understand PFC activity should

therefore extract its dynamical state based on neural information alone, rather than first sorting spike

trains by motor output or experimental variables as is common in other approaches. It is also unclear

whether neuronal firing rates are in fact the most reliable source of single-trial information. The eso-

tericism of PFC neuronal responses is compounded by a high degree of stochasticity in neuronal

spike trains, delivering statistical challenges to obtaining single-trial information (Churchland et al.,

2007; Park et al., 2014). Current techniques sometimes overcome this problem by examining tens

or hundreds of simultaneously recorded single neurons (Churchland et al., 2007). Whilst this can be

fruitful, such data is rarely available in humans, where the contribution of PFC to value-guided choice

is most critical.

In the present study, we therefore sought an alternative index of single-trial neural dynamics that

overcame these limitations. We focussed on observations at the mesoscopic scale of the local field

potential (LFP). One advantage of this approach is that it can be easily related to simultaneously

recorded neuronal spike trains on a trial-by-trial basis in animals, but also underlies the magnetoen-

cephalography (MEG) signal observable in humans (Buzsáki et al., 2012). As such, we could recover

dynamical information from electrophysiology recordings in macaque monkeys and also from non-

invasive magnetoencephalography (MEG) recordings in humans. This provides an important bridge

between observations at microscopic (cellular) and macroscopic (whole-brain) scales. Importantly,

our index provides information about the speed of a local internal neural decision process that goes

beyond a simple behavioural measure of reaction time.

Using this index, we could draw several new conclusions about PFC activity during choice. We

first demonstrate a temporal evolution from action value difference to chosen action signals that are

selectively present in dorsolateral prefrontal cortex (DLPFC) neurons, but not anterior cingulate cor-

tex (ACC) or orbitofrontal cortex (OFC). This contrasts against the ubiquitous encoding across all

three subregions of ‘chosen value’. However, we then demonstrate that correlates of chosen value

may arise as a consequence of dynamical processing, as opposed to being purely represented as a

neuroeconomic post-decision variable. Next, by simultaneously indexing decision formation across

multiple PFC subregions, we show that functional interactions can be reshaped in a task-dependent

manner. We find that OFC and ACC dynamics selectively influence dorsolateral DLPFC activity on

delay- and effort-based decisions respectively. Finally, our observations can be related to predictions

from a dynamical neural network model of choice. This provides formal links to established dynam-

ical mechanisms underlying perceptual decision-making.

Results
We examined a study of cost-benefit decision making in which single neuron firing and local field

potentials (LFPs) were recorded simultaneously from three PFC subregions fundamental to value-

guided choice in four macaque monkeys: orbitofrontal cortex (OFC), anterior cingulate cortex (ACC)

and dorsolateral prefrontal cortex (DLPFC). On each trial, subjects chose between two pictures that

led to a certain reward magnitude (quantity of fruit juice) after paying a certain cost (Figure 1A). On

half of trials this cost was physical effort needed to obtain reward, and on half of trials it was delay

to reward. Subjects were overtrained on the cost and benefit paired with each picture. Their choices

were well described by a linear trade-off between reward and cost combined with a softmax choice

function (see Hosokawa et al., 2013 for detailed behavioural modelling). This allows a straightfor-

ward definition of ‘value’ used in the analyses below (see methods). Throughout the paper, we ana-

lyse neuronal firing and LFP during a 1s choice phase, when subjects fixated centrally whilst both
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Figure 1. Time-varying value correlates in single units and LFP during choice. (A) Subjects chose between two pictures of differing value (reward and

cost (physical effort, or delay)) by saccade. Neural activity was examined during the 1s choice epoch, whilst monkeys held fixation. (B) Correlates of

decision variables in DLPFC single units (n=303). Coefficient of partial determination for multiple regression of left minus right action value (blue),

chosen value (green) and left minus right choice (red) onto single neuron activity. Lines show mean /- s.e. across all recorded neurons. See also

Figure 1—figure supplement 1. (C) Early action value difference coding predicts late chosen action coding. Z-scored regression coefficients for left

minus right action value at 300 ms (ordinate) are plotted against Z-scored regression coefficients for left minus right choice at 700 ms (abscissa), for

each DLPFC neuron (R=0.42; p=3.6*10-14). (D) Baseline-corrected ERP during choice epoch, in example subject, split by region. Lines denote mean /-

s.e. across n = 125 (DLPFC)/n = 43 (OFC)/n = 85 (ACC) electrodes. Other subjects plotted in Figure 1—figure supplement 2. Vertical dashed lines are

added to allow latency comparison with (E) and (F). (E) Z-statistic of regression of LFP data from example subject onto chosen and unchosen value.

Note that at timepoint (i), overall value =chosen+unchosen; at timepoint (ii), value difference = chosen-unchosen. Lines denote mean /- s.e. across

electrodes. In Figure 1—figure supplement 3, figure is split into different brain regions and cost/benefit. (F) Temporal derivative of evoked potential

in part (D) (averaged across regions). Comparing parts (D), (E) and (F) shows that value correlates at timepoints (i) and (ii) occur when the LFP is ramping

(derivative is non-zero), rather than peaking (derivative is near or at zero).

DOI: 10.7554/eLife.11945.003

The following figure supplements are available for figure 1:

Figure supplement 1. Correlates of decision variables in DLPFC, OFC and ACC single units, as in Figure 1B.

DOI: 10.7554/eLife.11945.004

Figure supplement 2. Consistency of evoked potentials across subjects, and brain regions, in macaque PFC.

DOI: 10.7554/eLife.11945.005

Figure supplement 3. Effects of decision variables across different brain areas and reward vs. cost.

DOI: 10.7554/eLife.11945.006
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pictures were on screen. After this 1s period, a go cue appeared, instructing subjects to saccade to

their preferred picture to indicate their choice.

Value correlates vary across time in both single units and LFPs
We first adopted a classical approach to analysing our data, examining features of the task repre-

sented by neural activity. Using multiple regression on single neuron firing rates, we observed a

dynamic (time-varying) signature of value correlates in the DLPFC (n=303 neurons) (Figure 1B). Early

in the trial, value correlates were found in the reference frame of action value difference (i.e. left

minus right saccade value influenced neural firing; Figure 1B, blue), but late in the trial these

evolved into correlates of the eventual chosen saccade (left vs. right chosen saccade influenced neu-

ral firing; Figure 1B, red) (Kim et al., 2008; Louie and Glimcher, 2010). DLPFC neurons that

showed strong selectivity for left minus right saccade option value 300 ms after decision onset also

showed strong selectivity for left minus right choices 700 ms after decision onset (Figure 1C). This

temporal evolution from action value difference to categorical choice was selectively present in

DLPFC, but not ACC (n = 321 neurons) or OFC (n = 212 neurons) (Figure 1—figure supplement 1).

Notably, however, all three regions showed correlates of chosen value with a similar timecourse

(Figure 1B, Figure 1—figure supplement 1).

We then applied the same approach to consider dynamics of LFP value correlates (electrodes:

DLPFC, n=208; ACC, n=207; OFC, n=146). The overall shape of the choice phase evoked LFP was

surprisingly consistent across PFC subregions (Figure 1D) and subjects (Figure 1—figure supple-

ment 2). All areas contained a fast biphasic component shortly after sensory input, and a slower

component lasting several hundred milliseconds after this. Because of this similarity, we collapsed

across regions (see Figure 1—figure supplement 3 for regions separately), and regressed LFP

amplitude onto both chosen value and unchosen value across time. This revealed two timepoints at

which correlates of value emerged (Figure 1E). Early in the trial (~250 ms) value correlates were pos-

itive for both chosen and unchosen value, but later in the trial (~450 ms) value correlates for

unchosen value flipped to become negatively signed. This implies a temporal evolution from an early

representation of value sum (=chosen+unchosen value) to a later representation of value difference

(=chosen-unchosen value). This progression is notably similar to observations made in human PFC

during value-guided choice using MEG (Hunt et al., 2012). Crucially, these value correlates were

maximal when the event-related LFP was ramping, not peaking (that is, when the temporal derivative

of the LFP was large [Figure 1F]). This suggests chosen and unchosen value influence the rate at

which LFP dynamics unfold on each trial, rather than being explicitly represented by the amplitude

of an evoked response.

As revealed by these classical analyses, value correlates vary across time at both microscopic (sin-

gle unit) and mesoscopic (LFP) scales. Yet it remains unclear how we might bridge these dynamics at

different scales. Below, we demonstrate that forming such bridges is of fundamental importance,

especially if it can be achieved at the level of individual trials. It allows us to interrogate the relation-

ship between neural dynamics and behaviour, the encoding of neuroeconomic variables, and how

brain regions interact during choice. Moreover, by applying to the same approach to human data, it

links observations in human MEG recordings with their underlying neuronal counterparts.

Extracting single-trial information about choice dynamics from event-
related LFP
One approach to bridging across data scales would be to extract single-trial information about

choice-related dynamics from one scale, and use it to explain variance in the other. The evoked LFP

appeared consistent across different recording electrodes and sessions (Figure 2—figure supple-

ment 1), and possessed a high single-trial signal to noise ratio (Figure 2—figure supplement 2). We

therefore pursued a data-driven index of single-trial dynamics from LFP data.

The approach we adopted was to apply principal components analysis (PCA) across trials (see

Methods). For each subject, the input data for macaque PCA was decision-locked raw LFP data,

stacked across all electrodes from all recording sessions to form a large matrix X. X has dimensions

nSingleTrials by nTimebins (Figure 2A). PCA decomposes X into temporal principal components V,

with dimensions nTimepoints by nComponents, and component weights U, with dimensions nSingle-

Trials by nComponents (Figure 2A). The principal components (PCs) in V provide a set of temporal
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Figure 2. Extraction of internal dynamics from LFP data via principal components analysis (PCA). (A) A large matrix of single-trial data is formed by

stacking data across all recordings. This was performed separately within each subject. Consistent evoked potentials were found across recording

electrodes (Figure 2—figure supplement 1) and trials (Figure 2—figure supplement 2). The single trial-weights U are returned separately for each

trial on each electrode, but their interpretation is determined by the shape of the components in V, and so is common to all electrodes. (B) The first

and second principal components of this matrix, for example macaque subject N. (C) The shapes of PC1 and PC2 are consistent across subjects. (D)

Left panel: the effect of adding/subtracting PC1 to the main ERP shape in example subject N, modulating its amplitude; right panel: the effect of

adding/subtracting PC2 to PC1, modulating its latency. As shown in Figure 2—figure supplement 3, this shift in latency can also be related to

changes in low-frequency oscillatory phase during the decision period. (E) The influence of chosen value, unchosen value and error trials on PC2 scores

(i.e. the second column of matrix V), estimated via multiple regression. Bars show regression coefficients (a.u.), mean /- s.e. across electrodes

(macaque). ** denotes p<0.01, one-sample T-test. Effects are shown separately for monkey K (who saccaded freely during choice epoch, and indicated

response using joystick) in Figure 2—figure supplement 4. Influence of variables on PC1 scores shown in Figure 2—figure supplement 5.

DOI: 10.7554/eLife.11945.007

The following figure supplements are available for figure 2:

Figure supplement 1. Consistency of evoked potentials across different recording electrodes/recording sessions, in an example subject (monkey N).

DOI: 10.7554/eLife.11945.008

Figure supplement 2. High signal to noise ratio in single-trial LFP responses.

DOI: 10.7554/eLife.11945.009

Figure supplement 3. The relationship between single-trial PC2 weights and single-trial time-frequency decomposition (estimated across all electrodes

in DLPFC).

DOI: 10.7554/eLife.11945.010

Figure 2. continued on next page
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basis functions (Figure 2B) that capture the principal modes of variation in the shape of the wave-

form across trials. The single-trial weights in U tell us how much of each PC is present in each single-

trial response. They are returned separately for each electrode. Because data are stacked, however,

the decomposition has the same meaning across different electrodes and recording sessions.

The top two PCs were strikingly consistent across all four macaque subjects (Figure 2C). Impor-

tantly, they were readily interpretable in terms of their effects on LFP dynamics. PC1 (Figure 2B, left

panel) resembled the basic shape of the event-related field potential (Figure 1D). Adding or sub-

tracting PC1 therefore captures variation across trials in response amplitude (Figure 2D, left panel).

More notable, however, was PC2, which was relatively flat at the beginning of the decision, but from

200 ms onwards resembled the temporal derivative of PC1 (Figure 2B, right panel). Adding or sub-

tracting the temporal derivative of a waveform controls the latency at which it peaks (Figure 2D,

right panel) (Friston et al., 1998; Mayhew et al., 2006). Knowledge about PC2 weights therefore

provides a parsimonious description of single-trial ERP latencies, a key feature of the dynamical ERP

response. Consistent with this idea, PC2 weights were also found to correlate with the phase of low

frequency (theta frequency [4-–8 Hz]) oscillations during the decision period (Figure 2—figure sup-

plement 3).

In light of this, we hypothesised that factors modulating reaction time in value-based choice stud-

ies (Busemeyer and Townsend, 1993) would affect the weight of PC2, controlling the latency of the

LFP waveform. We found chosen value had a strong and consistent effect on PC2 across all regions

studied. When chosen value was higher, PC2 was more positive, implying the waveform peaked ear-

lier in time (Figure 2E; Figure 2—figure supplement 4). On ‘error trials’, where the subject chose

the less valuable option, PC2 weights were more positive than on correct (Figure 2E). Under the

assumption that higher value trials, and error trials, were associated with faster decision dynamics

(Busemeyer and Townsend, 1993; Ratcliff and Rouder, 1998), PC2 weights therefore provide a

neurally-derived index of the speed of the decision on each trial. Crucially, however, they are

obtained separately for each individual electrode. They therefore provide a local measurement of

neural dynamics, beyond a simple behavioural measure of reaction time. PC1 weights, capturing

response amplitude rather than latency, were primarily influenced by value sum (same sign for both

chosen and unchosen value, with the exception of ACC) (Figure 2—figure supplement 5).

Internal single-trial dynamics explain neural activity over and above
external variables
We next considered whether our internal LFP-derived index might explain features of neural firing

that we could not previously explain using external experimentally-derived variables. We explored

this idea using multiple regression. We regressed experimental factors onto neural firing rates (see

Supplementary file 1 for full list) to capture variance explained by these factors, as in Figure 1B.

However, we also included as a coregressor the single-trial PC2 weight for that trial, estimated from

the decomposition of the LFP. This allows us to examine the influence of PC2 weights on neuronal

firing, having controlled for the contribution of all external decision variables. To avoid contamina-

tion between spikes and LFP, we used LFP data recorded simultaneously from a neighbouring elec-

trode in the same cortical area. (Note that reaction time is not included as an additional measure of

trial-by-trial decision dynamics in our task, as the imposed 1s choice delay prior to response led to a

floor effect in subjects’ response times.)

Figure 3A and B shows two individual neurons from DLPFC that exemplify the action value-to-

choice transformation depicted in Figure 1B/C. As can be seen, variance in their firing is explained

by the action value difference early (~200-–400 ms), and the chosen action late (~600–800 ms) in the

decision process. In both cases, the LFP-derived PC2 single trials weights explain additional variance

as this value-to-choice transformation occurs (Figure 3A/B). Across the population, PC2 had a similar

effect at this point in time (Figure 3C). 44.9% of neurons in DLPFC were found to have a significant

Figure 2. Continued

Figure supplement 4. Regression of decision variables onto PC2 (left) and PC1 (right) in monkey K (free saccade).

DOI: 10.7554/eLife.11945.011

Figure supplement 5. Regression of decision variables onto PC1.

DOI: 10.7554/eLife.11945.012
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modulation by LFP-derived PC2 weights during the choice epoch (23.4% positively modulated,

21.5% negatively modulated, p<0.01 in a 250 ms–750 ms window, corrected for multiple compari-

sons across time). This finding forms a link between choice dynamics at mesoscopic and microscopic

scales, over and above that which can be obtained from examining time-varying value correlates (as

Figure 3. Single unit firing in DLPFC explained by simultaneously recorded LFP dynamics, over and above

contribution from experimental variables. (A)/(B) Two example neurons from DLPFC each showing a transition

from encoding action value difference (blue) to later encoding the selected action (red), and influenced by the

LFP-derived PC2 single trial weights (cyan) in the intervening period. The coefficient of partial determination (CPD)

is plotted for all three factors (see Methods for full list of other task-related variables included in regression

model). (C) Timecourse of population CPD explained by LFP-derived PC2 weights (for n=205 DLPFC neurons that

had a simultaneously recorded LFP on a separate DLPFC electrode). Lines show mean /- s.e. across neurons.

DOI: 10.7554/eLife.11945.013
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in Figure 1). Additional analyses confirmed that this relationship could not be explained as a simple

consequence of first-order correlations between LFP amplitude and firing rate (Whittingstall and

Logothetis, 2009).

Having formed this link between our measure of single-trial LFP dynamics and neural firing, we

could then address several questions concerning the roles of these dynamics in value-guided deci-

sion making.

Influence of single-trial LFP components on single unit chosen value
correlates
The representation of chosen value is found in many neural structures during choice, but its interpre-

tation has remained unclear. It has been pointed out that this is a ‘post-decision’ variable, and sev-

eral suggestions have been offered for why this might need to be encoded (Rangel and Hare,

2010). In our study, the timecourse of this signal (found across all three cortical areas, Figure 1—fig-

ure supplement 1) appears similar to the timecourse of influence of the LFP PC2 weights on neuro-

nal firing (Figure 3C). We sought to explore the relationship between chosen value correlates

identified in single unit firing and our single-trial indices of ERP amplitude (PC1) and latency (PC2).

To address this, we reanalysed the findings in Figure 1B, but asked whether including the top

two LFP principal components in our regression model selectively reduced the variance explained by

chosen value, but not by action value difference or chosen action (see Methods). As a control, we

compared this model to one where two noise components (PC101 and PC102) from the LFP PCA

were included as coregressors instead of PC1 and PC2. We found that including the LFP-derived

PC1/PC2 as coregressors caused a significant reduction in chosen value coding, but not of action

value difference or chosen action coding (Figure 4; Figure 4—figure supplement 1). Similar results

could also be obtained via an alternative approach, in which instead of using noise components,

principal components were shuffled across trials in a fashion that preserved their underlying correla-

tion with chosen value, or by examining the contribution of PC1 or PC2 alone (Figure 4—figure sup-

plement 2).

We then asked whether chosen value coding was reduced more by local (within-region) neural

dynamics, compared to global (whole-brain) dynamics. We found a smaller but significant reduction

could also still be found even if these ‘local’ principal components (i.e. from the same brain region)

were orthogonalised with respect to those of another, simultaneously recorded brain region, when

compared to performing the same analysis in reverse (Figure 4—figure supplement 3). This implies

that some of the neuronal variance attributed to chosen value correlates originates as a consequence

of the speed and amplitude at which dynamics unfold locally within a particular cortical area, and

demonstrates the utility of our single-trial index for capturing these local dynamics.

OFC and ACC dynamics have distinct influences on delay- and effort-
based decisions respectively
ACC and OFC have established roles in effort- and delay-based decisions respectively

(Rudebeck et al., 2006; Prevost et al., 2010; Croxson et al., 2009; Kurniawan et al., 2013;

Kable and Glimcher, 2007; Parvizi et al., 2013). Because our LFP decomposition indexes decision

dynamics locally, we hypothesised that the internal dynamics of ACC and OFC might preferentially

influence activity in DLPFC on different trial types. Specifically, we predicted that firing rates in

DLPFC would be preferentially affected by ACC internal dynamics on effort-based trials, but by OFC

internal dynamics on delay-based trials. We could test this hypothesis by examining sessions in which

DLPFC, ACC and OFC were all recorded simultaneously. We built a regression model in which LFP-

derived PC2 weights from OFC and ACC competed for variance in explaining neural firing in DLPFC

(see Methods). We estimated this separately on delay and effort trials. Both areas were found to

influence DLPFC activity (Figure 5—figure supplement 1), but strikingly, ACC explained more vari-

ance in DLPFC firing on effort trials than delay trials (Figure 5A, magenta), whereas the converse

was true for OFC (Figure 5A, black). This was not found to be true for analyses performed in the

reverse direction (using DLPFC/ACC PC2 weights to explain OFC firing, or DLPFC/OFC PC2 weights

to explain ACC firing).

Notably, OFC and ACC PC2 weights modulated DLPFC neuron firing from around 200 ms after

choice onset (Figure 5—figure supplement 1), consistent with the time at which DLPFC neurons
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first begin to encode choice values (Figure 1B). These effects on DLPFC firing were maintained for

several hundred milliseconds. Critically however, just prior to when response coding in DLPFC was

peaking (around 800 ms, see Figure 1B), the contribution of ACC and OFC PC2 to DLPFC neuron

firing changed in a cost-specific way. OFC PC2 began to selectively explain spiking variance on delay

trials, whilst ACC began to explain spiking variance on effort trials (Figure 5—figure supplement 1).

We also found that when we performed a median split on DLPFC neurons by the degree to which

they encoded chosen value in the analysis shown in Figure 1B, neurons with high chosen value selec-

tivity were also those preferentially influenced by other regions’ dynamics (Figure 5B). If DLPFC cho-

sen value coding is interpreted as reflecting the speed at which a decision process unfolds, then

these findings imply that the influence of one region’s internal dynamics on another region’s dynam-

ics can be flexibly reshaped according to current task demands. This was not true, by contrast, when

a median split was performed based upon the response selectivity of the DLPFC neuronal

population.

Figure 4. Chosen value, but not action value difference or chosen action, is explained away by neural dynamics.

CPD for chosen value (green) is reduced by including PC1/PC2 from the LFP decomposition as coregressors in the

decision model. The reduction in CPD (n=205 DLPFC neurons) for each of the decision variables in Figure 1C as a

consequence of including PC1/2 is shown, by subtracting it from a control model that included two noise

components (PC101/102). Note that the maximal value that this reduction can take is determined by the CPD for

each regressor at each point in time (shown in Figure 1B). Lines show mean /- s.e. across neurons. Dots denote

timepoints with a significant (p<0.05, permutation test) change in CPD across the DLPFC population. See also

Figure 4. – figure supplement 1 for OFC/ACC, and Figure 4—figure supplement 2 for the contribution of PC2

alone. Figure 4—figure supplement 3 compares the effect of local DLPFC PC weights with respect to those from

a distal, simultaneously recorded brain region (i.e. either OFC or ACC).

DOI: 10.7554/eLife.11945.014

The following figure supplements are available for figure 4:

Figure supplement 1. CPD for chosen value is reduced by including PC1/PC2 as coregressors in the decision

model across all three regions.

DOI: 10.7554/eLife.11945.015

Figure supplement 2. CPD for chosen value is reduced by including PC1/PC2 alone as coregressors.

DOI: 10.7554/eLife.11945.016

Figure supplement 3. Local PC1/2 (controlling for larger-scale global influences) reduces chosen value CPD more

than global PC1/2 (controlling for local influences).

DOI: 10.7554/eLife.11945.017
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Similar single-trial choice dynamics can be obtained from human MEG
data
The LFP value correlates in Figure 1E showed similar temporal profiles to a previous study in which

human subjects made binary value-guided choices whilst undergoing MEG (Hunt et al., 2012). We

therefore asked whether the MEG signal from this study, in the PFC subregion where this temporal

profile had been observed (ventromedial prefrontal cortex, MNI 6, 28, –8 mm), could also be sub-

jected to a similar single-trial PCA decomposition as our LFP data. Each subject provides a single

‘virtual electrode’ from which observations are made, and so data were stacked to form the matrix X

with dimensions nSingleTrials ([=nTrials*nSubjects]) by nTimebins (see Methods). This was then

decomposed as for the macaque data. We found a similar relationship between PC1 and PC2

(Figure 6A) controlling waveform amplitude and latency (Figure 6B). Moreover, PC2 had a similar

relationship to chosen value and error trials as in macaques (Figure 6C). Finally, in this experiment,

we also had a direct behavioural readout of decision formation on every trial as subjects could

respond at any time after decision onset. Subject reaction times were strongly negatively predictive

of PC2, over and above any contribution of chosen value, unchosen value or errors (Figure 6C). Our

observations here provide a link between the dynamics of choice at the mesoscopic scale in maca-

ques and its macroscopic counterpart in humans.

Several features of the data are explained by competition via mutual
inhibition
The transition in value correlates observed at the macroscopic scale in human MEG can be explained

with reference to a class of recurrent neural network models displaying competition via mutual

Figure 5. ACC and OFC local dynamics explain greater DLPFC neural firing on effort-based and delay-based decisions, respectively. (A) The relative

CPD for DLPFC firing explained by PC2 on effort trials minus delay trials, where PC2 is derived from simultaneously recorded ACC LFP (magenta) and

OFC LFP (black) (n=124 DLPFC units which had simultaneous recordings in both OFC and ACC). ACC explains more variance on effort than delay trials

(positive-going values), whereas the converse is true for OFC (negative-going values). See also Figure 5—figure supplement 1. Lines show mean /- s.e.

across neurons. Dots denote timepoints with a significant (p<0.05, permutation test) change in CPD across the DLPFC population. (B) The same analysis

as in Figure 5A, having first performed a median split for chosen value-selectivity. Neurons with high chosen value selectivity (top panel, n=62 DLPFC

units) show the effect found in Figure 5A, whereas neurons with low chosen value selectivity (bottom panel, n= 62 DLPFC units) do not.

DOI: 10.7554/eLife.11945.018

The following figure supplement is available for figure 5:

Figure supplement 1. Cross-regional interactions, separately for delay versus effort trials.

DOI: 10.7554/eLife.11945.019
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inhibition (Hunt et al., 2012). Such models have success in explaining many features of neural data

in perceptual choice (Shadlen and Newsome, 2001; Wang, 2002), focusing on how a decision

might be implemented locally within a single cortical area of interest. We therefore asked whether

these models might explain some of our observations at the microscopic (single-neuron) level, and

whether a similar decomposition approach can be applied to mesoscopic (LFP) predictions from the

network model as to our data.

We simulated a spiking attractor network model of choice, configured with the same connectivity

structure and parameters as had been used in a previous study of perceptual decision-making

(Wang, 2002) (Figure 7A; see also ‘Supplementary details of network modelling’). We analysed the

model predictions as we had the data, regressing action value difference, chosen value and chosen

action onto single-neuron firing rates. Strikingly, value correlates in the network model possessed

the same temporal profile as in DLPFC neurons (compare Figure 1B with Figure 7B). One discrep-

ancy was the more sustained chosen value signal in the network model than in the data (which may

result from inputs to the model persisting even after an attractor basin has been reached). We then

ran a similar dimensionality reduction on summed network activity, a proxy for the model’s LFP pre-

dictions, as we had done on both macaque LFP and human MEG data. By contrast with the LFP

Figure 6. PCA decomposition of human MEG data shows similar characteristics to decomposition of monkey LFP

data. (A) Averaged evoked response from data beamformed to ventromedial prefrontal cortex (MNI coordinate (6,

28, -8mm)), from a previous study of value-guided decision making (Hunt et al., 2012; 2013). Lines show mean /-

s.e. across trials. (B) PCA decomposition of human MEG data yields two principal components similar to those

found in macaque LFP data (cf. Figure 2C). (C) The influence of chosen value, unchosen value and error trials on

PC2 scores, estimated via multiple regression, in humans. Effects are similar to those found in macaque PFC (cf.

Figure 2E). Also shown, in yellow, is the additional effect of reaction time (orthogonalised with respect to chosen

value, unchosen value and error trials). Bars show mean /- s.e. across trials; ** denotes p<0.01, one-sample T-test.

DOI: 10.7554/eLife.11945.020
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data, we obtained a single principal component that controlled both waveform amplitude and

latency (see ‘Supplementary details of network modelling’, and Figure 7—figure supplement 1).

This suggests that within the network model there is covariation between these two features of the

simulated ERP waveform, whereas in the data they are orthogonal. However, this principal compo-

nent correlated with value in a similar fashion to both macaque and human data (compare

Figure 2E/6C with Figure 7C). We then regressed the principal component back onto single unit fir-

ing rates, as in Figure 3. We found a similar timecourse of influence of the model’s principal compo-

nent on single unit firing to that found in the data (compare Figure 3C with Figure 7D, cyan).

Moreover, we found that the internal dynamics of the model extracted from the PCA explained cho-

sen value coding in a similar fashion to that observed in data (Figure 4), causing a marked reduction

(compare Figure 7B with Figure 7D, green). Our observations in this study may therefore be

explained mechanistically via a simple attractor network model of choice, which similarly captured

LFP dynamics in our previous human MEG study (Hunt et al., 2012). Further details of network

modelling are provided in Supplementary Information.

Figure 7. Relationship between value, LFP and single units explained by competition via mutual inhibition. (A)

Model schematic. A and B units receive value-related inputs, integrate these via recurrent excitation, and

competition via mutual inhibition. See ‘Supplementary Details of Network Modelling’ for details. (B) Correlates of

decision variables in attractor network model single unit activity. Regression coefficient for option value difference

(blue line), chosen value (green line) and chosen option (red line) onto firing rates of ‘A’ selective units in the

network model. Compare with Figure 1B: in DLPFC, ‘A’ selective units are hypothesised to correspond to left

selective units, and ‘B’ units to right selective units. (C) Regression of decision variables onto PC1 from PCA-

decomposed LFP model predictions, as in figure 2e/f. Note that in model, PC1 captures variability in decision

latencies, not PC2 as in data (see Figure 7—figure supplement 1). (D) Correlates of decision variables when

model LFP PC1 is included as coregressor. LFP PC1 from model explains firing rates with a similar timecourse to

LFP PC2 from data (Figure 3C), but explains away much of the contribution of chosen value to single unit firing

(Figure 4).

DOI: 10.7554/eLife.11945.021

The following figure supplement is available for figure 7:

Figure supplement 1. Dimensionality reduction of LFP predictions from attractor network model of competition

via mutual inhibition.

DOI: 10.7554/eLife.11945.022
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Discussion
Many previous studies (Kim et al., 2008; Daw et al., 2006; Padoa-Schioppa, 2013;

Hampton et al., 2006; Padoa-Schioppa and Assad, 2006), including our own (Kennerley et al.,

2011), note the representation of chosen value in multiple brain structures during choice. Why this

quantity is encoded so widely has been a matter of debate (Rangel and Hare, 2010). It is important

to remember that this encoding comes from the viewpoint of the experimenter, seeking to describe

variability across trials at a particular timepoint in the trial or decision process. As we have shown

here, and would be predicted from previous behavioural studies (Busemeyer and Townsend, 1993;

Ratcliff and Rouder, 1998; Krajbich et al., 2010), decision processes are dynamic and decision for-

mation inherently exhibits variability across trials. This means that what appears to the experimenter

as encoding of a decision related-signal may be a consequence of another ongoing process. To

paraphrase a recent observation (Cisek, 2006), “the role of a decision-making system is to produce

decisions, not to describe them.”

Decision-making systems accumulate evidence in favour of different alternatives across time, and

generate a categorical choice. This has been most carefully considered in integrate-to-bound models

of perceptual choice and their neural correlates (Gold and Shadlen, 2007). Crucially, the time at

which sensory evidence is maximally encoded in a neural integrator is not at the beginning of the

decision (when no integration has occurred), nor at the end (when the bound has been reached on

all trials), but in the middle of the decision process – when on some trials the bound has been

reached, whereas on others little net evidence has been accumulated for each alternative. It can be

very difficult in practice to infer when a decision begins or ends, and this poses difficulties when

labelling a neural correlate as ‘pre-decision’ or ‘post-decision’. The dynamical perspective instead

explains certain correlates as emerging as the decision is formed. These signals may still remain of

functional significance for other computations (such as subsequent computation of the reward pre-

diction error [Rangel and Hare, 2010]), but our perspective on how they are generated is changed.

Value-guided choices are, like perceptual decisions, a dynamical process (Busemeyer and Town-

send, 1993; Krajbich et al., 2010; Summerfield and Tsetsos, 2012). This brings into focus the

potentially important role played by decision dynamics in generating correlates of chosen value. In

the present study, we found that in DLPFC correlates of chosen value occurred maximally during the

transformation from an initial representation of evidence (action value difference) to an eventual

representation of choice (chosen action) (Figure 1B). A similar temporal progression could also be

found in the network model of competition via mutual inhibition (Figure 7B). Crucially, however, a

portion of the variance captured by chosen value was then explained away by including the speed

and amplitude of the local LFP response on that trial as a coregressor, estimated via PCA decompo-

sition of the LFP (Figure 4).

It is important to note that there are some caveats to this interpretation. Firstly, only some, not

all, of the variance was removed by including PCA components as coregressors. As such, it may be

the case that there is coding of chosen value during the decision that is not explained by the ampli-

tude and speed of the evoked response during decision formation. However, despite the reasonable

signal-to-noise ratio observed in LFP data, single-trial PC weights will likely contain a degree of

observation noise. Hence our estimates likely form a lower bound on how much of the chosen value

signal might be explained away by LFP dynamics. To address this question further, future studies

might seek to estimate the degree of observation noise in estimating dynamics, and the theoretical

limit that this imposes on how much variance could be explained in neural firing. A further important

caveat is that chosen value correlates may be explained by different mechanisms at different points

in the trial. LFPs are often interpreted as measurements of local synaptic input, and this may imply

that our principal components mediate chosen value representations at the level of single units. It is

also clear from Figure 1—figure supplement 1 that correlates of chosen value are present in single

unit firing until the end of the decision epoch. Future work may investigate the origin and functional

significance of this persistent chosen value coding, perhaps for use at later task stages.

Our single-trial index also provides critical information about how dynamics simultaneously unfold

at different speeds in different brain areas. This was evidenced most clearly by examining the inter-

action between OFC and ACC principal component weights, and DLPFC neuronal firing. Previous

work has suggested a functional specialisation of OFC and ACC for delay- and effort-based deci-

sions, respectively. In rats, lesions made to OFC lead to impulsive choices (of a small, immediate
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reward over a larger, delayed reward) whereas lesions made to ACC lead to less effortful choices (of

a small, easily obtained reward over a larger reward demanding more work) (Rudebeck et al.,

2006). In humans, functional imaging activations yield a similar double dissociation between effortful

and delay-based decisions (Prevost et al., 2010; Croxson et al., 2009; Kurniawan et al., 2013;

Kable and Glimcher, 2007), and further evidence can be drawn from the effects of electrical stimu-

lation of ACC (Parvizi et al., 2013). Our results extend these findings by suggesting that the rate at

which dynamics unfold in OFC preferentially influences a decision signal in DLPFC on delay-based

trials relative to effort-based trials, whereas the converse is true for ACC’s influence on DLPFC (Fig-

ure 5). This supports the view that the effective influence of one brain region on another is modu-

lated by the type of decision currently being made (Hunt et al., 2014; Tauste Campo et al., 2015).

We note, however, that our analysis does not test the possibility is that a third (unobserved) variable

could jointly affect both regions, doing so differentially on effort vs. delay trials.

Variation in ERP latency also corresponds to a shift in the phase of an oscillation (at low frequen-

cies, present in the evoked response). Consistent with this, we found PC2 weights correlated with

the phase of oscillations in the theta range (4-–8 Hz) as the decision was made (Figure 2—figure

supplement 3). This suggests a possible way in which future studies may link our measure of LFP

latency to spike-LFP coupling (Koralek et al., 2013; Canolty et al., 2010) or inter-regional LFP

coherence (Nacher et al., 2013) during cognitive tasks.

The network model attempts to capture the dynamics of a single cortical region, but not interac-

tions between regions. In our study, competitive dynamics similar to the model (saccadic action

value difference transforming into chosen action) were clearly visible in DLPFC (Figure 1B/7B), but

not in other regions (Figure 1—figure supplement 1). However, at the mesoscopic scale, dynamics

of chosen value correlates were relatively indistinguishable across regions (Figure 2E, Figure 1—fig-

ure supplement 3). One explanation for these phenomena is that competition proceeds in a distrib-

uted fashion across multiple areas (Rushworth et al., 2012; Hunt et al., 2014; Cisek, 2012).

Competition in DLPFC might occur selectively in saccadic action space, but this might be comple-

mented by parallel competitions in other regions in other reference frames. Examples of such com-

petitions might include those over particular decision attributes (e.g. OFC for delay, ACC for effort/

physical action value), abstract goods (Padoa-Schioppa, 2013; Padoa-Schioppa and Assad, 2006),

internal state variables (Bouret and Richmond, 2010), attentional allocation (Lim et al., 2011), goal

or task-relevant prioritisation (Hunt et al., 2014; Hare et al., 2009) or other reference frames critical

for the decision at hand (Hunt et al., 2013). Though lesion evidence clearly implicates areas like

ACC, OFC and ventromedial PFC as critical and dissociable in value-based decision-making

(Kennerley et al., 2006; Rudebeck et al., 2008; Camille et al., 2011; Noonan et al., 2010), our

results indicate that identifying ‘chosen value’ signals is not sufficient to understand the functional

dissociations of these areas in the decision-making process. Further studies are needed to fully

understand the reference frame in which different decision areas contribute to decision-making

(Hunt et al., 2013; 2014; Boorman et al., 2013), with a careful consideration of the relationship

between underlying choice dynamics and neuronal correlates of value. Future recurrent network

models of choice involving hierarchical competitions across multiple areas (Hunt et al., 2014;

Chaudhuri et al., 2015) might also capture this distributed approach, and seek to explain our obser-

vations concerning the selective effort- and delay-based interactions across areas (Figure 5). A dis-

tributed account would predict that in other experimental paradigms, single neurons would show

similar competitive dynamics to our DLPFC neurons but in complementary frames of reference

(Rustichini and Padoa-Schioppa, 2015; Strait et al., 2014).

PCA is one of many possible approaches to obtaining a useful set of temporal basis functions to

describe variation in ERP waveforms, and it may be improved upon by future investigations. We

selected it for its simplicity, and its known properties of returning a temporal derivative when captur-

ing evoked responses of variable durations (Friston et al., 1998; Mayhew et al., 2006;

Woolrich et al., 2004). Directly computing the ERP waveform and its temporal derivative would also

be a valid approach to derive temporal basis functions. However, this approach may face problems

if different components of the evoked response do not covary with each other. For example, the

large, fast evoked response observed across all regions within 200 ms of stimulus onset (Figure 1D)

was comparatively small in the first two principal components (Figure 2B). This implies that cross-

trial variation in this early sensory-evoked component occurred largely orthogonal to cross-trial
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variation in the later (putatively decision-related) component. This feature of the data is identified

automatically using PCA.

The LFP decomposition returned by PCA shows a notable similarity to that observed in decompo-

sitions of trial-averaged waveforms from multi-electrode recordings in motor cortex during move-

ment (Churchland et al., 2012). This provides links to dynamical systems perspectives on such

activity. Unlike previous studies, however, our approach leverages mesoscopic dynamics containing

high signal to noise ratio and reproducibility to extract single-trial information. This dispenses any

requirement to first relate neural activity to experimental variables by averaging or regression

(Churchland et al., 2012; Mante et al., 2013). We contend that this is particularly important in

studying PFC and other areas distant from sensory input or motor output, whose relationship to

experimental variables may often be considerably more complex than the experimenter envisaged

(Rigotti et al., 2013).

Materials and methods

Neurophysiological procedures (monkey)
Full details of neurophysiological recording procedures are detailed in (Hosokawa et al., 2013) and

(Kennerley et al., 2009), and precise recording locations in (Hosokawa et al., 2013). In brief, four

male rhesus macaques served as subjects. Arrays of 10-–24 tungsten microelectrodes (FHC Instru-

ments) were lowered acutely each day. Recordings were made from dorsolateral prefrontal cortex

(DLPFC; primarily the dorsal bank of the principal sulcus), orbitofrontal cortex (OFC; primarily areas

11 and 13 between the medial and lateral orbital sulci) and anterior cingulate cortex (ACC; primarily

area 24c in the dorsal bank of the cingulate sulcus). Recordings were also made from two subjects in

the cingulate motor area, but this region is not considered in the present study. We excluded 5 ses-

sions in monkey B that contained exclusively effort-based or delay-based decisions, 1 further session

in monkey B where LFP data was not recorded, and 2 sessions in monkey E where the LFP data was

heavily artifact-contaminated. Any electrode which did not contain a well-isolated neuron, and so

might not lie within grey matter, was not included in the LFP analysis. From visual inspection of the

evoked data, we further excluded from further analysis ~4% of individual electrodes that contained a

high degree of artifact in the LFP recording. The numbers of recording electrodes included from

each subject, after all exclusion criteria were applied, are shown in Figure 1—figure supplement 2.

(As multiple units could occasionally be isolated from the same electrode, the total number of neu-

rons exceeded the total number of electrodes for each region.) All procedures were in accord with

the National Institute of Health guidelines and the recommendations of the University of California

Berkeley Animal Care and Use Committee.

Experimental task (monkey)
Full details of the experimental task are detailed in (Hosokawa et al., 2013). In brief, subjects were

well-trained on the expected value of a set of 32 pictures, 16 of which predicted a quantity of reward

(fruit juice) and associated effort to obtain reward, and 16 of which predicted a quantity of reward

and an associated delay to reward (Figure 1A). The costs and benefits were titrated such that choice

probabilities were approximately equally (and linearly) affected by both cost and

benefit (Hosokawa et al., 2013). Subjects performed a cost-benefit decision task where they chose

between two pictures on each trial. On half of the trials (‘effort’ trials) they chose between a pseu-

dorandomly selected pair of the ‘effort’-associated pictures. On half of the trials (‘delay’ trials) they

chose between a pseudorandomly selected pair of the ‘delay’-associated pictures. Effort and delay

trials were interleaved.

On each trial, subjects fixated a central fixation point for 1 s, followed by the appearance of the

two pictures on left and right sides of the screen for 1 s (‘choice phase’). Throughout this choice

phase, the monkey held fixation. Importantly, this meant that the time period when the monkey

could respond (after the onset of the go cue, at 1000 ms) was outside of the window of our analyses,

and so there was no potential behavioural (motoric) confound in neural analyses. This was with the

exception of monkey K, who could not be sufficiently well-trained to fixate and so was free to sac-

cade during the 1 s period. After the appearance of the go cue, the monkey saccaded to the pre-

ferred picture (except monkey K, who made a joystick response to the side with the preferred
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picture). Subjects received juice reward after the ‘cost’ (effort/delay) was delivered. Only successfully

completed trials are included in our analysis.

MEG recordings and experimental task (human)
Full details of the experimental task, MEG data acquisition and analysis protocols are provided in

(Hunt et al., 2013). Briefly, 18 subjects chose between two risky prospects consisting of differential

levels of monetary reward magnitude and probability. Subjective values for each option were esti-

mated using Prospect theory. We analysed data from ‘comparison’ trials (where both options

appeared simultaneously, and subjects were free to respond at any time after decision onset). The

analysed data were beamformed to a region of ventromedial prefrontal cortex (MNI coordinates =

6,28,�6 mm) previously found to contain dynamics analogous to those of the biophysical network

model (Hunt et al., 2012). All subjects provided informed consent in accordance with local ethical

guidelines.

Regression analysis of macaque single neurons (Figure 1B/C, Figure 1—
figure supplement 1)
Well-isolated single units (see [Hosokawa et al., 2013] for details) were timelocked to the onset of

the choice epoch of successfully completed trials to create rasters (lasting from 1 s prior to choice

onset to 2 s after choice onset). Each trial’s data was then convolved with a boxcar to estimate the

local average firing rate of the neuron on each trial in 200 ms sliding bins. These binned data were

then regressed, across trials, against five variables using ordinary linear regression: a constant term

for effort trials, a constant term for delay trials, the value difference between left and right options,

whether the subject chose left or right, and the value of the chosen option. For each neuron, we cal-

culated the coefficient of partial determination for each factor as in (Kennerley et al., 2011):

CPD(Xi) = [SSE(X~i)- SSE(X)]/SSE(X~i)

where SSE(X) refers to the sum of squared errors in a regression model that includes a set of

regressors X, and X~i is a set of all the regressors included in the full model except Xi. In Figure 1B/

Figure 1—figure supplement 1, we plot the mean /- s.e. across all neurons recorded in a given

brain area (for sessions that were also included in the LFP analysis). In Figure 1C, we calculated the

Z-statistic for action value difference at 300 ms and chosen action at 700 ms for each neuron from

the regression model, and plotted the relationship between these Z-statistics across all DLPFC

neurons.

Regression analysis of macaque LFP (Figure 1, Figure 1—figure
supplement 3)
LFP data were downsampled from 1 KHz to 100 Hz, and timelocked from 500 ms before to 1000 ms

after the onset of the choice phase. The average event-related waveform was computed for each

electrode, and the grand mean /- s.e. of all electrodes within each brain region was plotted

(Figure 1D). Based on previous behavioural modelling of the task(Hosokawa et al., 2013), value for

each option was defined as reward level (scaled from 1 to 4) minus cost level (scaled from 1 to 4).

For Figure 1E, we estimated the influence of chosen value and unchosen value on the evoked

response at each timepoint using linear regression across trials, plotting the mean /- s.e. of the Z-

scored regression coefficient across electrodes. In Figure 1—figure supplement 3, we split this

regression into chosen and unchosen reward and cost. For Figure 1F, we estimated the local tempo-

ral derivative of the grand mean event-related potential, averaged over a local sliding window of

80 ms.

Dimensionality reduction of LFP/MEG data via principal components
analysis (Figure 2)
To extract single trial information from the local field potential (LFP), we used principal components

analysis (PCA) of event-related data. Single-trial LFP data were timelocked from 200 ms before to

1000 ms after the onset of the choice phase. Separately for each subject, all data from all electrodes

in OFC, ACC and DLPFC were stacked to form a large matrix X. The dimensions of X are [nRecorde-

dElectrodes*nTrials] by nTimepoints. Each row of X corresponds to the LFP data collected from a

single trial, on a single electrode.
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To extract single trial information from the human data, a similar ‘stacked’ matrix was formed,

but here single-trial data across all subjects were stacked, to make a matrix X with dimensions [nSub-

jects*nTrials] by nTimepoints. Each row of X corresponds to the beamformed data collected from a

single trial, in a single subjects. (One difficulty faced by this approach is that beamforming contains a

singular value decomposition (SVD) step to determine the orientation of sources, and when beam-

forming is run separately on each subject, then the meaning of a positive-going and negative-going

deflection can be different across subjects because of an arbitrary sign flip induced by SVD. To over-

come this, we used an iterated procedure that selected a sign for each subject that maximised the

correlation coefficient in the evoked response, between subjects, and then multiplied each subject’s

data by the appropriate sign. Note that this sign-flipping correction does not produce changes in

the PCA decomposition of the data, but instead simply ensures that the principal component

weights can be interpreted in a consistent manner across subjects. It would not be a necessary step

were a similar analysis to be run on a scalp potential, for example, whose sign is already consistent

across subjects.)

The mean timecourse of the data was removed prior to running PCA, such that the principal com-

ponents then captured cross-trial variability in the shape of the event-related waveform. We also

removed trials that potentially contained non-neuronal (e.g. movement, electrical) artefacts. To

achieve this, within-trial variability was indexed by taking the square root of the standard deviation

of the event-related waveform across time. We excluded any trials whose within-trial variability index

lay more than 2.32 standard deviations above the mean (>99th percentile).

In macaque data, most trials occur more than once in X, as in each recording session multiple LFP

electrodes are recorded simultaneously and so there is a separate row for each electrode. Simulta-

neous multielectrode recording is not fundamental to the analysis approach of extracting single-trial

dynamics. However, it becomes important when relating LFP and cellular data, below. In human

data, each trial occurs only once, as there is one ‘virtual electrode’ per subject.

PCA was performed using the svd function in MATLAB. To ensure components had similar inter-

pretations across subjects, we constrained PC1 to be positive 190 ms after stimulus onset, and PC2

to be negative 530 ms after stimulus onset. This constraint can be reasonably imposed by flipping

the sign of both the principal component and its corresponding PC weights where necessary (as the

sign of components returned by singular value decomposition is arbitrary). After this constraint was

applied, highly similar components were observed across subjects (Figure 2C). In all subjects, PC1

controlled waveform amplitude, and PC2 controlled waveform latency. However, the timecourse of

monkey K’s principal components were notably different in latency from other subjects’ waveforms

(Figure 2C), and also had somewhat different value correlates, particularly in PC1, likely due to an

inability to sustain fixation. For this reason, Figure 2E and Figure 2—figure supplement 4 excludes

data from monkey K, and monkey K’s PCA value correlates are plotted separately in Figure 2—fig-

ure supplement 3. Importantly, this does not affect the interpretation of PC2, whose effects remain

similar in monkey K as in other monkeys.

We note that it would have equally been possible to run dimensionality reduction on the data

from a single electrode, in a single session. However, the difficulty faced with such an approach is

how then to match components between different components and sessions, such that the compo-

nents from the different PCAs have the same interpretation. The stacked PCA approach here is anal-

ogous to that used in ’dual regression’ of functional MRI data, where resting state networks are

matched across subjects by stacking all subjects into a large matrix before running dimensionality

reduction (Filippini et al., 2009). It is appropriate due to the high degree of consistency of ERP

waveforms (Figure 1—figure supplement 2 and Figure 2—figure supplements 1/2).

Regression analysis of single neuron data, using principal components
derived from simultaneously recorded LFP (Figures 3–5 and associated
figure supplements)
Single neuron data were rasterised and binned as for the regression analysis of decision variables.

For main Figure 3C, a regression model was estimated containing 19 coregressors to model out the

effect of all experimental variables (see Supplementary file 1 for a full list), plus the regressor of

interest (trial-by-trial weights of PC2, derived from PCA decomposition of LFP from a simultaneously

recorded electrode in another part of DLPFC). The CPD for the LFP-derived PC2 on single neuron

firing was then estimated from this model. To calculate the percentage of individual significant
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neurons (in main text), we estimated a significance criterion that controlled for multiple comparisons

across time empirically from the data, by repeating the regression model but permuting the design

matrix (Nichols and Holmes, 2002). Within a time window of 250 ms-–750 ms after choice onset,

this yielded a p<0.01 significance criterion of Z>2.99 for significant positive responses, and Z<-3.05

for significant negative responses. Any neurons exceeding these thresholds at any point during this

time window are reported as significant. We found the CPD for PC2 remained similar when a

reduced model of experimental variables was used, containing 6 coregressors rather than 19 – a

constant term for each trial type, an indicator variable for the chosen action (L-R), the action value

difference between left and right options, and the chosen value. For Figure 3A/B, we used this

model and plotted CPD for action value difference, LFP-derived PC2 and chosen action in two sin-

gle-neuron examples. For Figure 4 and associated figure supplements, we repeated this model, but

subtracted the CPD for chosen value, action value difference and chosen action for a model that

included PC1 and PC2 as coregressors, versus a model that included PC101 and PC102 (to account

for any potential general reduction in CPD by including coregressors). Positive values on this figure

therefore indicate a reduction in explained variance by experimental factors when PC1 and PC2 are

included as coregressors in the model. Note that these analyses required simultaneously recorded

LFP from another electrode in the same brain region, but this was only available for some recording

sessions. The number of recorded neurons in each analysis was therefore smaller than in Figure 1/

Figure 1—figure supplement 1 (DLPFC: n=205 neurons; OFC: n=114; ACC: n=194). For Figure 4—

figure supplement 3, we sought to explore whether local LFP principal components provide greater

contributions to the reduction in chosen value variance than those recorded from other areas. We

therefore repeated the same analysis as in main Figure 4, but first orthogonalised local (DLPFC)

PC1/2 weights with respect to PC1/2 weights from another simultaneously recorded area (either

OFC/ACC). However, because both electrodes will contain observation noise on every trial, this anal-

ysis alone may not fully control for distal brain region effects. To provide a fairer comparison, we

therefore performed the same analysis in reverse: examining the effect of the distal OFC/ACC PC1/

2 weights, orthogonalised with respect to the local DLPFC PC1/2 weights. Figure 4—figure supple-

ment 3B shows the latter analysis (distal orthogonalised with respect to local) subtracted from the

former (local orthogonalised with respect to distal).

For Figure 5 and associated figure supplement, we examined the 40 recorded sessions where

DLPFC, OFC and ACC recordings were made simultaneously. Single neuron firing rates from the 124

DLPFC units were explained using a model that contained separate 6 terms: separate constant terms

for effort and delay trials, separate LFP-derived PC2 weights from OFC for delay and effort trials, and

separate LFP-derived PC2 weights from ACC for delay and effort trials. Figure 5—figure supplement

1 shows the separate effects of PC2 from ACC and OFC for delay and effort trials respectively, on

DLPFC firing; Figure 5 shows the difference in CPD for effort minus delay trials for each region.

Significance for neuronal populations in Figures 4,5 was assessed using a non-parametric permu-

tation test (Nichols and Holmes, 2002). At each timepoint, for each neuron, we compared the CPD

for the relevant variable of interest to the CPD for the same variable in a 500 ms pre-choice baseline

period. Across the neuronal population, we tested whether this difference was significantly greater

than zero, by comparing the mean difference to that of a null distribution, generated by randomly

sign-flipping each neuron’s effect and averaging across this permuted data. 10,000 permutations

were used. We elected to use a non-parametric test as the difference in CPD will yield a non-Gauss-

ian distribution; in practice, however, similar results could be obtained with parametric statistics (Stu-

dent’s T-test).

Supplementary details of network modeling
Methods
We adopted the same model as developed by (Wang, 2002) to make predictions of single neuron

firing rates and regressions. The network consists of 2000 neurons, of which 400 are inhibitory inter-

neurons and 1600 are excitatory pyramidal cells (see main Figure 7A for model schematic). The

excitatory pyramidal cells fall into three categories: those selective for option A (240 cells), those

selective for option B (240 cells), and the remaining, non-selective population (1120 cells).
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Structure of network connectivity
As in (Wang, 2002), the network possesses all-to-all connectivity but the strength of connections

between cell types from different populations varies. The majority of connections have a synaptic

strength w=1. Within the selective populations (‘recurrent’ connections from ‘A’ selective to ‘A’

selective and from ‘B’ selective to ‘B’ selective cells), however, excitatory connections are stronger,

with a synaptic strength w=1.7. Between the selective populations (i.e. from ‘A’ selective to ‘B’ selec-

tive cells and vice versa), excitatory connections are weaker, with a synaptic strength w-=0.8765 (=

1-f(w-1)/(1-f), where f=0.15 (fraction of cells in each excitatory pool). (Note that these weights are

based on a Hebbian principle, as cells with similar selectivity are endowed with stronger connections,

whereas those with different selectivity have weaker connections.) This network structure provides

the network with its properties of integration via recurrent excitation, and competition via mutual

inhibition (Wang, 2002).

Selective inputs
Selective excitatory cells receive input, IA and IB, whose firing rate is proportional to the value of

option A or option B on each trial. For simulation purposes, the mean input rate, for each trial of

both option A and B were independently drawn from a uniform distribution from 20 to 60 Hz, giving

a fixed ‘value’ for each trial for each option, mA and mB. Note that this differs from the model of

(Wang, 2002) in that option A and option B are not anticorrelated with each other (appropriate to

the task that we are modelling here). As in (Wang, 2002), at every 50 ms, the Poisson input rates to

each population were resampled were independently resampled from Gaussian distributions with

means mA and mB, and standard deviation s=10. Hence the two inputs vary stochastically in time (if s

were to be set to 0, the two inputs would become constant across time).

Background inputs; implementation of simulations
In addition to selective inputs, all neurons receive AMPA currents from background ‘noise’ inputs

generated from a Poisson process with rate 2.4 kHz that varies independently from cell to cell. Both

pyramidal cells and interneurons are described by leaky integrate-and-fire neurons using the exact

same physiological parameters and dynamical equations as specified in (Wang, 2002). The network

was initialised for 500 ms without selective inputs, and the decision was presented to the network

for the subsequent 2500 ms (total simulation time of 3 s). The ‘chosen option’ was determined by

the selective population whose average firing rate first exceeded 25 Hz, with the additional condi-

tion that the average firing rate of that population had to be 15 Hz greater than that of the other

population. LFP predictions were generated by summing the firing rates of all cells (both selective

and non-selective) in the network model. (Note that although LFP is thought to be more closely

related to synaptic inputs than firing rates, input conductances and firing rates are essentially collin-

ear within the model).

Simulations and regression of single-neuron firing rates
We implemented the model in MATLAB and simulated 400 trials of data. The local firing rate of

each population was estimated by applying a sliding window of 50 ms, and averaging across the fir-

ing rate of all cell types within a given population. To obtain the results in Figure 7B, we then

regressed each population’s firing rates against a model that contained a constant term, a term for

whether the model chose A on each trial, the difference in value between option A and B (=(mA-mB)/

80), and the value of chosen option (=mA/80 on ‘chose A’ trials, mB/80 on ‘chose B’ trials). We plot

the regression coefficient of the ‘A’ selective cells as a function of time.

Results
Main Figure 7B shows the structure of the network model. We first tried to replicate the transitions

in value correlates that occur at the level of single neuron firing in DLPFC (Figure 1B). Figure 7B

shows that by applying multiple regression, we reveal that in the selective populations of neurons,

there is a variation across time in factors that influence their firing rates. Option values have a strong

influence on firing rates of the selective neurons early in the trial (Figure 4B, blue), but later in the

trial, as the network selects an option by approaching a stable attractor state, firing rates become

better explained by the network’s choice (Figure 7B, red). At the same time, the chosen value also
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influences neuronal firing (Figure 7B, green). Note that this coding of chosen value happens across

all neurons in the network (i.e. both selective and non-selective), whereas the transition from option

value difference to chosen option only occurs in the selective cells.

Value correlates occurring at the level of the LFP across all three areas (Figure 1E; Figure 1—figure

supplement 3) transition from initially reflecting value sum (chosen unchosen value) to later reflecting

value difference (chosen-unchosen value). In a previous study, we showed that this transition is pre-

dicted to occur at the level of the LFP from the network model, and also that these predictions

explained observations in human MEG data (Hunt et al., 2012). We therefore investigated whether

we could apply a similar PCA decomposition to the model to that adopted to study our macaque LFP

and human MEG data (main Figure 2), and also whether variability in LFP dynamics would similarly

explain away chosen value coding in single neuron firing rates, as observed in Figure 4.

We ran a similar PCA decomposition on single-trial LFP predictions from the model to that run on

data. The shape of the evoked LFP response from the model is shown in Figure 7—figure supplement

1A. Note that the evoked response from the model differs somewhat from the data. First, at the end

of the trial, the model remains in a stable (working memory) attractor state with high activity, whereas

the evoked response appears to return gradually towards its baseline level. This could easily be

explained by the prepared action plan not being stored in prefrontal cortex, but in premotor regions.

A second difference is that there is little to no variation in the single-trial amplitude of the response.

Instead, the principal source of variability is in the reaction time, or rate of rise, of the network model.

The only variation in amplitude is when the model reaches its final attractor state, but crucially this

covaries with the speed at which the attractor basin is approached, and so with the rate of rise of the

model. As such, the top two principal components (shown in Figure 7—figure supplement 1B) do not

straightforwardly resemble the principal components in the data: it is PC1 that captures the primary

variation in response latency, playing a similar role to PC2 in the data (see Figure 7—figure supple-

ment 1C). We therefore regressed single-trial model PC1 weights onto chosen and unchosen value,

errors and reaction times, and found a similar pattern of results to that found in the data – a predomi-

nant influence of chosen value on single trial PC1 weights; a smaller, but positive influence of unchosen

value on single trial PC1 weights, not found in the current dataset; a positive influence of error trials on

network PC1 weights, and a strong negative influence of reaction times on network PC1 weights

(Figure 7C).

Finally, we asked whether in the network model, chosen value variability is explained away by the

internal dynamics of the model, as estimated by the LFP decomposition. We asked the same question

of the model as we did of the data: does including PC1/2 from the model LFP decomposition cause a

reduction in the regression for chosen value in model single neuron firing, but not for option value dif-

ference or for chosen option (Figure 4)? We found that it does (compare Figure 7D with Figure 7B).

Acknowledgments
We thank H Barron, P Dayan, R Dolan, K Harris, M Rushworth, P Smittenaar and M Woolrich for com-

ments on an earlier draft of this manuscript.

Additional information

Competing interests
TEJB: Senior editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Wellcome Trust 098830/Z/12/Z Laurence T Hunt

National Institute of Mental
Health

R01-MH097990 Jonathan D Wallis

National Institute on Drug
Abuse

R21-DA035209 Jonathan D Wallis

James S. McDonnell
Foundation

JSMF220020372 Timothy EJ Behrens

Hunt et al. eLife 2015;4:e11945. DOI: 10.7554/eLife.11945 21 of 25

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.11945


Wellcome Trust WT104765MA Timothy EJ Behrens

Wellcome Trust 096689/Z/11/Z Steven W Kennerley

National Institute of Mental
Health

F32MH081521 Steven W Kennerley

Wellcome Trust WT088312MA Timothy EJ Behrens

Wellcome Trust WT080540MA Laurence T Hunt

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

LTH, SWK, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article; TEJB, Conception and design, Analysis and interpretation of data, Drafting or

revising the article; TH, Acquisition of data, Drafting or revising the article; JDW, Conception and

design, Drafting or revising the article

Author ORCIDs

Laurence T Hunt, http://orcid.org/0000-0002-8393-8533

Ethics

Human subjects: All human subjects provided informed consent, including consent to publish. Ethical

approval for this study was obtained from NHS Oxfordshire Research Ethics Committee C, approval

reference 08/H0606/46.

Animal experimentation: Ethical approval was obtained for this study. All procedures were in accord

with the National Institute of Health guidelines (Assurance Number A3084-01) and the recommenda-

tions of the U.C. Berkeley Animal Care and Use Committee (Protocol Number R283).

Additional files
Supplementary files
. Supplementary file 1. List of coregressors used when estimating contribution of LFP-derived PC2

to unit activity.

DOI: 10.7554/eLife.11945.023

References
Berens P. 2009. CircStat : a MATLAB toolbox for circular statistics. Journal of Statistical Software 31:1–21. doi:
10.18637/jss.v031.i10

Blanchard TC, Hayden BY. 2014. Neurons in dorsal anterior cingulate cortex signal postdecisional variables in a
foraging task. Journal of Neuroscience 34:646–655. doi: 10.1523/JNEUROSCI.3151-13.2014

Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. 2006. The physics of optimal decision making: a formal
analysis of models of performance in two-alternative forced-choice tasks. Psychological Review 113:700–765.
doi: 10.1037/0033-295X.113.4.700

Bollimunta A, Totten D, Ditterich J. 2012. Neural dynamics of choice: single-trial analysis of decision-related
activity in parietal cortex. Journal of Neuroscience 32:12684–12701. doi: 10.1523/JNEUROSCI.5752-11.2012

Boorman ED, Rushworth MF, Behrens TE. 2013. Ventromedial prefrontal and anterior cingulate cortex adopt
choice and default reference frames during sequential multi-alternative choice. Journal of Neuroscience 33:
2242–2253. doi: 10.1523/JNEUROSCI.3022-12.2013

Bouret S, Richmond BJ. 2010. Ventromedial and orbital prefrontal neurons differentially encode internally and
externally driven motivational values in monkeys. Journal of Neuroscience 30:8591–8601. doi: 10.1523/
JNEUROSCI.0049-10.2010

Busemeyer JR, Townsend JT. 1993. Decision field theory: a dynamic-cognitive approach to decision making in an
uncertain environment. Psychological Review 100:432–459. doi: 10.1037/0033-295X.100.3.432
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