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Mechanical sensitivity of Piezo1 ion
channels can be tuned by cellular
membrane tension
Amanda H Lewis, Jörg Grandl*

Department of Neurobiology, Duke University Medical Center, Durham, United
States

Abstract Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals

and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of

Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising

the fundamental questions of what precise physical stimulus activates the channel and how its

stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch

in three patch configurations, while simultaneously visualizing and measuring membrane geometry.

Building on this approach, we developed protocols to minimize resting membrane curvature and

tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension

with exquisite sensitivity as compared to other mechanically activated channels and that resting

tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our

results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of

mechanical stimulation in diverse cellular contexts.

DOI:10.7554/eLife.12088.001

Introduction
Mechanosensation is essential for cells ranging from bacteria, which must regulate cell volume in

response to harsh osmotic stress, to Merkel cells and sensory neurons in human fingertips, which are

exquisitely sensitive to gentle touch (Ranade et al., 2015). Mechanosensation is initiated through

the opening of mechanosensitive ion channels, including the K2P family in vertebrates, NOMPC in

Drosophila, and the DEG/ENaC family in Caenorhabditis elegans (Ranade et al., 2015). Recently,

Piezo proteins were identified as the pore-forming subunits of an excitatory (non-selective cation)

mechanosensitive channel in metazoans (Coste et al., 2010; 2012; Faucherre et al., 2013;

Kim et al., 2012; Schneider et al., 2014). Piezos are large proteins with >2500 residues that lack

homology to any known proteins (Coste et al., 2015). The two mammalian isoforms, Piezo1 and

Piezo2, are widely expressed and play key roles in many physiological processes, including vascular

development, red blood cell volume regulation, lineage choice in neural stem cells, and touch sensa-

tion in Merkel cells and DRG neurons (Cahalan et al., 2015; Li et al., 2014; Maksimovic et al.,

2014; Pathak et al., 2014; Ranade et al., 2014a; Woo et al., 2014). In mouse, knockout of either

isoform is lethal, further emphasizing the functional importance of the protein (Ranade et al.,

2014a).

Despite an increased understanding of the various roles Piezos play in many biological processes,

the activation mechanism, including the precise physical stimulus that initiates pore opening (gating),

is unknown. The recent medium-resolution cryo-electron microscopy structure of mouse Piezo1

revealed many features of the coarse channel architecture, but does not provide conclusive clues

about the activation mechanism (Ge et al., 2015). In vivo, Piezos respond to diverse forces, including

laminar flow and cellular compression (Lee et al., 2014; Li et al., 2014; Ranade et al., 2014a). In
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heterologous systems, two techniques used to evoke channel activity are direct stimulation of the

cell by touching with a blunt glass pipette and application of negative pressure to stretch the mem-

brane in a patch pipette (Coste et al., 2010). Both stimuli induce several geometric and energetic

changes in the membrane, including alterations in curvature and tension, any of which could in prin-

ciple activate mechanically activated ion channels (Sukharev and Corey, 2004). For example, lateral

membrane tension is the stimulus for the well-characterized bacterial mechanosensitive ion channel

MscL (Moe and Blount, 2005; Sukharev et al., 1999). To date, no accessory proteins of Piezos have

been identified that could tether the channel to the cellular matrix, suggesting that, as for MscL, the

activating stimulus may be directly transmitted through the bilayer.

A key feature of Piezos is that during a sustained stimulus, currents decay (inactivate) with a typi-

cal time course of tens of milliseconds, suggesting continuous modulation of channel availability

(Coste et al., 2010). Consistent with a high physiological importance for inactivation, Piezo muta-

tions that alter inactivation kinetics are linked to several human diseases, including dehydrated

hereditary stomatocytosis, xerocytosis, Marden-Walker and Gordon syndromes, and distal arthrogry-

posis (Albuisson et al., 2013; Bae et al., 2013; Coste et al., 2013; McMillin et al., 2014). Impor-

tantly, several of these gain-of-function mutations not only reduce the rate and/or extent of

inactivation, but also apparently sensitize Piezos to pressure (Bae et al., 2013). Additionally, the

only known agonist for Piezo ion channels, Yoda1, both sensitizes Piezo1 to pressure and slows inac-

tivation (Syeda et al., 2015).

The pressure sensitivity of Piezos also varies with cell type, with previous reports of half-maximal

pressure for activation for Piezo1 ranging from ~�15 to �40 mmHg (Coste et al., 2010; Li et al.,

2014; Pathak et al., 2014). Local membrane tension and curvature also vary among and even within

cells, with potentially important implications for Piezo function. Piezo sensitivity is also modulated by

proteins including EPAC1 and STOML3; differential expression of these and other modulators both

among cells and within a single cell may also regulate the overall sensitivity (Eijkelkamp et al., 2013;

Poole et al., 2014). A mechanistic understanding of the link between the activating stimulus, local

membrane environment, inactivation, and channel sensitivity may provide specific strategies for

pharmacological modulation of Piezo activity. Here, we combine high-resolution, high-contrast imag-

ing with electrophysiology to investigate whether membrane curvature or lateral membrane tension

is the physical stimulus for activation of Piezo1 and how sensitivity to this stimulus might be

eLife digest Piezo ion channels are proteins that are embedded in the cell membranes of many

types of tissue, including the heart, lung, skin and kidney. These proteins are essential for many

biological processes, including sensing gentle touches and ensuring that blood vessels develop

properly.

When stimulated by mechanical forces, a central pore in the Piezo channel opens to allow

positively charged ions to flow into the cell, which triggers electrical and chemical signaling

processes inside the cell. However, it was not known exactly what type of mechanical stimulus is

sensed by Piezo ion channels.

Lewis and Grandl expressed Piezo ion channels in cultured human kidney cells, and opened them

by applying pressure to parts of the cell membrane inside a glass pipette. This causes a number of

changes to the membrane, including to its curvature and tension, either of which could potentially

open the Piezo channels. However, Lewis and Grandl were able to calculate from images of the cell

membrane inside the pipette that tension is the activating stimulus.

Further experiments unexpectedly revealed that the tension that is usually present in the cell

membrane is sufficient to inactivate Piezo channels and prevent them from responding to an

additional mechanical stimulus. This suggests that Piezo ion channels are inherently more sensitive

to tension than previously realized, which could explain why different cell types appear to have

different sensitivities to pressure.

Although Lewis and Grandl have now shown that Piezo channels are activated by tension, more

work is needed to investigate how the Piezo ion channel senses this force, and how this leads to the

channel pore opening.

DOI:10.7554/eLife.12088.002
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intrinsically regulated. We find that Piezo1 is activated by membrane tension with a high degree of

sensitivity (T50 = 1.4 ± 0.1 mN/m) and that this sensitivity is directly influenced by resting membrane

tension.

Results

Piezo1 is activated by both convex and concave membrane curvature in
multiple patch configurations
In order to assay the influence of membrane curvature and lateral membrane tension on Piezo ion

channel activity, we transiently transfected HEK293t cells with mouse Piezo1-IRES-GFP and per-

formed electrophysiological recordings during application of negative or positive pressure to the

membrane patch by using a high-speed pressure clamp system, while simultaneously imaging the

membrane inside the patch pipette with high resolution (400x), differential interference contrast

(DIC) microscopy.

Consistent with previous reports, we observed that in cell-attached patches, negative pressure

induced rapidly-inactivating inward currents at �80 mV that are characteristic of Piezo1 ion channels

(Coste et al., 2010; 2012). Currents first became apparent at �5 mmHg, increased with the magni-

tude of pressure, and reached saturation at ~�30 mmHg (Figure 1A). As expected, our simulta-

neous imaging approach revealed that negative pressure also induced a convex curvature of the

membrane and that the radius of curvature decreased with increasing magnitudes of pressure

(Figure 1A; Video 1).

Next, we wanted to probe how Piezo1 would respond to opposite (concave) membrane curva-

ture. We therefore applied positive pressure to our membrane patches, which indeed inverted the

membrane curvature. Piezo1 currents were also reliably induced by this positive pressure protocol

(Figure 1B). Peak current amplitudes again increased with the magnitude of pressure, albeit with a

striking difference: pressure responses were right-shifted, as currents first became apparent at +15

mmHg and often did not reach saturation before rupture of the patch. Interestingly, we also often

observed small currents upon release of small (+5 mmHg) positive pressure stimuli, discussed further

below. Together, these observations suggest that in cellular membranes, Piezo1 is activated by both

convex and concave membrane curvature.

We next wanted to test if membrane sidedness and mechanical stability conferred by the cyto-

skeleton had any influence in this activation process. We therefore repeated these experiments in

both inside-out and outside-out patches, both of which result in disrupted cytoskeletal structure and

in the latter, inverted membrane leaflets with respect to the patch pipette. For inside-out patches,

both positive and negative pressure again evoked transient inward currents through Piezo1 ion chan-

nels (Figure 1C and D). In this patch configuration, the optical density of the membrane was

reduced compared to cell-attached patches, consistent with the idea that less cytoskeleton is

retained in a cell-detached configuration (Suchyna et al., 2009). However, DIC imaging was still suf-

ficiently sensitive to resolve the convex and concave membrane curvatures induced by positive and

negative pressure protocols, respectively. In the outside-out configuration, we were only able to con-

sistently visualize the membrane during application of positive pressure, but not during negative

pressure, perhaps because excess membrane folded within the tip was conformationally flexible and

therefore not resolved at our imaging speed (Ruknudin et al., 1991). Still, we obtained the same

result as for the other patch configurations: both positive and negative pressure robustly activated

Piezo1 currents (Figure 1E and F). In contrast to cell-attached and inside-out patches, we did not

consistently observe decay of currents elicited in the outside-out configuration.

In all of the above experiments, only negligible currents were elicited in cells transfected with

empty vector (pcDNA), showing that the currents induced by membrane curvature are specifically

mediated by Piezo1 (Figure 2A–C). While Piezo1-mediated currents were reliably evoked by bidirec-

tional pressure in all patch configurations, individual patches did show some expected variability in

their precise current amplitude levels, mostly among different patch configurations. Several variables

could potentially change among configurations, including patch surface area, cytoskeletal content,

and stability of the gigaseal, any or all of which could in theory contribute to the observed differen-

ces. Specifically, currents elicited by positive pressure in outside-out patches were typically larger

than in the other configurations, consistent with the observation that a larger surface area of
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membrane is preserved within the confines of the gigaseal in this configuration (Figure 1F). In con-

trast, currents elicited by positive pressure in inside-out patches were small, likely because patches

that survived multiple positive pressure pulses were biased towards those made using smaller pip-

ettes (Figure 1D).

Figure 1. Electrophysiology and high-contrast imaging of Piezo-containing membranes. Pressure-step protocol,

representative currents and corresponding images from individual cell-attached patches from a HEK293t cell

expressing mouse Piezo1-IRES-GFP, upon negative (A) and positive (B) pressure stimulation. Pressure-step

protocol, respective representative currents and corresponding images from individual inside-out patches upon

negative (C) and positive (D) pressure stimulation. Pressure-step protocol, respective representative currents and

images from individual outside-out patches upon negative (E) and positive (F) pressure stimulation. All patches

were held at �80 mV. Scale bars are 2 mm for all images.

DOI: 10.7554/eLife.12088.003
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We also observed differences in the pressure

required for half-maximal activation (P50) of

Piezo1 among patch configurations and direc-

tions of curvature (Figure 2D). Cell-attached

patches stimulated with negative pressure

required less pressure for activation (P5o =

�16.7 ± 2.8 mmHg; N=15) than inside-out

patches (P50 = �35.8 ± 4.0 mmHg; N=10;

P<0.05). In contrast, cell-attached and inside-out

patches required similar pressures for activation

with positive pressure (cell-attached: P50 =

+19.3 ± 1.2 mmHg; N=12; inside-out: P50 =

+26.7 ± 4.2 mmHg; N=7; P>0.05). These values

for positive pressure are likely an underestimate

of the true P50 values for the positive pressure in

both configurations, due to premature rupture

of some patches before reaching saturation. For

outside-out patches, much larger pressures were

required for activation than other configurations

(positive pressure: P50 = +70.0 ± 9.6 mmHg;

N=11; negative pressure: P50 = �39.8 ± 3.1

mmHg; N = 6). Together, these experiments

provide strong evidence that Piezo1 can be acti-

vated by both convex and concave membrane

curvature. Further, as cytoskeletal content varies

with patch configuration, the different sensitivi-

ties we observed among configurations and with convex versus concave geometry suggests that

Piezo1 sensitivity to a given stimulus (in this case, pressure) may vary significantly with the amount of

cytoskeletal content and its sidedness, i.e., whether the cytoskeleton is subjected into a convex vs.

concave geometry (Suchyna et al., 2009).

Piezo1 activation is consistent with membrane tension as the activating
stimulus
The radius of curvature (R) of a surface exposed to a pressure difference (Dp) is directly related to

lateral tension (T), as described by Laplace’s law: T = R�Dp/2. However, while curvature can be either

positive or negative (convex or concave), tension is a symmetrical quantity. The fact that Piezo1 ion

channels respond well to both convex and concave curvature therefore suggests qualitatively that

Piezo1 might be activated by lateral membrane tension.

To investigate this symmetric relationship quantitatively, we next measured the radius of mem-

brane curvature (R) for each patch and pressure step (Dp) with a custom script written in Igor-Pro

(WaveMetrics, Lake Oswego, OR) and calculated the membrane tension using Laplace’s law

(Figure 3A). We focused our analysis on the cell-attached and inside-out configurations, which had

the highest quality images (Figure 1A and C).

In order to pool data from multiple cells, we normalized each individual patch to its plateau cur-

rent in response to saturating stimuli (obtained from a Boltzmann fit; see Materials and methods)

and calculated current amplitude histograms as a function of membrane tension (Figure 3B and C).

The binned data were then fit, using the standard deviations for each bin to weight the fit. For cell-

attached patches, we found that Piezo1 channel activity is well described by a Boltzmann function

with a tension of half-maximal activation T50 = 2.7 ± 0.1 mN/m and a slope factor k = 0.8 ± 0.1 (N =

15). Similarly, for inside-out patches, the distribution was also well-described by a Boltzmann func-

tion; however, patches required slightly more tension for activation (T50 = 4.7 ± 0.3 mN/m; N = 10;

P<0.001 vs cell-attached) and had a shallower slope factor (k = 1.2 ± 0.1; P<0.001 vs. cell-attached).

Notably, in both configurations the likelihood of a given pulse leading to patch rupture increased

sharply starting around 10 mN/m; this is consistent with the lytic tension of the gigaseal, previously

reported to be ~10 mN/m (Suchyna et al., 2009). The fact that inside-out patches require a greater

increase in tension to open Piezos is also consistent with the notion that the intrinsic resting tension

Video 1. Response of cell-attached HEK293t patch to

stimulation with negative pressure in �5 mmHg

increments; acquired at 7.9 frames/s, played at 50

frames/s. Video corresponds to cell in Figure 1A.

DOI: 10.7554/eLife.12088.004
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is different in these two configurations (see below). Together, these results demonstrate quantita-

tively that Piezo1 activation is consistent with membrane tension as the principal stimulus. In addi-

tion, this reveals that Piezo1 is a tension sensor with higher sensitivity than previously reported for

other mechanically activated ion channels such as MscS and MscL, (T50 = ~5 mN/m and ~10 mN/m,

respectively, when reconstituted in asolectin liposomes or lipid bilayers (Moe and Blount, 2005;

Nomura et al., 2012; Sukharev, 2002; Sukharev et al., 1999).

Figure 2. Mean Piezo1 current responses for all patch configurations upon positive and negative pressure stimulation. (A) Pressure-evoked currents

from cell-attached patches from HEK293t cells expressing empty vector (pcDNA; open circles) or Mouse Piezo1-IRES-GFP (closed circles). Separate

patches were tested for positive and negative pressure stimulation. N = 7 for pcDNA at negative pressure, N = 6 for pcDNA at positive pressure, N =

15 for Piezo1 at negative pressure and N = 12 for Piezo1 at positive pressure. (B) Pressure-evoked currents from inside-out patches from HEK293t cells

expressing empty vector (pcDNA; open circles) or Mouse Piezo1-IRES-GFP (closed circles). Separate patches were tested for positive and negative

pressure stimulation. N = 4 for pcDNA at negative pressure, N = 3 for pcDNA at positive pressure, N = 10 for Piezo1 at negative pressure and N = 7 for

Piezo1 at positive pressure. (C) Pressure-evoked currents from outside-out patches from HEK293t cells expressing empty vector (pcDNA; open circles)

or Mouse Piezo1-IRES-GFP (closed circles). Separate patches were tested for positive and negative pressure stimulation. N = 3 for pcDNA at negative

pressure, N = 7 for pcDNA at positive pressure, N = 6 for Piezo1 at negative pressure and N = 11 for Piezo1 at positive pressure. (D) Normalized mean

current-pressure relations for all six configurations. For each individual patch currents were normalized to the peak current for that patch. All data points

are mean ± s.e.m.

DOI: 10.7554/eLife.12088.005

Lewis and Grandl. eLife 2015;4:e12088. DOI: 10.7554/eLife.12088 6 of 17

Research article Biophysics and structural biology Neuroscience

http://dx.doi.org/10.7554/eLife.12088.005
http://dx.doi.org/10.7554/eLife.12088


Figure 3. Measurement of membrane curvature and quantification of membrane tension. (A) Representative

image of cell-attached patch and schematic showing orientation of membrane. The solid red line marks the

measured position of the membrane and the dashed yellow line is a circular fit to this position. Both steps were

performed using a script written in Igor Pro (see Materials and methods). For this representative patch the radius R

from the fit (solid yellow line) was 2.87 mm. (B) Current-tension histogram for Piezo1 responses to negative

pressure in cell-attached patches from HEK293t cells. For each cell, current-pressure curves were fit with a

sigmoid, and each response normalized to the plateau from the fit. Tension was calculated using the measured

membrane curvature from the corresponding image for each response and normalized current plotted against

tension (gray circles). Data were binned (bin width 1 mN/m) and pooled (black bars; mean ± s.e.m). Binned data

were fit with a Boltzmann function: Imax/(1+exp(-(T-T50])/k])) where Imax is the maximal normalized current, T is

tension, T50 is the tension of half-maximal activation, and k is the slope factor. The standard deviation of the

Figure 3. continued on next page
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Piezo1 responsiveness to a single pressure step is modulated by
membrane tension
The resting tension in a cell-attached gigaseal patch has previously been estimated to be on the

order of 0.5–4.0 mN/m, which is similar in magnitude to the tension of half-maximal activation (T50 =

2.7 ± 0.1 mN/m) we determined in cell-attached patches (Opsahl and Webb, 1994). Additionally,

we observed that membrane patches are already substantially curved at rest, i.e. in the absence of

any external pressure difference (Dp = 0 mmHg) (Figure 1A). Finally, as mentioned above, we

noticed in our cell-attached and inside-out recordings that stimulation with +5 mmHg was not suffi-

cient to activate channels, but that instead a current was evoked upon pressure release (Figures 1B

and D). We therefore hypothesized that even at rest (Dp = 0 mmHg), a substantial fraction of Piezo1

ion channels might be stimulated and subsequently inactivated. From this, we predicted that a small

positive pressure stimulus, that precisely compensates the resting curvature, should effectively zero

membrane tension in the patch dome and therefore, if sufficiently long, such a stimulus would allow

Piezos to recover from inactivation.

To test these predictions systematically, we again utilized our ability to image and thereby pre-

cisely measure membrane curvature while simultaneously measuring Piezo1 currents. Previously,

pressure prepulses have been used to modulate the resting state of K2P and MscS mechanosensitive

ion channels prior to assaying availability (Akitake et al., 2005; Honore et al., 2006). Here, we

developed a novel prepulse protocol, in which we applied pressure steps of varying amplitudes for 5

s (0—+10 mmHg, 4=1 mmHg), followed by a pressure release to 0 mmHg (Figure 4A). Strikingly,

with this first prepulse protocol we were able to elicit robust rapidly-inactivating currents in cell-

attached patches not during the presence of pressure, but rather upon its release. The current ampli-

tudes depended strongly on the prepulse amplitude in a U-shaped manner, i.e., currents were maxi-

mal after prepulses of ~ +5–6 mmHg and decreased for smaller or larger prepulses (Figure 4A,B).

We never observed currents upon release of pressure in cells transfected with empty vector

(pcDNA), indicating that these currents were indeed Piezo1-mediated (Figure 4B). Importantly, the

biphasic dependence of current on prepulse pressure amplitude was tightly linked to membrane cur-

vature. Specifically, we observed for each individual patch that peak currents occurred at or near the

minimal curvature, i.e., when the membrane was flattest (Figure 4C). Averaging data from N = 14

patches further showed that currents are maximal precisely after prepulses that minimize membrane

curvature (Rfi¥) (Figure 4D).

This result raised the possibility that Piezo1 ion channels could be sensing changes in tension,

rather than absolute tension. However, the fact that pressure stimuli that overcompensate resting

membrane tension and induce opposite curvature lead to reductions in current amplitude upon

pressure release make it implausible that Piezo channels sense changes in tension. Rather, the most

direct explanation is that a transient reduction in tension by flattening the membrane patch allows

for recovery of Piezo1 ion channels from inactivation.

A second prediction from our hypothesis was that Piezo1 recovery from inactivation should mani-

fest itself in a specific time course. We therefore next investigated the relationship between current

amplitude and prepulse duration. First, using the above protocol, we determined for each individual

patch the precise prepulse amplitude that produced the greatest current upon release of pressure.

For our patch pipette sizes (typically 2–3 MW in our standard solutions), this was typically +5 mmHg

or +6 mmHg. Second, we applied exactly this optimal prepulse stimulus for varying durations from

300 ms to 10 s (4=0.75x), followed by a return to 0 mmHg (Figure 4E).

Using this second prepulse protocol, we found that the increase in current amplitude with pre-

pulse duration followed an exponential time course with t = 2.4 ± 0.3 s (Figure 4F,G). This time con-

stant is comparable to the time-dependence of recovery of Piezo2 ion channels from inactivation by

whole-cell poking assays, providing further evidence that the process we are observing reflects

Figure 3. Continued

normalized amplitude for each bin was used to weight the fit. Fit parameters Imax = 0.99±0.01, T50 = 2.7±0.1 mN/

m, k = 0.8±0.1. N = 15 cells and 218 responses. (C) Current-tension histogram for Piezo1 responses to negative

pressure in inside-out patches from HEK293t cells. Plot was generated as described in (B). Fit parameters: Imax =

0.81±0.04, T50 = 4.7±0.3 mN/m, k = 1.2±0.1. N = 10 cells and 123 responses.

DOI: 10.7554/eLife.12088.006
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recovery from inactivation (Coste et al., 2013). Importantly, this finding demonstrates that under

standard recording conditions, a substantial fraction of Piezo ion channels is inactivated prior to

pressure stimulation.

Figure 4. Activation of Piezo1 currents upon release of pressure stimulation. (A) Left, pressure stimulus protocol and representative currents showing

activation of Piezo1 ion channels in a cell-attached patch upon release of a 5 s positive pressure stimulus. Holding potential was �80 mV. Right,

corresponding images for 0, +6, and +10 mmHg pressure steps with membrane patch radius R fit superimposed (red dashes) and calculated radius

indicated below. (B) Mean peak current upon release of a 5 s positive pressure pulse (0 to +10 mmHg) for cells transfected with empty vector (pcDNA;

N = 9 cells) and with mouse Piezo1 (N = 14 cells). (C) Current-radius relationships for six representative measurements performed as shown in (A). The

solid black line is showing the measurement in (A). (D) Normalized current-radius relationship for all measurements. For each individual patch currents

were normalized to the maximal response from that patch and plotted versus inverse radius. Data were binned (bin width 0.05 mm-1); bars represent

mean normalized amplitude ± s.e.m. for each bin. N = 14 cell-attached patches and 148 responses. (E) Pressure-stimulus protocol and representative

currents showing the time course of current increase with longer prepulse duration in a patch expressing mouse Piezo1. (F) Mean peak current as a

function of prepulse duration for cells transfected with pcDNA or Piezo1 (N = 9 and N = 11, respectively). For each Piezo1 patch, the prepulse

amplitude that caused maximal current for that cell (determined with protocol in (A)) was used. For our patch pipette sizes this was typically +5 or +6

mmHg; +5 mmHg was used for all pcDNA patches. (G) Normalized mean peak current as a function of prepulse duration for cells transfected with

Piezo1. For each individual patch, currents were normalized to maximal response from that patch. Mean data were fit with an exponential function

I=Imax + A*exp(-t-t0)/tau. Fit parameters Imax = 0.82±0.02, A = 0.49±0.02, tau = 2.4±0.3 ms. N = 11 cells. All data points are mean ± s.e.m.

DOI: 10.7554/eLife.12088.007
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Overall Piezo1 sensitivity is modulated by membrane tension
Thus far, our data demonstrate that membrane tension is a potent modulator of Piezo1 responsive-

ness to a single subsequent stimulus. With this information in hand, we next asked whether the over-

all sensitivity of Piezo1 could be altered by resting membrane tension. In addition to our own data,

two previously reported observations suggested this might be possible. First, human gain-of-func-

tion mutations in Piezo1 that reduce channel inactivation also apparently sensitize Piezo1 to pressure

stimulation (Bae et al., 2013). Second, the only known chemical Piezo1 agonist, Yoda1, both antago-

nizes inactivation and shifts the P50 curve towards smaller values (Syeda et al., 2015).

To test how removing membrane tension would affect overall Piezo sensitivity, we developed a

third prepulse protocol. We applied alternating 5 s prepulses of 0, +5, or +10 mmHg; each prepulse

was followed by a 300 ms test pulse of varying amplitude (0 to �50 mmHg; 4=5 mmHg)

(Figure 5A). We chose these precise prepulse amplitudes because we had previously observed that

+5 mmHg prepulses nearly flattened the membrane, while +10 mmHg prepulses induced opposite

(concave) curvature that was roughly equivalent in magnitude to the resting (convex) curvature

(Figure 4A). We chose a 5 s prepulse duration because this was sufficient for nearly complete recov-

ery from inactivation while minimizing premature rupture of patches during long pulses to positive

pressures (Figure 4E). As before, this experiment was performed with simultaneous imaging of cell-

attached membrane patches.

The effect of the +5 mmHg prepulse on the overall current-pressure relationship was striking:

When preceded by a +5 mmHg prepulse, currents elicited by a subsequent test pulse were greatly

increased in amplitude. Additionally, the pressure of half-maximal activation was shifted by ~9

mmHg towards lower pressures (P50 = �16.8 ± 2.8 mmHg with a 0 mmHg prepulse and P50 = �7.7

± 1.1 mmHg with a +5 mmHg prepulse; N=11; P<0.05) (Figure 5A and B). Importantly, prepulses of

+10 mmHg did not affect the overall pressure sensitivity as compared to 0 mmHg prepulses (P50 =

�16.8 ± 2.8 mmHg with a 0 mmHg prepulse and P50 = �13.5 ± 2.9 mmHg with a +10 mmHg pre-

pulse; N=11; P>0.05). As before (Figure 2A), only negligible currents were elicited in patches trans-

fected with empty vector (pcDNA), even during test pulses preceded by a +5 mmHg prepulse,

indicating the increase in current at lower pressures did not result from novel recruitment of endoge-

nous mechanosensitive channels in HEK293t cells (Figure 5B). These results suggest that pressure

prepulses that minimize membrane tension shift overall Piezo sensitivity maximally leftwards.

Importantly, we found that during the long duration of the prepulse experiment, membrane

geometry was sufficiently stable to reversibly and reliably alternate between different membrane

curvatures (Figure 5C). While there are slight variations in resting radius throughout the duration of

the recording, likely due to slight creep of the patch, these are minor compared to the large

changes in radius induced by the pre- and test pulses.

To establish the effect of prepulses on overall Piezo sensitivity quantitatively, we calculated mem-

brane tension during the test pulse from the corresponding images. We found that the tension of

half-maximal activation was indeed leftward shifted, from T50 = 2.2 ± 0.1 mN/m without a prepulse

(0 mmHg) to T50 = 1.4 ± 0.1 mN/m with a +5 mmHg prepulse (P<0.001; N=11; Figure 5D,E, and G).

Upon a +10 mmHg prepulse, the T50 was also leftward shifted to that without a prepulse, but to a

lesser extent than with a +5 mmHg prepulse (T50 = 1.8 ± 0.2 mN/m; P=0.03; Figure 5F and G). The

slope factor was unaltered by prepulse amplitude (0 mmHg prepulse, k = 0.8 ± 0.1; +5 mmHg pre-

pulse, k = 0.7 ± 0.1; P=0.53 vs 0 mmHg; +10 mmHg prepulse, k = 1.1 ± 0.2; P=0.07 vs. 0 mmHg).

Altogether, our approach unmasks the inherent tension sensitivity of Piezo1 and demonstrates that

it can be substantially modulated by resting membrane tension. Our results imply that in a native

and undisturbed cell, the same mechanism might affect overall sensitivity of Piezo1.

Discussion
We originally set out to identify the physical stimulus that activates Piezo1 ion channels. We chose to

examine Piezo sensitivity in membrane patches from living cells, which differs from the bottom-up

approaches of artificial lipid bilayers or micelle systems, in that the lipid composition is heteroge-

neous, the channel protein is not purified from possible interaction partners, and cellular mechanical

stability is maintained. We found that similar to the vertebrate mechanosensitive K+ channels TREK-1

and TRAAK, Piezo1 responds robustly to both positive and negative pressure (Brohawn et al.,

2014b). There are several possible mechanisms for how mechanosensitive ion channels may convert
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Figure 5. Overall Piezo1 sensitivity is regulated by resting membrane tension. (A) Stimulus protocol and

representative currents from a cell-attached HEK293t cell patch expressing mouse Piezo1-IRES-GFP. The test pulse

for these currents was �10 mmHg (thick purple line); holding potential was �80 mV. Inset shows test currents at

magnified scale. (B) Peak current-pressure relationships for test pulses (0 to �50mmHg, D5 mmHg) following 5 s 0

mmHg, +5 mmHg and +10 mmHg prepulses.. All data points are mean ± s.e.m. N = 8 cell-attached patches

(pcDNA) and 11 cell-attached patches (Piezo1). (C) Mean patch curvature as a function of time during protocol

performed shown in (A). Representative images of one individual patch are shown above. Each patch was tested

with no prepulse (0 mmHg), a +5 mmHg prepulse, and a +10 mmHg prepulse at each test pressure before

advancing to the next test pressure. Grey markers show inverse radius during rest periods (0 mmHg, between

stimuli), purple markers show inverse radius during 300 ms test pulses (0 to �50 mmHg, D5 mmHg), orange

markers show inverse radius during +5 mmHg or +10 mmHg prepulse. All data points are mean ± s.e.m. N = 11

for cell-attached patches. (D–F) Normalized current-tension relationships obtained from protocol shown in (A)

using no prepulse (0 mmHg) (D), +5 mmHg prepulse (E) and +10 mmHg prepulse (F). Currents from individual

patches are normalized to the maximal response for each patch. Data were pooled and binned (bin width 1 mN/

m); bars represent mean ± s.e.m. N = 11 patches. Binned data were fit with a Boltzmann function I = Imax/(1+exp(-

(T-T50/k)) where I is normalized current, Imax is the plateau, T is tension, T50 is the tension of half-maximal

activation, and k is the slope factor. The standard deviation of the normalized amplitude for each bin was used to

Figure 5. continued on next page
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physical force into pore opening (Ranade et al., 2015; Sukharev and Corey, 2004). In a tethered

mechanism, force could be transmitted to the channel through auxiliary proteins, whereas in a

bilayer mechanism, force could be transmitted directly through the lipid bilayer. In the latter case,

the channel must sense either membrane curvature or lateral membrane tension. Several well-stud-

ied mechanosensitive ion channels have previously been demonstrated to sense lateral membrane

tension, including prokaryotic channels MscS and MscL, as well as TREK-1 and TRAAK

(Brohawn et al., 2014b; Moe and Blount, 2005; Sokabe et al., 1991; Sukharev, 1999; 2002). How-

ever, Piezos are distinct from each of these previously identified tension sensors in that they are

much larger, with many more predicted transmembrane domains, and in that they share no homol-

ogy on a primary sequence or overall architectural level (Brohawn et al., 2014a; Coste et al., 2015;

Ge et al., 2015; Kamajaya et al., 2014).

Our simultaneous imaging with electrophysiology revealed that both convex and concave macro-

scopic curvature in the membrane patch induce channel opening. While it is theoretically possible

that Piezo1 senses convex and concave membrane curvature with equal sensitivity, this mechanism

would require curvature sensing structures that are symmetrical. However, Piezo proteins do not

contain any amino acid sequences with similarity to any known curvature-sensing proteins, and the

recently obtained cryo-electron microscopy structure shows no symmetrical features with respect to

the plane of the bilayer, making this possibility unlikely (Antonny, 2011; Ge et al., 2015;

McMahon and Boucrot, 2015). It is also possible that local membrane curvature and tension are not

strictly coupled to macroscopic membrane curvature. Previous reports indicate that alterations in

local curvature induced by asymmetric incorporation of lipids can change the response of tension-

gated channels to pressure (Perozo et al., 2002); this will also have to be tested for Piezo1.

Consistent with the idea that Piezo1 senses lateral membrane tension, we were able to combine

electrophysiology and imaging to quantify the tension required for activation of Piezo1 in cell-

attached and inside-out patches. Our data suggest that Piezo is a unique mechanosensor, as Piezo1

probed in a cellular environment is much more sensitive to tension (T50 = 1.4 ± 0.1 mN/m) than are

MscL and MscS in azolectin liposomes (T50 ~5–10 mN/m), although we cannot rule out differences

arising from the different local lipid environment in eukaryotic cells versus reconstituted systems

(Moe and Blount, 2005; Nomura et al., 2012; Sukharev, 2002; Sukharev et al., 1999). Together,

our data support the evolutionary need for this novel mechanosensor; unlike the prokaryotic ‘release

valves’ MscL and MscS, Piezo is able to detect very small changes in membrane tension, an ability

that is essential for its role in intricate physiological processes ranging from sensing renal and blood

flow to detection of light touch (Cahalan et al., 2015; Maksimovic et al., 2014; Ranade et al.,

2014a; Ranade et al., 2014b; Woo et al., 2014).

Observing Piezo1 activity in multiple patch configurations also allowed us to make several obser-

vations. First, sensitivity of Piezo1 to tension differed in cell-attached versus inside-out patches. One

potential explanation for this difference is the varying amount of cytoskeleton retained in the two

configurations, which contributes to membrane properties, including tension (Gauthier et al., 2012).

Consistent with this, we observed lower optical density in inside-out patches, which are known to

contain less cytoskeleton (Suchyna et al., 2009). Together, this predicts that the cytoskeleton is an

important regulator of Piezo1 sensitivity, a finding that is reconciled with previous reports that inhibi-

tion of actin polymerization with cytochalsin-D inhibits whole-cell Piezo1 currents evoked by direct

stimulus with a glass pipette, but increases opening in cell-attached pressure-evoked currents

(Gnanasambandam et al., 2015; Gottlieb et al., 2012). In fact, we cannot rule out a role of the

cytoskeleton in directly contributing or even being essential to Piezo activation. We also observed

differences in both rate and extent of decay of Piezo1-mediated currents among patch configura-

tions. While the mechanism of Piezo1 inactivation is unknown, a previous study reports that inactiva-

tion is irreversibly lost with repeated stimulation, which may explain why we observed the least

Figure 5. Continued

weight the fit. Fit parameters for no prepulse (0 mmHg): Imax = 0.84±0.02, T50 = 2.2±0.1 mN/m, k = 0.8±0.1. For +5

mmHg prepulse: Imax = 0.85±0.01, T­­50 = 1.4±0.1 mN/m, k = 0.7±0.1. For +10 mmHg prepulse: Imax = 0.70±0.04,

T50 = 1.8±0.2 mN/m, k = 1.1±0.2. (G) Fits from D-F overlayed (solid line) with 95% confidence intervals (dashed

lines).

DOI: 10.7554/eLife.12088.008
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inactivation in outside-out patches, in which the membrane undergoes the most manipulation prior

to assaying activity (Gottlieb et al., 2012).

Second, the reported sensitivity of Piezo1 to pressure shows remarkable variation among cell

types and stimulation protocols. For example, while the P50 is typically reported to be ~ �30 mmHg

for heterologously expressed Piezo1 in HEK293t cells, in neural stem cells, the P50 was ~�13 mmHg,

whereas the P50 was ~�40 mmHg in the breast cancer cell line MCF-7 (Coste et al., 2010; Li et al.,

2014; Pathak et al., 2014). One explanation for this is that Piezo1 sensitivity is modulated by inter-

action with other cellular components, which may be differentially expressed: For example, Piezo1

mechanosensitivity requires the presence of phosphoinositides, which are depleted over time in

excised patches (Borbiro et al., 2015); the integral membrane protein STOML3 also greatly

increases Piezo1 sensitivity (Poole et al., 2014). Here, we found that an additional modulator of

Piezo sensitivity is resting membrane tension. Importantly, cellular membrane tension varies greatly

with cell type; even within one cell local tension depends on factors including lipid composition,

cytoskeletal contacts, the extracellular matrix, and others (Blumenthal et al., 2014; Hoffman, 2014;

Vasquez et al., 2014). As Piezos are thus under differing tension depending on their cellular expres-

sion and localization, the ability of tension to modulate sensitivity gives Piezo1 a broad tuning curve

that primes it to respond to physiologically relevant changes in tension at that location. Importantly,

this makes Piezos robust sensors of membrane tension in the remarkably wide variety of cell types in

which they are expressed.

Third, our results also identify inactivation as an important physiological modulator of overall

Piezo1 sensitivity. Interestingly, the currents we observed after Piezo channels recovered from inacti-

vation during a transient period of zero tension (i.e., +5 mmHg prepulses) may have important physi-

ological relevance: a stimulus that results in a local reduction of membrane tension may lead to

increased Piezo activity in this region upon release of this stimulus, perhaps providing a mechanism

by which cells can sense not only the onset, but also the offset of a stimulus. The interplay between

activation and inactivation may also make Piezo1 most sensitive to rapidly applied mechanical stim-

uli, similar to previous reports for MscS, as slowly applied stimuli will lead to gradual accumulation of

channels in inactivated states (Akitake et al., 2005). The advent of structural information about the

various domains of Piezo, as well as its overall architecture will be extremely useful in identifying the

structural correlates of both the mechanosensor and the inactivation mechanism, as activation and

inactivation combine to dictate overall sensitivity (Ge et al., 2015; Kamajaya et al., 2014).

Finally, we anticipate that our simple prepulse protocol will provide a useful tool for measuring

the inherent mechanosensitivity in different cells and irrespective of inactivation kinetics by manipu-

lating the curvature of the membrane to minimize tension prior to testing sensitivity. The prepulse

amplitude required for flattening of the membrane and removal of resting tension will vary with the

particulars of a given system, including cell type and pipette size, but can be measured even in the

absence of imaging data with the protocol in Figure 4B, by using the pressure at which the maximal

offset current amplitude is evoked.

Materials and methods

Cell culture
Human embryonic kidney HEK293t cells (ATCC # 3579061) were provided and authenticated (STR

authenticated and verified mycoplasma-free) by the Duke Cell Culture Facility. Cells were grown in

DMEM (Life Technologies) with 10% heat-inactivated fetal bovine serum (Clontech Laboratories,

Mountain View, CA), 50 units/ml penicillin, and 50 mg/ml streptomycin (Life Technologies, Carlsbad,

CA). Cells were transiently transfected in 6 well plates in the presence of 10 mM ruthenium red with

Mouse Piezo1-IRES-GFP (3 mg) or empty vector (pcDNA3.1(-) and GFP) using Fugene (Promega,

Madison, WI) ~48 hr before recording. Transfected cells were reseeded at low density the day

before recording in 50 mm glass-bottomed dishes (P50G-0-30-F; MatTek Corporation, Ashland, MA)

coated with Poly-L-lysine and laminin.

Electrophysiology
Patch-clamp recordings were performed at room temperature using an EPC10 amplifier and Patch-

master software (HEKA Elektronik, Lambrecht, Germany). Data were sampled at 5 kHz and filtered
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at 2.9 kHz. Borosilicate glass pipettes (1.5 OD, 0.85 ID; Sutter Instrument Company, Novato, CA)

had a resistance of 1.5–4 MW when filled with pipette buffer solution (in mM: 130 NaCl, 5 KCl, 10

HEPES, 10 TEACl, 1 CaCl2, 1 MgCl2, pH = 7.3 with NaOH). The standard bath solution was (in

mM): 140 KCl, 10 HEPES, 1 MgCl2, 10 glucose, pH = 7.3 with KOH. Pipettes were angled at ~15˚
with respect to the glass cover slip to optimize image contrast. Pressure was controlled with a high-

speed pressure clamp system (HSPC-1; ALA Scientific Instruments, Farmingdale, NY). Patches were

held at �80 mV and stimulated with pressure-step protocols described in the manuscript. Unless

stated otherwise, sweeps were separated by 10 s to allow for recovery from inactivation.

Electrophysiological recordings were only analyzed for patches with a seal resistance of at least

1GW and maximal pressure-induced currents of at least 50 pA for cell-attached and inside-out

patches with negative pressure and 20 pA for all other configurations. Only one patch was excised

from each cell; with the exception of Figure 4F, which required prior determination of the appropri-

ate prepulse for each patch using the protocol in 4B, only one protocol was performed on each

patch. Analysis was performed with Igor Pro 6.22A (WaveMetrics, Lake Oswego, OR). Baseline cur-

rents before pressure stimulation were subtracted off-line and peak currents measured at each pres-

sure. Student’s t-test or ANOVA followed by Tukey-Kramer comparison of pairs of means were used

to assess statistical significance.

Imaging
Images of the cell membrane inside the patch pipette were captured at a rate of ~7.5 frames per

second (125 ms exposure) at a resolution of 61.5 pixels/mm using a Plan Apo (100x) DIC oil objective

coupled with a Coolsnap ES camera and 4x relay lens (Nikon Instruments Inc, Melville, NY). During

imaging, the focal plane was continuously adjusted to center on the contact points of the membrane

with pipette walls, indicated by the ‘crossing over’ of the lines corresponding to the pipette (see

Video 1). Short (300 ms) pressure pulses were used to minimize membrane ‘creep’ and excessive

movement of the membrane out of the focal plane. Images were extracted from videos in NIS-Ele-

ments (Nikon Instruments Inc, Melville, NY) and imported into Igor Pro (WaveMetrics, Lake Oswego,

OR). To identify the membrane geometry, a line scan parallel to the pipette walls was performed to

localize the minimum pixel intensity for each line over a rolling average of 9 pixels; the script, cus-

tom-written in IgorPro, is available in our Github Repository (github.com/GrandlLab). These posi-

tions were then fit with a circle to obtain the radius (R). Tension (T) was calculated for every pressure

step Dp using Laplace’s law: T= R�Dp/2. For pooling and binning data, current-pressure responses

for individual cells were fit with a Boltzmann function (Imax/(1+exp(-(P-P50)/k))) and individual current

amplitudes were re-normalized to the plateau response to saturating stimuli from the fit (IMax). To

calculate the tension required for activation, binned data were fit with a Boltzmann function (I = Imax/

(1+exp(-(T-T50)/k))); the fit was weighted with the standard deviations from each bin.
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