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Abstract Transcription is a highly stochastic process. To infer transcription kinetics for a gene-
of-interest, researchers commonly compare the distribution of mMRNA copy-number to the
prediction of a theoretical model. However, the reliability of this procedure is limited because the
measured mRNA numbers represent integration over the mRNA lifetime, contribution from
multiple gene copies, and mixing of cells from different cell-cycle phases. We address these
limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and
incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on
Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics.
However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in
mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After
gene replication, the probability of each gene copy to be active diminishes, resulting in dosage
compensation.

DOI: 10.7554/elife.12175.001

Introduction

Gene expression is a stochastic process, consisting of a cascade of single-molecule events
(Coulon et al., 2014; Sanchez and Golding, 2013), which get amplified to the cellular level. A dra-
matic consequence of stochastic gene expression is that individual cells within a seemingly homoge-
nous population often exhibit significant differences in the expression level of a given gene (Raj and
van Oudenaarden, 2008). In fact, cell-to-cell variability in expression levels is the most commonly
used proxy for the presence and magnitude of stochastic effects (Elowitz et al., 2002; Raj et al.,
2006; Raser and O’Shea, 2005). The mapping between stochastic kinetics and population hetero-
geneity can be made rigorous by making specific assumptions about the kinetics of gene activity
and using stochastic theoretical modeling to predict the copy-number statistics of mRNA or protein
that would result from these kinetics (Friedman et al., 2006; Raj et al., 2006; Shahrezaei and
Swain, 2008; Thattai and van Oudenaarden, 2001). The theoretical prediction is then compared to
measured single-cell data, to validate the assumptions and estimate kinetic parameters. Using this
approach, cell-cell variability in mRNA numbers has been successfully used to demonstrate the
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elLife digest Scientific investigation requires researchers to use experimental observations to
understand the biological process that resulted in these observations. One example is a cellular
process called transcription, where the DNA of a gene is copied many times to make molecules of
messenger RNA (mRNA), which are later used as instructions to make proteins. Scientists indirectly
measure the dynamics of transcription, that is, how often the gene produces mRNA, by counting
how many mRNA molecules there are in many individual cells. These numbers are then compared to
the predictions made by a mathematical model of transcription, and if the model and experiment
agree well, this is interpreted to mean that the model properly describes how often this gene is
transcribed.

Unfortunately, this procedure is not straightforward because many factors complicate the
relationship between the dynamics of transcription and the number of mRNAs that will be detected
in each cell at any one point in time. For example, it is not possible to tell whether a detected
mRNA has just been transcribed, or whether it was made hours ago. The age of the cell and how
many copies of the template DNA are present also affect the dynamics of transcription. As a result,
mRNA measurements may be misinterpreted, leading to wrong conclusions about how highly
particular genes are transcribed.

To address this problem, Skinner et al. first improved the experimental measurements by
discriminating between mature mRNA and the new mRNA that is still being transcribed. The
experiments also measured how much DNA each cell contains, which indicates how old the cell is.
These measurements were incorporated into a new mathematical model that is able to predict the
dynamics of transcription of particular genes.

Skinner et al. applied their method to two mouse genes called Oct4 and Nanog, which regulate
the transformation of embryonic stem cells into other types of cells. The experiments show that both
genes can switch between an “on” state where they are being actively transcribed and an "off”
state where little or no mRNA is being produced. However, Nanog switches between these two
states less often than Oct4, which results in larger variations between the numbers of mRNAs
between different cells. The experiments also show that over the life of the cell, the level of
transcription from each copy of the DNA decreases.

Skinner et al.’s approach can be used to refine our knowledge of the transcription of other genes.
However, to further improve our understanding of transcription, measurements of other factors will
need to be incorporated into the mathematical models.

DOI: 10.7554/elife.12175.002

bursty, non-Poissonian nature of mRNA production in organisms from bacteria to mammals
(Bahar Halpern et al., 2015b; Raj et al., 2006, Senecal et al., 2014; So et al., 2011,
Zenklusen et al., 2008), and to decipher how genetic and cellular parameters modulate these kinet-
ics (Jones et al., 2014, Sanchez and Golding, 2013).

However, the ability to map back mRNA copy-number statistics to transcription kinetics is limited
by a number of factors. First, the measured number of mRNA molecules in the cell represents tem-
poral integration over the lifetime of MRNA molecules (Raj et al., 2006). And while in bacteria this
lifetime is very short (~mins [Chen et al., 2015]), in higher organisms it can be as long as hours
(Schwanhéusser et al., 2011). Consequently, the measured mRNA level is a poor proxy for the
instantaneous activity of the gene. Second, the cellular mMRNA combines contributions from all cop-
ies of the gene of interest—for example, four copies in a diploid cell at G2. Each of these gene cop-
ies acts individually and stochastically (Hansen and van Oudenaarden, 2013; Levesque et al.,
2013); their combined contribution depends on whether they are correlated and how. Finally, the
sampled population typically contains a mixture of cells at different phases of the cell cycle. As a
result, deterministic changes in gene copy number and activity along the cell cycle add to the mea-
sured population heterogeneity, and may be erroneously interpreted as resulting from stochastic
effects (Zopf et al., 2013).

Here we demonstrate how these limitations can be overcome, such that mRNA statistics is reliably
used to infer the kinetic parameters of stochastic gene activity. Specifically, we investigate the
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transcriptional activity of Oct4 and Nanog, two key genes in the pluripotency network of mouse
embryonic stem cells (Young, 2011). Elucidating the stochastic kinetics of these genes, and how it
changes along the cell cycle, is crucial for understanding pluripotency and the path to differentiation.
For one, Nanog expression has been reported to exhibit large cell-to-cell variability (Filipczyk et al.,
2013; Kalmar et al., 2009; Singer et al., 2014), and this variability was argued to play an important
role in differentiation (Abranches et al., 2014; Chambers et al., 2007, Silva et al., 2009), but both
the sources and consequences of Nanog variability are still unclear (Cahan and Daley, 2013; Torres-
Padilla and Chambers, 2014). It has also been shown that human stem cells’ propensity to differen-
tiate varies significantly between different phases of the cell cycle (Gonzales et al., 2015;
Pauklin and Vallier, 2013; Singh et al., 2013), but again, we are lacking a detailed picture of the
underlying transcriptional activity of key pluripotency factors along the cell cycle.

To elucidate Oct4 and Nanog kinetics along the cell cycle, we simultaneously measured the num-
bers of nascent (actively transcribed) and mature mRNA for each gene in individual cells, and used
the DNA contents of the cell to determine its cell-cycle phase. We next used the single-cell data to
test how gene activity depends on the presence of other copies of the same gene and how it
changes as the gene replicates during the cell cycle. This information allowed us to construct a sto-
chastic model for gene activity, which explicitly accounts for the presence of multiple gene copies
and the progression of the cell cycle. We then used the cell-cycle-sorted single-cell data to calibrate
the theoretical model and estimate the kinetic parameters that characterize Oct4 and Nanog
activity.

Results and discussion

Our first goal was to measure simultaneously nascent and mature mRNA from the genes of interest.
While both mRNA species reflect the same underlying kinetics of gene activity, the two are subject
to very different kinetics of elimination: Nascent mRNA is eliminated (by being converted to mature
mRNA) once elongation and splicing are complete, typically in a few minutes (Coulon et al., 2014;
Martin et al., 2013). In contrast, mature mRNA is subject to active degradation, with a typical half-
life of a few hours (Sharova et al., 2009). A consequence of these very different time scales is that
simultaneously measuring both species for the same gene would allow us to better constrain the the-
oretical model of gene activity and estimate the underlying parameters (see below and Figure 1—
figure supplement 1).

To detect nascent and mature mRNA in individual cells, we used single-molecule fluorescence in
situ hybridization (smFISH) (Femino et al., 1998; Raj et al., 2008; Skinner et al., 2013) to label the
gene of interest, with spectrally-distinct probes sets for the intron and exon sequences (Hansen and
van Oudenaarden, 2013; Senecal et al., 2014, Vargas et al., 2011). Under this labeling scheme,
nascent mRNA are expected to be bound by both probe sets, while mature mRNA will only exhibit
exon-probe binding (Figure 1A). Consistent with these expectations, Oct4 and Nanog labeling in
mouse embryonic stem cells revealed numerous diffraction-limited spots containing exon-only signal
(Figure 1B, Figure 1—figure supplement 2). In the same cells, only a small number of nuclear spots
contained both intron and exon signals (Figure 1B, Figure 1—figure supplement 2). Neither type
of spot was observed in Fibroblasts, where Oct4 and Nanog are not expressed (Chambers et al.,
2003; Pesce et al., 1998) (Figure 1B, Figure 1—figure supplement 2). We used automated image
analysis to identify individual mMRNA spots, allocate them to cells and discard false positive spots
(Skinner et al., 2013) (Figure 1C, Figure 1—figure supplement 3, Materials and methods 5). We
identified the fluorescence intensity corresponding to a single mature mRNA (Skinner et al., 2013;
Zenklusen et al., 2008) and used this intensity value to convert the total fluorescence of exon spots
in each cell to the numbers of nascent and mature mRNA (Figure 1G). Our measured values for
both the mean and coefficient of variation for Nanog mRNA per cell (126 + 24 and 0.80 + 0.05,
respectively; designates mean + SEM throughout; 3 experiments with >600 cells per experiment;
Figure 1D) are in excellent agreement with the literature (Abranches et al., 2014; Faddah et al.,
2013; Griin et al., 2014; Hansen and van Oudenaarden, 2013; Munoz Descalzo et al., 2013;
Ochiai et al., 2014; Singer et al., 2014) (Supplementary file 1A). For Oct4, our measured mean
(477 + 67; 3 experiments with >700 cells per experiment; Figure 1D) is higher than in previous
reports (Faddah et al., 2013; Griin et al., 2014; Singer et al., 2014) while our coefficient of varia-
tion (0.34 + 0.01) is in agreement with previous estimates (Faddah et al., 2013; Griin et al., 2014,
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Figure 1. Quantifying mature mRNA, nascent mRNA and cell-cycle phase in individual mouse embryonic stem (ES) cells. (A) Identifying nascent and
mature mRNA. Introns (red) and exons (green) were labeled using different colors of smFISH probes. In the cell, pre-spliced nascent mRNA at the site
of active transcription are bound by both probe sets, whereas mature mRNA are only bound by the exon probe set. (B) Mouse embryonic stem (ES)
cells (top row) labeled for Oct4 exons (left column, green) and introns (center column, red). Automated image analysis (right column) was used to
identify the cell boundaries (black line), intron (red) and exon (green) spots, as well as false-positive spots (black circles, see Panel C). Co-localized exon
and intron spots (yellow) were identified as nascent mRNA (square), whereas spots found only in the exon channel were identified as mature mRNA.
Fibroblasts (bottom row) were used as negative control. Scale bar, 5 um. (C) The distribution of Oct4 mRNA spot intensities for mature mRNA (green,
>100000 spots), nascent mRNA (red, >1000 spots), and spots found in Fibroblasts (black, >1000 spots). The histograms were used to discard false
positive spots (gray region) and to identify the signal intensity corresponding to a single mRNA. (D) The distributions of mature and nascent mRNA
numbers per cell for Oct4 (>700 cells) and Nanog (>1000 cells). (E) The same cells as in panel B, labeled for DNA using DAPI (left column, blue).
Automated image analysis (right column) was used to identify the nuclear boundary (black line). The DNA content of each nucleus was used to estimate
the phase of the cell cycle (cyan, grey, and blue shading; see Panel F). (F) The distribution of DNA content per cell (>700 cells), estimated from the
nuclear DAPI signal (panel E). The histogram of DNA content per cell was fitted to a theoretical model of the cell cycle (black line), and used to identify
which cells are in G1 phase (cyan) and which in G2 (blue). (G) Overlay of the smFISH and DAPI channels for mouse embryonic stem cells (top) and

Figure 1 continued on next page
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fibroblasts (bottom). The estimated number of mature (green) and nascent (red) mRNA, as well as the phase of the cell cycle (blue), are indicated for

the two stem cells.
DOI: 10.7554/eLife.12175.003

The following figure supplements are available for figure 1:

Figure supplement 1. Fitting both nascent and mature mRNA constrains model parameters.

DOI: 10.7554/elife.12175.004

Figure supplement 2. smFISH images of Nanog mRNA in ES cells and Fibroblasts.

DOI: 10.7554/eLife.12175.005

Figure supplement 3. Distribution of Nanog mRNA spot intensities.

DOI: 10.7554/eLife.12175.006

Figure supplement 4. 3D reconstruction of nuclei from the DAPI channel.

DOI: 10.7554/eLife.12175.007

Figure supplement 5. Fitting the DNA-content histogram to a cell-cycle model.

DOI: 10.7554/eLife.12175.008

Singer et al., 2014) (Supplementary file 1A). The difference in mean values may reflect differences
in cell lines or experimental conditions.

Next, to identify the cell-cycle phase of individual cells, we used the total DNA contents of each
cell, estimated from the DAPI signal integrated over the three-dimensional nucleus (Figure 1E, Fig-
ure T1—figure supplement 4). The distribution of DNA contents from the cell population was well
described by the Fried/Baisch model for the cell cycle (Johnston et al., 1978) (Figure 1—figure
supplement 5). We therefore used the model to classify the cells into G1, S and G2/M phases
(Figure 1F,G). Below we refine this analysis further by calculating, for each cell, its temporal position
within the cell cycle and the gene copy number of Oct4 and Nanog (see Figure 3). At this stage,
however, we could already identify sub-populations of cells at the G1 and G2 phases of the cell cycle
(Figure 1F), and use these cells to address the questions of gene-copy independence and dosage
compensation.

First, we tested whether individual copies of the same gene act independently of each other,
rather than in a correlated manner. To do so, we examined cells in G1, where each gene exists in
two copies per cell. We measured the number of nascent mRNA at each copy of the gene. For both
Oct4 and Nanog, we did not detect significant correlation between the nascent mRNA levels of the
two gene copies in the cell (r, Pearson correlation coefficient; Oct4: r = 0.05 + 0.04, p>0.05; Nanog:
r = 0.07 + 0.01, p>0.05; 3 experiments with >200 cells per experiment) (Figure 2—figure supple-
ment 1). Furthermore, we found that, for both genes, the numbers of active transcription sites per
cell followed a binomial distribution, consistent with the assumption that the two copies of the gene
act independently of each other (Figure 2A; XZ goodness of fit test (Singer et al., 2014) gives
p>0.05 for both Oct4 and Nanog; 3 experiments with >200 cells per experiment). Thus, our data
indicate independent stochastic activity of each copy of the gene.

We next wanted to test how the activity of Oct4 and Nanog changes when each of the genes rep-
licates during the cell cycle. Under the simplest assumption, each gene copy will maintain its tran-
scriptional activity irrespective of the total number of gene copies in the cell. In that case, the
prediction would be that the total amount of nascent mRNA doubles between G1 and G2 phases
(Note that the mature mRNA, due to its much longer lifetime (Supplementary file 1), is not
expected to immediately follow the gene dosage in such a simple manner; Figure 3—figure supple-
ment 1). However, when we compared the nascent mRNA level between G1 and G2 phases, we
found that, for both Oct4 and Nanog, the fold change was significantly lower than two (Oct4: 1.28 +
0.09, Nanog: 1.51 £ 0.15; 3 experiments with >200 cells per phase in each experiment; Figure 2B).
Thus, Oct4 and Nanog exhibit dosage compensation in their activity, analogous to the effect seen
for X-chromosome genes between male and female (Heard et al., 1997), as well as for some autoso-
mal genes when their copy number is altered (FitzPatrick et al., 2002; Gupta et al., 2006). The
change in gene activity between G1 and G2 was manifested in a <2 fold increase in the number of
active transcription sites per cell, while the number of nascent mRNA per active site remained
unchanged (Figure 2B). In contrast to Oct4 and Nanog, a reporter gene expressed from a strong
synthetic promoter (Niwa et al., 1991; Vintersten et al., 2004) did not show dosage compensation,
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Figure 2. Oct4 and Nanog exhibit independent allele activity and dosage compensation. (A) The distribution of number of active transcription sites for
Oct4 (left; >700 cells) and Nanog (right; >1,000 cells), in cells having two copies of each gene. In both cases, the measured distribution (gray) is
described well by a theoretical model assuming independent activity of the two alleles (binomial distribution, red). Error bars represent the estimated
SEM due to finite sampling. (B) The fold change in transcriptional activity following gene replication for Oct4, Nanog, and a control reporter gene
(CAG-lac2). For Oct4 and Nanog, the average number of nascent mRNA (left) increases less than two-fold following gene replication, while a two-fold
increase is observed in the control reporter gene. The change in number of nascent mRNA reflects an increase in the number of active transcription
sites (middle), with no change in the number of nascent mRNA at each transcription site (right). Error bars represent SEM from 3 experiments with >200
cells per cell-cycle phase in each experiment.

DOI: 10.7554/¢elife.12175.009

The following figure supplement is available for figure 2:

Figure supplement 1. Nascent mRNA correlation between two gene copies.
DOI: 10.7554/¢elife.12175.010

instead exhibiting a two-fold increase in nascent mRNA following gene replication (1.97 + 0.07; 2
experiments with >200 cells per phase in each experiment; Figure 2B).

To extract the kinetics of Oct4 and Nanog from our single-cell data, we constructed a theoretical
model describing the stochastic activity of each gene (Figure 3A). In the model, each copy of the
gene switches stochastically between active ('ON’) and inactive ('OFF’) states, with rates kon and
kore. In the active state, transcription is initiated, again stochastically, with rate k. Following initia-
tion, nascent MRNA remains at the transcription site for a finite residence time Trgs, representing
the combined duration of transcript elongation, splicing and release (Coulon et al., 2014;
Hoyle and Ish-Horowicz, 2013). The nascent mRNA is then deterministically converted into mature
mRNA. Mature mRNA is degraded stochastically with rate kp. The copy number of each gene dou-
bles from two to four at a time tregp during the cell cycle. Following gene replication, the rate of
gene activation kon changes by a factor o, to allow for dosage compensation. Finally, at the end of
the cell cycle, mature mRNA are partitioned binomially between the two daughter cells
(Golding et al., 2005; Rosenfeld et al., 2005).

To compare our single-cell data with model predictions, we first mapped the DNA content of
each cell to the cell's temporal position within the cell cycle (Figure 3—figure supplement 2). This
was done using ergodic rate analysis (Kafri et al., 2013), which uses static single-cell measurements
from steady-state populations to obtain temporal information. We then plotted, for both Oct4 and
Nanog, the amount of nascent mRNA as a function of time along the cell cycle (Figure 3B). Fitting
the data to a step function allowed us to estimate the gene replication time, Trep, and the fold
change in gene activity, o. For both genes, the two parameters were consistent with the estimates
using G1 and G2 phases, obtained earlier (Figure 3—figure supplement 3 and Figure 3—figure
supplement 4).

Next, we proceeded to estimate the kinetic parameters of gene activity for Oct4 and Nanog. For
a given set of parameters, we solved the model above using a modified version of the finite state
projection algorithm (Munsky and Khammash, 2006), extended to include the deterministic process
of mRNA elongation, the contribution of multiple gene copies, and the progression of the cell cycle
(Materials and methods 8). Solving the model yielded the copy-number distribution for both nascent
and mature mRNA at different times along the cell cycle (Figure 3C). We then used maximum-likeli-
hood estimation (Neuert et al., 2013) to obtain the values of kon, koer, kini @nd 7Tres
(Supplementary file 2A). For both Oct4 and Nanog, the estimated parameters provided a good fit
between model predictions and the experimental histograms (Figure 3C). The parameter values
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Figure 3. Extracting the stochastic kinetics of Oct4 and Nanog. (A) A stochastic 2-state model for gene activity,
which incorporates cell cycle and gene copy-number effects. Each gene copy stochastically switches between ‘ON’
and 'OFF’ states. Transcription is stochastically initiated only in the ‘ON’ state. After initiation, the nascent

transcript (red) elongates with constant speed, and is then converted into a mature mRNA molecule (green).
Mature mRNA are degraded stochastically. Gene copies are independent, and their number changes from 2 to 4
following gene replication (left, cyan box). At the end of the cell cycle, mRNA molecules are binomially partitioned
between the two daughter cells. Dosage compensation is included though a decrease in the rate of activation
following gene replication (left, grey box). (B) Estimating the gene replication time and the fold-change in

Figure 3 continued on next page
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Figure 3 continued

transcriptional activity for Oct4 (left; >700 cells) and Nanog (right; >1000 cells). The number of nascent mRNA was
plotted against the time within the cell cycle for each cell (grey points), and the data were binned into populations
of equal cell number (black markers). The binned data were fit to a step function (red), used to estimate the gene
replication time and the fold-change in number of nascent mRNA before/after gene replication. Error bars
represent SEM. (C) The distribution of mature and nascent mRNA copy number over time, for Oct4 (left; >700
cells) and Nanog (right; >1000 cells). The cell population was partitioned into 12 time windows, equally-spaced
within the cell cycle (rows; we discarded the first and last windows, where the low cell numbers lead to a large
error in the ERA calculation [Kafri et al., 2013]). The measured distributions (gray) are overlaid with the model
predictions for mature (green) and nascent (red) mRNA. (D) The probabilistic rates of the transcription process and
the gene elongation rate, for Oct4 (blue) and Nanog (red). The rates were estimated from the best theoretical fit
of the mature and nascent mRNA distributions (panel C). The rate that varies most between Oct4 and Nanog is
the probability of switching to an active transcription state, kon, which is ~5-fold higher for Oct4 (inset). Error bars
represent SEM from 3 experiments with >600 cells per experiment.

DOI: 10.7554/elife.12175.011

The following figure supplements are available for figure 3:

Figure supplement 1. Expected behavior of mature and nascent mRNA numbers over time.

DOI: 10.7554/¢elife.12175.012

Figure supplement 2. Mapping DNA content to time in the cell cycle using ergodic rate analysis.
DOI: 10.7554/elife.12175.013

Figure supplement 3. Agreement between methods of measuring dosage compensation.

DOI: 10.7554/elife.12175.014

Figure supplement 4. Estimated gene replication times fall within S phase.

DOI: 10.7554/elife.12175.015

Figure supplement 5. The effect of model representation of dosage compensation on the estimated rates of
transcription.

DOI: 10.7554/elife.12175.016

were also consistent with previous estimates, in cases where such estimates existed
(Supplementary file 1B).

What are the kinetics revealed by the model? The Oct4 and Nanog genes spend a comparable
fraction of time in the active transcriptional state (Oct4: kon/(kon+korr) = 34% for each gene copy
prior to gene replication; Nanog: 22% Supplementary file 2B). During each of these ‘ON’ periods,
Oct4 and Nanog produce, on average, similar numbers of mRNA (Oct4: kn/korr = 110, Nanog:
120). However, where the two genes vary significantly is in the probabilistic rates of switching
between the 'ON’ and 'OFF’ states, with Nanog switching more slowly in both directions (kon =
9%x102 min™ for Oct4, 2x10°3 min™" for Nanog; korr = 2x102 min™ for Oct4, 7x102 min™' for
Nanog). In particular, the ~5-fold difference in kon results in a correspondingly longer average
"OFF"” duration for Nanog (in G1, torr= 1/kon = 8.9 hr, compared to 1.8 hr for Oct4;
Supplementary file 2B).

The differences in transcription kinetics between Oct4 and Nanog also lead, unavoidably, to dif-
ferent degrees of cell-to-cell variability in mRNA numbers. In particular, the higher measured coeffi-
cient of variation for Nanog (0.80, compared to 0.34 for Oct4) is a direct reflection of the lower
value of ko (Raj et al., 2006). In other words, the large heterogeneity in Nanog levels, highlighted
in previous studies (Abranches et al., 2013; Chambers et al., 2007, Filipczyk et al., 2013;
Kalmar et al., 2009) does not require invoking more complex kinetics than those of other genes
(e.g. additional kinetic steps [Neuert et al., 2013; Senecal et al., 2014)), but merely a difference in
the value of a single parameter.

Following gene replication, both Oct4 and Nanog exhibit a decrease in the transcriptional activity
of each gene copy. The effect of this dosage compensation is to equalize gene expression along the
cell cycle and decrease the degree of cell-to-cell variability. The lower variability may be physiologi-
cally significant, as it has been reported that changes in Oct4 levels as small as two-fold may lead to
different cell fates (Niwa et al., 2000). The compensatory effect is achieved through a decrease in
the probability of each gene copy to be active (0.72 fold for Oct4 and 0.76 fold for Nanog;
Supplementary file 2A). Similar behavior was recently reported for a number of genes in cultured
mammalian cells (Padovan-Merhar et al., 2015). These authors also found that the cell volume
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(independently of the cell cycle phase) strongly affects the number of nascent mRNA at each tran-
scription site. In our study, the cell-to-cell variability in volume within each cell-cycle phase was signif-
icantly smaller than that seen by (Padovan-Merhar et al., 2015) (CV=0.2 versus =0.5), preventing us
from exploring the effect of cell volume on gene activity. Interestingly, the synthetic reporter gene
CAG-lacZ did not exhibit dosage compensation. Perhaps the viral enhancer elements included in the
promoter (Niwa et al., 1991; Vintersten et al., 2004) are more resistant to the regulatory mecha-
nisms that create the compensatory effect in endogenous genes.

We note that despite the complex stochastic kinetics of transcription, and the multiple ways that
these kinetics can be modulated (Sanchez et al., 2013; So et al., 2011), some simple unifying fea-
tures emerge. When comparing the activity of Oct4 and Nanog, we found that the kinetic parameter
that varies the most between the two is the probabilistic rate of switching to the active state, kon,
while the rates of gene inactivation and of transcription initiation are much closer (Figure 3D). The
dosage compensation effect following gene replication, observed in both Oct4 and Nanog
(Figure 2B), is also consistent with a change in kon. These two observations extend a number of
recent studies in a range of systems (including one of Nanog in mouse embryonic stem cells
[Ochiai et al., 2014]), all suggesting that varying expression level—along the cell cycle (Padovan-
Merhar et al., 2015), between different growth conditions (Ochiai et al., 2014), or under regulation
by a transcription factor (Senecal et al., 2014; Xu et al., 2015)—is achieved by changing kon. The
mechanistic basis for this prevalent phenomenology is yet to be elucidated (Padovan-Merhar et al.,
2015; Sanchez and Golding, 2013).

We have shown how changes in gene copy number and in promoter activity along the cell cycle
can be incorporated into the analysis of mMRNA copy-number statistics. However, multiple additional
factors may contribute to mRNA heterogeneity. First, as noted above, the cell volume has recently
been shown to dramatically affect transcription kinetics (Padovan-Merhar et al., 2015). Conse-
quently, cell-cell variability in volume will translate into different mRNA levels. Second, the stochastic
kinetics of mMRNA processing downstream of transcription—splicing (Coulon et al., 2014), export
from the nucleus (Bahar Halpern et al., 2015a; Battich et al., 2015), degradation and partition at
cell division (Huh and Paulsson, 2011)—will too add to mRNA number heterogeneity. Finally, cell-
to-cell differences in relevant kinetic parameters—of transcription and the subsequent mRNA pro-
cesses, of the cell cycle, etc. (so called ‘extrinsic noise’)—will also contribute to the observed mRNA
heterogeneity. Additional work, both experimental and theoretical, is required to delineate the rela-
tive contribution of all these factors to the eventual mRNA statistics that we measure.

Materials and methods

1. Cell lines and culture conditions

1.1 Cell lines

Wildtype R1 mouse embryonic stem (ES) cells (ATCC No. SCRC-103) were obtained from Andras
Nagy (Mount Sinai Hospital, Lunenfeld, Canada). Z/Red mouse ES cells (Vintersten et al., 2004)
express Bgeo (lacZ and neomycin-resistance fusion) under the control of a CAG promoter (chicken
B-actin promoter coupled with the cytomegalovirus immediate early enhancer) (Niwa et al., 1991).
Z/Red cells were obtained from Richard R. Behringer (MD Anderson Cancer Center, Houston, TX,
USA). NIH-3T3 mouse embryonic fibroblasts were obtained from ATCC (ATCC no. CRL-1658) and
used as negative controls.

1.2 Media and growth conditions

ES cells were cultured in Dulbecco’s Modified Eagle’s High Glucose GlutaMAX Pyruvate Medium
(Invitrogen, Carlsbad, CA, 10569) supplemented with 10% fetal bovine serum (FBS; Gemini, West
Sacramento, CA, 900-108H), 2 mM L-Glutamine (Gibco, Carlsbad, CA, 25030-081), 100 nM nones-
sential amino acids (Invitrogen, 11140-050), 0.1 mM B-mercaptoethanol (Fluka, St. Louis, MO,
63690), and 1000 U/ml LIF (Millipore, Billerica, MA, ESG1107). ES cells were grown on 10-cm culture
dishes (Corning, Corning, NY, 430167) coated with 0.1% gelatin (Sigma, St. Louis, MO, G1890). NIH-
3T3 cells were cultured in Dulbecco’s Modified Eagle’s high glucose Medium (Gibco, 11965) supple-
mented with 10% fetal bovine serum, and 1 mM sodium pyruvate (Gibco, 11360). NIH-3T3 cells
were grown on 15-cm culture dishes (Corning, 430599).
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2. Single-molecule fluorescence in situ hybridization

Our protocol is based on Raj et al. (Raj et al., 2008). Modifications were made to adapt the protocol
to a suspension of mouse embryonic stem cells. Sterile, nuclease-free, aerosol-barrier pipette tips
were used. Diethylpyrocarbonate (DEPC)-treated water (Ambion, Carlsbad, CA, AM9922) was used
whenever the protocol calls for water.

2.1 Probe design and labeling

Nucleic acid sequences with annotations of exons and introns were obtained from the National Cen-
ter of Biotechnology Information (NCBI) gene database for Oct4 (GenelD: 18999) and Nanog (Gen-
elD: 71950). All exon regions were used as the target sequences for the exon probe set design.
Intron 1 of Oct4 and intron 2 of Nanog were used as the target sequences for the intron probe set
design. Target intron and exon sequences were searched for species-specific repeats and aligned to
the Mus musculus RefSeq RNA database using the ‘more dissimilar sequences’ program in Basic
Local Alignment Search Tool (BLAST, NCBI). Any species-specific repeats or similar sequences (align-
ment score >80) were removed from the target sequences.

DNA oligonucleotide probes were designed, ordered, and stored following (Skinner et al.,
2013). In brief, the online program developed by Arjun Raj (Raj et al., 2008) (singlemoleculefish.
com) was used to design a set of oligonucleotide probes (Supplementary file 3) that are comple-
mentary to the target sequences. Each probe was ordered with a 3' amine group (mdC(TEG-Amino);
Biosearch, Novato, CA). Upon arrival, the oligo solutions were thawed, transferred to separate 1.5-
ml microcentrifuge tubes, and stored at -20°C.

The amine-modified oligonucleotide probes were conjugated to succinimidyl-ester-modified dyes
following (Skinner et al., 2013). Oct4 exon, Nanog exon, and lacZ probes sets were labeled with 6-
Carboxytetramethylrhodamine (6-TAMRA; Invitrogen, C6123). Oct4 and Nanog intron probe sets
were labeled with Alexa Fluor 647 (Invitrogen, A-20006). After labeling, the working stocks of the
probe sets were 10-16 pM and had an estimated labeling efficiency of >90% (Skinner et al., 2013).
The stocks were wrapped in aluminum foil and stored at -20°C.

2.2 Sample fixation and permeabilization

ES cells were grown in a 10-cm culture dish coated with 0.1% gelatin to ~80% confluency. The
growth medium was aspirated away from the culture dish. The cells were washed twice with 5 ml
PBS (Invitrogen, 14190-250) by gently pipetting PBS onto the dish and aspirating. 3 ml of pre-
warmed 0.05% trypsin (Invitrogen, 25300-054) was added to the dish to cover the cells. The culture
dish was incubated at 37°C for 5 min to allow for trypsin protease activity to create a single-cell sus-
pension. 7 ml of growth medium was added to the culture dish to deactivate the trypsin. The 10 ml
of cell suspension was gently pipetted up and down 10 times and transferred to a 15-ml centrifuge
tube. The cells were centrifuged at 1200 rpm for 5 min, and the supernatant was aspirated. Cell fixa-
tion was performed by resuspending the cells in 5 ml PBS (RNase free; Ambion, AM9625) + 3.7% (v/
v) formaldehyde (Ambion, BP531-500) followed by room temperature incubation for 10 min. The
cells were centrifuged at 500 g for 5 min and the supernatant was removed. The cells were then
resuspended in 5 ml RNase-free PBS, centrifuged at 500 g for 5 min, and the supernatant was
removed. The cells were permeabilized by resuspension in 5 ml 70% (v/v) ethanol and incubated at
4°C for 12-16 hr. Finally, the cell density was calculated by washing 25 ul of cells in 300 pl RNase-
free PBS and determining the cell count with a hemocytometer. The number of cells obtained from a
10-cm plate was typically ~4x10” cells, equivalent to a cell density of ~8x10° cells/ml after
permeabilization.

2.3 Hybridization and washing

All centrifugation steps were performed at 500 g for 5 min at 4°C. After permeabilization, a volume
containing ~1x10° cells was transferred to a new 1.5-ml microcentrifuge tube. 500 ul of PBST
(RNase-free PBS + 0.1% (v/v) Tween 20 [Fisher Scientific, Waltham, MA, BP337-100]) were added to
the cells. The cells were pelleted by centrifugation, and the supernatant was removed. The cells
were resuspended in 500 pl PBST, pelleted by centrifugation, and the supernatant was removed.
The cells were resuspended in 500 pl of wash solution (see below) and incubated at room tempera-
ture for 5 min. The cells were then centrifuged and the supernatant was removed. 2 ul of a probe
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stock solution was added to 50 pl of hybridization solution (see below). The cells were then resus-
pended in this hybridization mix and left at 30°C overnight.

In the morning, 500 pl of wash solution was added to the tube and mixed well by pipetting. The
tube was incubated at 30°C for 30 min. The cells were pelleted by centrifugation and the superna-
tant was removed. The cells were washed three more times (i.e. resuspended in 500 pul of wash solu-
tion, incubated at 30°C for 1 hr, pelleted by centrifugation, and supernatant removed). 4',6-
diamidino-2-phenylindole (DAPI, Fisher Scientific, PI-46190) was added to the wash solution in the
last wash, to a final concentration of 10 ug/ml. The cells were resuspended in 50 pl of 2x SSC
(Ambion, AM9763) and kept at 4°C until imaging (less than 24 hr).

2.4 Hybridization and washing solutions

Following (Raj et al., 2006), a range of formamide concentrations was initially tested to empirically
determine the optimal value. 20% (w/v) formamide gave the best results in that it was high enough
so that background noise due to non-specific binding was low, while still low enough so that the
fluorescence signal from target mMRNA molecules was not impaired.

10 ml of wash solution contains 1.76 ml of formamide (Ambion, AM9342), 1 ml of 20x SSC
(Ambion, AM9763), and 10 ul Tween-20 (Fisher Scientific, BP337-100). Wash solution was made fresh
and stored on ice until use. 10 ml of hybridization solution contains 1 g of dextran sulfate (Sigma,
D8906), 1.76 ml of formamide, 10 mg of E. coli tRNA (Sigma, R4251), 1 ml of 20x SSC, 40 ul of 50
mg/ml BSA (Ambion, AM2616), and 100 ul of 200 mM ribonucleoside vanadyl complex (New Eng-
land Biolabs, Ipswich, NY, S1402S). Hybridization solution was filter sterilized and aliquots of 500 pl
were stored at -20°C.

3. Fluorescence microscopy
3.1 Slide preparation

1x PBS + 1.5% agarose pads were prepared following (Skinner et al., 2013), and stored between
two microscope slides at 4°C for up to 24 hr. For use in imaging, the slides were carefully moved,
exposing 1 cm of the agarose pad. A 1 x 1-cm agar pad was excised with a razor blade and placed
on a 22 x 22-mm #1 coverslip (Fisher Scientific, 12-545B). 10 ul of cell suspension were pipetted
onto the 1 x 1-cm agar pad and incubated in the dark at room temperature for 5 min to allow
excess liquid to absorb into the agarose pad. The 22 x 22-mm #1 coverslip with agarose and sample
was then inverted and placed at the center of a 24 x 50-mm #1 coverslip (Fisher Scientific, 12-545F).

3.2 Microscopy equipment

The samples were imaged using an inverted epifluorescence microscope (Nikon, Melville, NY,
Eclipse Ti) equipped with a cooled EM-CCD camera (Photometrics, Tucson, AZ, Cascade 11:1024)
and motorized stage control (Prior, Rockland, MA, Proscan lll). A mercury lamp was used as the light
source (Nikon, Intensilight C-HGFIE) with band-pass filter sets (Cy3, Nikon Instruments, 96323; Cy5,
Nikon Instruments, 96324; DAPI, Nikon Instruments, 96310). A fast motorized optical shutter (Sutter
Instruments, Novato, CA, SmartShutter) was used to control the fluorescence illumination exposure
time. A 40x, 1.30 numerical aperture, oil-immersion differential interference contrast (DIC) objective
(Nikon, MRHO01400) was used with an additional 2.5x lens in front of the camera. The coverslip con-
taining the sample was mounted on a universal specimen holder. The microscope was installed on
an optical table (TMC, Peabody, MA, breadboard and four-post support) to dampen mechanical
vibrations. 'Elements’ software (Nikon) was used to control the microscopy setup. The same imaging
protocol was also used with an alternative camera (Photometrics, Evolve 512).

3.3 Imaging configuration

The exposure time and gain were chosen such that the maximum pixel value for the fluorescent foci
was no higher than 60% of the maximum pixel value of the camera (65535 for a 16-bit camera).
Exposure times above 300 ms were avoided to minimize photobleaching. Image stacks consisting of
nineteen focal positions with 500 nm spacing were acquired for DIC, Cy5, Cy3, and DAPI images.
Each sample was imaged at multiple slide positions to obtain a total of at least 600 cells.
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4. Nucleus and cell segmentation

We developed custom software in MATLAB to perform nucleus and cell segmentation. For each cell
in the fluorescence image stacks, we reconstructed the nucleus in the DAPI channel and recognized
the cell boundary in the Cy5 (intron) channel (Figure 1, Figure 1—figure supplement 4).

To begin reconstructing individual nuclei, a series of morphological operations was performed on
each focal plane in the DAPI channel image stack. First, a Sobel filter was applied to obtain the
edges of the nuclear slices (the portions of the nuclei visible within the focal plane). Second, morpho-
logical filling was applied to fill the interiors of the nuclear slices. Third, the focal plane was
smoothed using morphological opening. Finally, the optimal threshold value was determined for
each nuclear slice following (Xu et al., 2015). Briefly, a series of increasing threshold values was
applied. At each threshold value, the area (A) and circularity (4mA/P?;, where P is the perimeter
length) of the thresholded nuclear slice was calculated. Once the area and circularity satisfied the cri-
teria: A>500 pixels and 474/ P*>0.7, the threshold value was used. The processed individual focal
planes were stacked to form a 3-dimensional mask. Individual nuclei were identified in the mask as
overlapping nuclear slices from neighboring planes.

To recognize the cell boundary, we thresholded the Cy5 (intron) channel because it primarily had
two levels of pixel values corresponding to 1) non-specific labeling and/or autofluorescence within
cells and 2) the non-cell background. The threshold value was determined using Otsu’s method. The
reconstructed nuclei were used to segment joined cells using a watershed algorithm with the nuclei
as basins, and to remove above-threshold objects that did not contain nuclei. For each image stack,
the output of the nucleus and cell segmentation program was visually inspected and refined using a
graphical user interface.

5. mRNA quantification

5.1 smFISH spot recognition and quantification

We used the MATLAB-based spot-recognition software, Spatzcells (Skinner et al., 2013) (available
for download: https://code.google.com/p/spatzcells/), to identify smFISH fluorescence foci (spots) in
image stacks (Figure 1B). In brief, local maxima were accepted as potential spots if the pixel value
difference between the local maximum and its neighbors was greater than a threshold value. This
threshold value was determined empirically by visually inspecting the spot-recognition results from a
subset of images. The spots were then matched between focal planes, allowing for a two-pixel shift
in xy location. For each spot, the focal plane in which it had the highest intensity was determined.
Using the Isqcurvefit function in MATLAB, this focal plane was used to fit the spot, and its potential
neighboring spots, to a function consisting of multiple 2-dimensional Gaussians and a tilted plane, of
the form:

n

z—m;)° DilY—1 2 Ci(T—X y—y
flz,y) :ZAief[alu a) +hy—yi) 2] 4 By 4 B, (z — 20) + By (y — o)
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where n is the number of spots in the neighborhood of the central spot, A; is the amplitude of each
Gaussian, a;, b;, ¢; are the elliptical shape parameters of each Gaussian, z;, y; are the xy locations of
each Gaussian, By, B, B,, define the height and orientation of the tilted plane, and g, yy define the
center of the fitting area (Skinner et al., 2013). The integrated intensity of a single spot was calcu-

A

Following (Skinner et al., 2013), we discarded false positives by comparing the spot intensity
(Gaussian amplitude, A; Figure 1C, Figure 1—figure supplement 3) of the spots in the negative
control sample to the ones in the positive sample. A ‘false-positive threshold’ was selected in spot
intensity that separated the population of false positives from the population of genuine spots in the
positive sample. Spots with intensity lower than the 'false-positive threshold’ were discarded from
the subsequent analysis of all samples (Figure 1C, Figure 1—figure supplement 3).

To identify the value of integrated intensity that corresponds to a single mMRNA molecule, a histo-
gram of integrated intensities (I) was constructed using the spots above the ‘false-positive threshold’
in the exon channel (Figure 1C, Figure 1—figure supplement 3). Following the strategy of
(Skinner et al., 2013; Zenklusen et al., 2008), this histogram was then fitted to a sum of Gaussians,
where each Gaussian in the sum has a mean equal to integer multiples of the first, representing

lated as the integral over the single Gaussian function: I; =
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multiple mRNA in each spot. The mean of the first Gaussian was estimated as the typical integrated
intensity of a single mRNA molecule. For each spot, this value was then used to convert the inte-
grated intensity to the number of mMRNA molecules (Skinner et al., 2013; Zenklusen et al., 2008).

Each spot was assigned to a cell using the cell masks obtained earlier (Materials and methods 4).
We calculated the total number of mRNA in a cell by summing over the number of mRNA in all spots
assigned to that cell. The total number of mMRNA consists of the numbers of mature mRNA and
nascent MRNA at active transcription sites.

5.2 Identification of active transcription sites and quantification of nascent
mRNA

We identified active transcription sites in the exon channel as spots that matched intron-channel
spots, allowing a two pixel shift in 2y dimensions and 1 focal plane shift (Figure 1B, Figure 1—fig-
ure supplement 2; criteria used previously by [Hansen and van Oudenaarden, 2013]). Exons spots
that were not matched were assumed to be mature mRNA. The number of nascent mRNA at each
active transcription site was quantified in the exon-channel by dividing the integrated intensity by
the integrated intensity of a single-mRNA molecule (Materials and methods 5.1). Each active tran-
scription site was assigned to a cell using the cell masks (Materials and methods 4). We calculated
the number of nascent MRNA in a cell by summing over the nascent mRNA at all active transcription
sites in that cell. When testing for the independence of allele activity (Figure 2A), we followed
(Hansen and van Oudenaarden, 2013) and only counted transcription sites with >1 nascent mRNA.
We then fitted the distribution of number of active transcription sites to a binomial distribution
(Figure 2A).

6. DNA quantification and cell-cycle phase determination
6.1 Quantification of DNA content

To quantify the DNA content in individual cells, we used the nuclear and cell masks created previ-
ously (Materials and Methods 4; Figure 1, Figure 1—figure supplement 4), which define the bound-
ary of each nucleus and cell. For each cell, the total DAPI fluorescence (D) was calculated as the sum
of the DAPI-channel pixel values within the nuclear boundary, and the volume (V) was calculated as
the total number of pixels in the nucleus. The background of the DAPI image (b) was calculated as
the median DAPI pixel value of the non-cell pixels in the cell mask. For each cell, the DNA content
was calculated as: DNA=D-bV.

6.2 Fitting the DNA-content distribution to a cell-cycle model and
determining cell-cycle phases

The distribution of DNA contents was fitted using the Fried/Baisch model (Johnston et al., 1978)
(Figure 1F, Figure 1—figure supplement 5), which approximates the DNA content distribution as a
superposition of Gaussians with equal coefficients of variation (CV = p/c, the ratio of the mean to
the standard deviation). In this model, the DNA content of the cells in G1 phase is approximated as
a Gaussian distribution with mean u and standard deviation o. The DNA of cells in G2/M phases is
approximated as a Gaussian distribution with mean 24 and standard deviation 20. The DNA of cells
in S phase is approximated as the sum of three Gaussian distributions each with CV's equal to that
of the G1 Gaussian. The cell cycle model has the form:

r—a;p

flz) = i:Az:{ (ﬁ“’”> o =(i+3)/4

where f(z) is the frequency of observing a cell with DNA content, z. The fitting parameters of this
function are: the G1 Gaussian mean p, the G1 Gaussian width o, and heights of the Gaussian distri-
butions associated with each stage: A; for G1 phase, As, A3, and A4 for S phase, and A; for G2/M
phases. This model was able to accurately describe the measured distribution of DNA content
(Figure 1F, Figure 1—figure supplement 5).

To investigate features of cells in G1 or G2/M phases, where cells have two and four copies of
autosomal genes, respectively, we determined ranges of DNA content that correspond to cells in
G1 phase or in G2/M phases. To determine the desired ranges of DNA content for each experiment,
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we used the fit of the cell-cycle model to the DNA content histogram and the extracted fit parame-
ters, u and o (Figure 1F). We observed that the cell-cycle model describes large ranges of DNA con-
tents that contain a mixed population of cell cycle phases (Figure 1—figure supplement 5), so we
sought to determine DNA content values that would minimize the overlap of the phases predicted
by the model. By visually inspecting the model fit results, we determined that the following gating
satisfied those aims: Cells with DNA content less than p + o were categorized as cells in G1 phase,
while cells with DNA content more than 2u were categorized as cells within G2/M phases
(Figure 1F, Figure 1—figure supplement 5). Using this analysis, we estimated the fraction of cells
in G1, S, and G2/M phases to be 43 + 2%, 29 + 4%, and 28 + 4%, respectively (mean + SEM from 6
experiments with >600 cells per experiment).

7. Using ergodic rate analysis to extract temporal information

7.1 Using ergodic rate analysis to calculate the time within the cell cycle

The ergodic rate analysis (ERA) transform described in (Kafri et al., 2013) was developed to extract
temporal dynamics from measurements of a fixed steady-state population. In the current work, we
used the ERA transform to map the measured DNA content z to the time ¢ within the cell cycle for
each cell (Figure 3—figure supplement 2). To do so, we transformed the DNA content distribution
(fitted using the cell-cycle model, Materials and methods 6.2 above), f(z), as follows:

t(z) =1prvlog, (2—LF(T))

where F(x) = J f(a")dz' is the cumulative DNA distribution. The timescale in this calculation is intro-
0

duced using the doubling time of the cells, Tp;y = 13 hr, measured previously for the same cell line
(R1) and growth conditions (serum/LIF) (Cartwright et al., 2005). Using this calculation, the mea-
sured DNA content for each cell was converted to time within the cell cycle.

7.2 Estimating the gene replication time and the degree of dosage

compensation

Determining the time within the cell cycle for each cell allowed us to determine whether there are
changes in transcription activity over time. In particular, we wanted to refine the measurement of
fold-change in nascent mRNA following gene replication (Figure 2B), and to estimate the gene repli-
cation time. To do so, we plotted the number of nascent mRNA n against the calculated time within
the cell cycle ¢ (Figure 3B). The individual values of nascent mRNA were smoothed by averaging
over the nearest 50 cells in time. Using the fit routine in MATLAB, the smoothed data were fitted to
a piecewise function of the form:

_J 2B, t<tgrer
n(t) = {4”’737 t>Trep

where 8 describes the average number of nascent mRNA produced per gene copy and Ttggp is the
gene replication time. Dosage compensation is included using the parameter 7, the fold-change in
nascent mMRNA per gene copy following gene replication.

8. A cell-cycle dependent stochastic model of gene activity

8.1 Description of the model

Our model is built on the two-state model commonly used in the literature (Raj et al., 2006;
So et al.,, 2011; Zong et al., 2010), but is extended to explicitly include two additional features:
nascent (actively transcribed) mRNA, and the cell-cycle effects of gene replication and dosage com-
pensation. In this model (Figure 3A), each gene copy stochastically switches between the ‘OFF’ and
‘ON’ states with rates korr and koy, and transcription is stochastically initiated only in the ‘ON’ state
with rate kry;. After transcription has been initiated, the nascent transcript elongates and remains at
the transcription site for a total residence time, Tgpgs. After time Tgps, the nascent mRNA is released
and converted into a mature mRNA. Mature mRNA is then degraded stochastically with rate kp. At
the gene replication time in the cell cycle trgp, the gene copy number doubles from two to four.
The effect of dosage compensation—decreased transcription following gene replication—is included
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through a fold-change « in koyn, where a<1 (invoking instead a change in kopr following gene repli-
cation does not significantly change the fitting results; Figure 3—figure supplement 5). At the cell
division time tp;y, the mature mRNA are binomially partitioned to the two daughter cells.

8.2 Solving the model

We first note that the deterministic lifetime of nascent mRNA represents a constant ‘time delay’
before nascent mRNA is converted into mature mRNA. Given that this time delay is short compared
to the duration of cell-cycle phases, the mature mRNA distribution can be approximated using a
model where mature mRNA is produced immediately upon an initiation event. Below, the mature
and nascent mRNA distributions were therefore calculated separately while sharing the same ‘ON'/
‘OFF’ switching and transcription initiation kinetics.

8.2.1 Calculating the mature mRNA distributions
To calculate the mature mRNA distributions in consideration of the gene replication process (from
one copy to two copies within a cell cycle), our approach was to include two gene copies throughout
the cell cycle, where the second gene copy remains in the '‘OFF’ state until the gene replication
time. To start, we first defined the joint probability at time ¢ as:

Py, s, (myt),

where the states for each of the two gene copies, s; and s;, can be 'ON’ (denoted as 1) or ‘OFF’
(denoted as 0), and the number of MRNA, m, is a nonnegative integer (0,1,2,...).

We then constructed the probability vector P(t), which contains the probabilities of all possible
states at time t:

PO‘O (m,t)

P(1,t) m
P(t) = , where P(m,t) = ]Iz;? gm’g
P(m.?) P (mit)

The vector P(m,t) contains the probabilities of the states that have exactly m mRNA at time ¢.
Next, we constructed the Chemical Master Equation (CME), the series of ordinary differential
equations that describes the rate of change of these probabilities in time. The CME can be written
as:
d

SP()=QUP(),

where Q(t) denotes the rates of transition between states. Q(¢) is time-dependent, reflecting the dif-
ferences in gene-state transitions from before- to after gene replication. In particular, the second
gene copy is allowed to transition to the ‘ON’ state after the gene replication time. In our model,
Q(t) is constructed as:

A(t)—T D 0
T A{t)-T-D 2D
Q(t) =

0 T A(t)—T—2D

In this expression, A(t) is the gene-state transition matrix, T is the transcription matrix, and D is
the degradation matrix, defined as follows:
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—kon korr 0 O
kon —korr 0 0
0 0 00 t<Trer
0 0 00
Alt)= —2akon korr korr 0 ’
akoy  —akon—korr 0 korr t> Tapp
akon 0 —akon—korr  korr -
0 akon akon —2korr
0 0 0 0 kp 0 0 O
ok 0 0 | o |0 kp 0 0
T= 0 0 kins 0 ; D= 0 0 kp O}’
0 0 0  2king 0 0 0 kp

where « is the fold-change of the gene activation rate koy following gene replication. The value of «
is calculated from the fold-change in nascent mRNA per gene copy 7 using the relation (see Materi-
als and methods 8.4 for the derivation):

_ nkorr
(1 —=n)kon +korr

Note that Q(¢) was constructed such that it changes at the gene replication time, but is constant
at all other times.

The CME represents an infinite number of ordinary differential equations because m can be any
nonnegative integer. We followed the Finite State Projection (FSP) approach (Munsky and Kham-
mash, 2006) and truncated the system to a finite number of m, enabling the numerical calculation of
solutions to the model. The chance of observing >1300 mature mRNA in a cell is very low (<1 cell
per 5000 cells), so we set the truncation value to m = 1500.

To numerically calculate the model solution for a given set of parameters {kon, korr, kini, kp.
Trep, @}, we implemented the following algorithm in MATLAB:

1) The vector P(t) was initialized at time ¢= 0. For simplicity, we initialized the system to have
m=0,s =0, s =0:

Py(0,0) 1

P(0,0) 0

Py1(0,0) 0

P(0,0) | P1.1(0,0) | 10]
P0)= |P(1,0) | = | [Po(1,0)] | = [0]
Pi(1,0) 0

PM(I,O) 0

| P11(1,0) | 1 0]

2) P(0) was then time-propagated to the gene replication time tggp. For a Q that is constant in
time, time-propagation of the CME from ¢ =1; to t =1, can be calculated using the exponential
operator: P(13) = exp{Q[t2 — 71]}P(11). A direct implementation in MATLAB uses the expm function.
However, we found that the large size of Q in our case resulted in a prohibitively slow calculation.
To balance accuracy and speed, we instead approximated the previous calculation with a series of
discreet time-propagation steps: P(13)=Pg;s(12) = (I + QAt)%P(Tl), where Py;(12) is the approxi-
mated result, I is the identity matrix, and At is the time interval of each time-propagation step. We
found that by setting At=0.001 min, the calculation could be performed in less than a second with
little deviation from the result of the exponential operator for all sets of parameters used
(2, |Pais(t2) — P(12)| < 107%). We therefore used the series of discreet time-propagation steps
when computing model solutions.

To time-propagate P(0) to the gene replication time tzgp, we used the following operation:

P(thup) = (T+ Q(t < Thip)AL) 5 P(0),

where P(t;5p) represents the probability vector at time trgp, before the operation performed in 3).
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3) At the gene replication time Trpp, the second gene copy was assigned the gene state of the
first gene copy (recall that until tzgp, the second gene copy remained in the 'OFF' state:
Pyi(m,t) = Pi1(m,t) =0). To accomplish this, we constructed the gene replication operator R, as

follows:
Rm 00 1000
0 Rm 0 . 0000
R= 0 0 Rm - , where Rm = 0000
. . . 0100

The operation P(t},5p) = RP(T;p) was performed such that, for each m:

Poo(m, TREP) Poo(m,tgpp)
P1o(m,Thep) 0
+ v |f10 RrREP) | _
P(m, T pp) = Py (m, TREP) = 0 )
( )

P1i(m, Trpp P1o(m,thp)

where P(155p) and P(t};p) represent the probability vectors before and after the application of
R at time, Tgpp, respectively.
4) P(t}5p) was then time-propagated to the cell division time, 1, using the operation:

IV TI(’LI’)

P(tpny) =1+ Q(t > T rep)AL) P (Thep),

where P(1y,,,) represents the probability vector at time, tp;y, before the operation performed in 5).

5) At the cell division time tp;y, the mRNA were binomially partitioned, and the second gene
copy was transitioned to the ‘OFF' state. To perform these two operations, we constructed a bino-
mial partitioning operator B and a cell division operator V, defined as follows:

BO|0)I BO|1)I B(02)I

0 B(1DI B(12)1 1000
B= .. 7WhereB(ng):(lg)Q—Ic’I: 0100 ;
0 0 BE2I . m 0010
' ' : 0001
vm 9 ! . 1010
0 Vm 0 - 0101
V= 0 0 Vm . , where Vim = 0000
) ’ ) 0000

Note that B and V commute (BV=VB), so the order in which they are applied does not affect
the result. The operation P(t};;,,) = BVP(1},,,) was applied such that, for each m:

ZB(m|k)Pﬂ,i(m7TE)IV)

Pyo(m, TDIV) ik
Pio(m,thH)
+ y_ [ f10(mTpy
P(m, 1) = Py (m,thy,) ;B m|k)Pyi(m,Tpy) |
Pyi(m,Tppy) 0
0

where P(t5,,) and P(1};;,) represent the probability vectors before and after the application of B
and V at time tp;y, respectively.

6) The resulting vector P(t5,,) was next compared to P(0) for indication of a cyclostationary
solution (i.e. solutions that satisfy P(¢t) =P(t+1pv)). If P(th,,) did not satisfy the criterion

> |P(thy) —P(0)] <10°%, then P(t),,) was assigned to P(0) and steps 2-6 were repeated. If
P(t},) did satisfy the above criterion, it was used as P(0) of the solution to the model. The solution

was then propagated through the above algorithm once again. During this final propagation,
P(t) was recorded at 20 evenly spaced time points along the cell cycle.
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8.2.2 Calculating the nascent mRNA distributions

To solve the model (Figure 3A) for the nascent mRNA distributions, we used the modified version of
the FSP algorithm described in (Xu et al., 2015), which considers that nascent mRNA elongates at a
constant rate and remains at the site of transcription for a deterministic residence time. This model
explicitly considers the positions of smFISH probes along the gene. Here for simplicity we approxi-
mated these positions as distributed uniformly along the gene, because we label 4 (for Nanog) or 5
(for Oct4) exons, as well as the 3' UTR of the gene. We used this algorithm to calculate the distribu-
tion of nascent mMRNA produced from a single gene copy at 20 evenly spaced time points in the cell
cycle (identical to the evaluation times of the mature mRNA distributions). For times before gene
replication, we used a given set of parameter values for the gene activation rate koy, the gene inac-
tivation rate korr, the transcription initiation rate k;y; and the residence time tgps. For times after
gene replication, we modified the gene activation rate to akoy, where « is calculated from the fold-
change in nascent mRNA per gene copy 7 using the relation (see Section 8.4 for derivation):

_ nkorr
(1—=mkon +korr

8.2.3 Predicting the mRNA distributions corresponding to 2 and 4 gene
copies
In the previous section, we solved for the mature and nascent mRNA distributions in the case where
the cell cycle begins with a single gene copy present. To compare our model with the experimental
data, we considered the actual gene copy number in the cell, namely two copies that replicate into
four copies during the cell cycle. Assuming that the gene copies are independent of each other in
terms of ‘ON'/'OFF" switching and transcription initiation, which is supported by the experimental
results for Oct4 and Nanog (Figure 2A, Figure 2—figure supplement 1), the distribution of mMRNA
from multiple gene copies is equal to the autoconvolution of that from a single gene copy
(Bahar Halpern et al., 2015b). Therefore, we solved for the mature mRNA distribution by calculat-
ing the autoconvolution of the model solution. We solved for the nascent mRNA distribution at times
before gene replication by calculating the autoconvolution of the model solution, and solved for the
nascent mRNA distribution at times after gene replication by performing two successive autoconvo-
lution calculations of the model solution (the second calculation was performed on the output of the
first).

The mature and nascent mRNA distributions obtained at this point were used to fit the experi-
mental smFISH data using the procedures described in the following section.

8.3 Maximum likelihood estimation of model parameters

To determine the set of parameters that best fits the experimental data, we used the maximum like-
lihood estimation method, following (Neuert et al., 2013). Briefly, given data from N cells, a likeli-
hood function can be constructed which quantifies how likely it is that the data came from a given
model and parameter set. To construct the likelihood function, we first calculated the probability,
given the parameter set K, of observing a cell with m mature mRNA and n nascent mRNA at time :

Rnat(m7t|K)Pnas(n7t|K)7

where P,,,; and P, are the probability distributions predicted by the model for mature and nascent
mRNA, respectively. The likelihood function L describes the total probability of observing the N
data points given the model parameter set K:

N

L(K) = H-F)ma,f, (mﬁtllK)PN(Is(th/‘K)
i=1
The parameter set that maximizes the likelihood function (which also maximizes the logarithm of
the likelihood function) produces the best model fit to the experimental data:
N

Kpi = arg max (log(L(K))) = arg max ( Y log(Ppar(m, ti|K) Pras(ni, t:/K))).
K K —1

i
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In our model, K is comprised of fitting parameters {kon, korr, kini, 1/TrEs}, parameters mea-
sured for each experiment {tzpp, @}, and parameters from literature {kp,Tp;v}. To find Ky, we first
computed libraries of P, (m,t|K) and P,.(n,t|K) for each experiment. The libraries consist of
model predictions for ranges of values for fit parameters {kon, korr, kini, 1/TrEs}, where each
parameter samples the biologically plausible rates (10°3-10? min™' (Sanchez et al., 2013), with log-
intervals of 10%2 min™). Tzzp was measured for each experiment (Materials and methods 7.2). « was
calculated based on the value of n measured for each experiment (Materials and methods 7.2). kp
was taken as the mean of the known literature values (Abranches et al., 2013; Munoz Descalzo
et al., 2013; Ochiai et al., 2014; Sharova et al., 2009) (Supplementary file 1). 1p;, was taken from
the literature (Cartwright et al., 2005).

To compare each data point to the model, the number of nascent and mature mRNA was
rounded up or down to the nearest integer. The time in the cell cycle was rounded up or down to
the nearest of the 20 time points at which the model was solved. Then, for each experiment and cor-
responding library, the likelihood value was evaluated for all parameter sets. The maximum likeli-
hood value was determined and used as an estimate of the optimal parameter set. We then refined
each fit library to scan 107°°-10%° min™" fold of the previous estimate at a finer resolution of
100023 ', and searched for the maximum likelihood value. The parameters that produced the
maximum likelihood value were taken to be Kp;;, and are shown in Figure 3D.

min’

8.4 Converting fold-change in nascent mRNA to fold-change in kon
following gene replication

To include dosage compensation through a decrease in koy, we needed to find a mapping between
the measured fold-change in number of nascent mRNA per gene copy following gene replication 5
to the fold-change in koy following gene replication «. We started with the expression for mean
number of nascent mRNA in the cell (n), which follows from (Xu et al., 2015):

/

L 9B kon () krNTTRES
{nlt)) =A (kon (t) + korr)

This expression can be understood as the product of the following terms: (1) The fraction of time
the gene is ‘'ON’ (kon/(kon + korr))- (2) The rate of initiation when the gene is ‘ON’ (k;n1). (3) The
time a nascent mMRNA molecule spends on the gene (tzgs). (4) The number of genes in the cell (g).
(5) The effective number each nascent transcript contributes to the average (A; reflecting that
nascent transcripts can be observed partially elongated [Senecal et al., 2014; Xu et al., 2015]).

At the gene replication time in the cell cycle Tzgp, the gene copy number doubles from 2 to 4:

2 t<tgep
g(t)7{4 t>1TRrep’

In our model, the effect of dosage compensation—decreased transcription frequency following
gene replication—is included through a fold-change « in koy, where a<1:

' _J kon t<7Tgrep
Fox(t) = {akON t>1Trep’

To compare to the measured fold-change of nascent mRNA following gene replication (Materials
and methods 7.2), we solved for the ratio of the expected means of nascent mRNA:

(n(t>1rep)) kon +korr

(n(t<trep)) ~ akon+korr
From this expression, we can obtain the mapping from the measured fold-change in nascent
mRNA per gene copy following gene replication 7 to the fold-change in rate of gene activation fol-
lowing gene replication a:

nkorr

o=
(1 =m)kon +korr
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9. A deterministic model for nascent and mature mRNA kinetics

To examine how the observed ratios of both nascent and mature mRNA numbers before/after gene
replication are affected by the relative timescales of mRNA lifetime and cell cycle duration, we cre-
ated a simple deterministic model for the kinetics of the two species. The model includes only
mRNA production and degradation, along with the cell-cycle effects of gene replication and cell divi-
sion, but disregarding gene-state switching and dosage compensation. The level of each mRNA spe-
cies is described by:

d 1 0<t<Trgp
dt

—R(t) =g(t)knr — kpR(t), g(t) = 2 Trep <t<1pry’

where R(t) and g(t) are the mRNA and gene copy-numbers, k;y; and kp are the rates of mRNA tran-
scription and degradation, Tpgp and Tp;y are the times of gene replication and cell division. When
solving for nascent mMRNA using this formalism, an effective degradation rate is used, which corre-
sponds to the residence time at the gene, kp =1/Tzes. At the end of the cell cycle, mRNA are parti-
tioned to the daughter cells. To obtain the cyclostationary solution, we imposed the boundary
condition R(tpsy) = 2R(0). The solution is the following piecewise function:

kINI e*k/)(‘f/)lv *T/em’) i
MIND - —kpt
kp ! 2 — e~kptoIv ¢ 0<t<Trep

R(t) =

—kp(Tprv —TREP)
% [2 —ertoltmmer) 62 — o—kotom e_k“t} Trep <t <Tprv
R(t) is plotted in Figure 3—figure supplement 1A for both mature and nascent Oct4 mRNA using
the measured gene replication time (tggp; Figure 3—figure supplement 4), the effective transcrip-
tion initiation rate from averaging over ‘ON’/'OFF' gene states (k;y;=0.6 min™"; Figure 3D), the liter-
ature average of mature mRNA degradation rate (kp; Supplementary file 1), the measured
residence time (tpps; Figure 3D), and the literature estimate of the cell division time (tp;=13 hr;
[Cartwright et al., 2005]).

Next, we defined observation time windows for the early and late parts of the cell cycle, within
which the numbers of mRNA are averaged:

(RO<t<m)) :Hdm(t),

1
0

ToIv
1
and <R(TQ <t< ‘Cpn/» = dtR(t),
Tprv — T2
T2
where T; is some time in the beginning of the cell cycle before the gene replication time, and 15 is

some time near the end of the cell cycle after the gene replication time. The ratio, Ry, is defined as:

<R(TQ <t< TDIV))

Ry =R <i<t))

We calculated R, for nascent and mature Oct4 mRNA (Figure 3—figure supplement 1B) using
the periods of G1 and G2 phases extracted from the cell cycle model (Figure 1F) as the first
(0 <t < 1) and second (12 < t < Tpyy) observation time windows in addition to the parameters used
above. To demonstrate the effect of varying mRNA lifetimes, we plotted R); against kptp;y (Fig-
ure 3—figure supplement 1C).
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