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Abstract mTOR inhibition is beneficial in neurodegenerative disease models and its effects are

often attributable to the modulation of autophagy and anti-apoptosis. Here, we report a neglected

but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin

significantly preserves neuronal ATP levels, particularly when oxidative phosphorylation is impaired,

such as in neurons treated with mitochondrial inhibitors, or in neurons derived from maternally

inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin

treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly,

in mitochondrially defective neurons, but not neuroprogenitor cells, ribosomal S6 and S6 kinase

phosphorylation increased over time, despite activation of AMPK, which is often linked to mTOR

inhibition. A rapamycin-induced decrease in protein synthesis, a major energy-consuming process,

may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may

have the potential to treat mitochondria-related neurodegeneration.

DOI: 10.7554/eLife.13378.001

Introduction
The mTOR complexes coordinate nutrient availability with cell growth and proliferation, promoting

protein synthesis and inhibiting autophagy (Laplante and Sabatini, 2012). Protein homeostasis is

often distorted in neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, as well

as PolyQ and other proteinopathies, making mTOR an attractive therapeutic target (Bové et al.,

2011). Studies from animal models support mTOR inhibition as a promising therapeutic approach

for neurodegenerative diseases, although several distinct beneficial mechanisms have been pro-

posed. Rapamycin, an mTORC1 inhibitor, reduces neuronal cell death in a mouse model of Parkin-

son’s disease, and decreased synthesis of DDIT4 (DNA-damage-inducible transcript 4) was proposed

to provide the protective effect by maintaining AKT pro-survival phosphorylation (Malagelada et al.,

2010). Rapamycin strongly suppresses degeneration of dopaminergic neurons in Drosophila with

loss of function mutations of PINK1 and PARKIN, genes in which mutations cause human early onset

Parkinsonism; importantly, overexpression of 4E-BP, a protein synthesis inhibitor downstream of the

mTORC1 pathway, also rescues neuronal degeneration in these fly mutants. Increased production of

GSTS1, a detoxifying enzyme, was suggested to be the beneficial factor (Tain et al, 2009). In a
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mouse model of Alzheimer’s disease, deleting one mTOR allele decreases amyloid-b deposits and

ameliorates memory deficits possibly through enhanced autophagy (Caccamo et al., 2014).

Mitochondrial dysfunctions are frequently observed in neurodegenerative diseases (Lin and Beal,

2006). Proteins causing neuronal degeneration often have either direct or indirect deleterious

effects on mitochondrial functions. For example, a-synuclein inhibits mitochondrial fusion and causes

mitochondrial fragmentation followed by a decrease in mitochondrial respiration and neuronal death

(Kamp et al., 2010; Nakamura et al., 2011). Pink1 and Parkin are critical in mitochondrial quality

maintenance (Pickrell and Youle, 2015). Amyloid precursor proteins accumulate in mitochondrial

import channels, resulting in mitochondrial dysfunction as a hallmark of Alzheimer’s disease pathol-

ogy (Devi et al., 2006). In Huntington’s disease, mutant huntingtin also has detrimental effects on

mitochondrial function (Zuccato et al., 2010). Thus, it appears that mitochondrial dysfunction and

bioenergetic collapse could be a critical step towards neuronal death.

Mitochondrial dysfunction results in decreased ATP levels in neurons. The delicate influence of

ATP level on neuronal survival is best exemplified by maternally inherited Leigh syndrome (MILS), a

mitochondrial DNA (mtDNA) disease, characterized by severe early childhood neurodegeneration.

T8993G in MT-ATP6, encoding an ATP synthase subunit, is the most common mutation in MILS

(Finsterer, 2008). A unique feature of mtDNA disease is that disease severity is correlated with the

mutation load, i.e., the percentage of mutated mitochondrial DNA copies (Taylor and Turnbull,

2005). Higher than 90% ATP6 T8993G causes MILS, whereas, 70 ~ 90% causes a less severe disease

called NARP syndrome with symptoms, such as neuropathy, ataxia, and retinitis pigmentosa, that

gradually develop with age. In a cybrid study where patient platelets containing the T8993G mtDNA

mutation were fused to human osteosarcoma cells devoid of mtDNA, ATP synthesis was found to be

eLife digest Living cells need to maintain an optimal balance between making new proteins and

destroying older ones. Building proteins requires a supply of nutrients and appropriate levels of

energy, and mammalian cells rely on a protein called mTOR to sense both nutrient availability and

energy levels. Nutrients activate mTOR signaling to promote protein synthesis. In contrast, a lack of

nutrients and low energy levels inhibit mTOR, which slows down protein synthesis to help the cell to

conserve vital resources.

The balance between protein synthesis and degradation is often perturbed in diseases that

involve the progressive loss of nerve cells, and a drug called rapamycin – which inhibits mTOR

signalling – can help treat this neurodegeneration in mice. Neurodegenerative diseases are also

often linked to problems with the cellular structures called mitochondria that provide the cell with

energy in the form of the chemical ATP. Previous research suggests that abnormal mitochondrial

activity and energy deficiency could be a critical step that leads to neuron death in

neurodegeneration. So far, the effect of rapamycin on energy deficiency in neurons has not been

explored in detail.

Zheng, Boyer et al. have now tested the therapeutic potential of rapamycin in a genetic disease

called maternally inherited Leigh syndrome in which children suffer from severe neurodegeneration

due to defects in their mitochondria. The experiments made use of neurons that could be grown in

the laboratory and which faithfully mimicked the problems observed in maternally inherited Leigh

syndrome patients. In some experiments, healthy neurons were treated with chemicals that inhibit

ATP production. In other experiments, cells collected from a maternally inherited Leigh syndrome

patient were coaxed into becoming neurons. Signaling via mTOR was enhanced in both kinds of

neurons. Zheng, Boyer et al. then treated the defective neurons with rapamycin, which led to a

significant rise in ATP levels. The production of proteins also slowed down. This could explain the

observed rise in ATP levels, as making proteins consumes a lot of energy.

Zheng, Boyer et al. propose that a mild reduction in protein synthesis may have the potential to

treat neurodegeneration caused by defective mitochondria. Further work is needed to extend this

analysis to animal models of neurodegenerative diseases.

DOI: 10.7554/eLife.13378.002
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negatively correlated with the mutation load (Mattiazzi et al., 2004), indicating that a moderate dif-

ference in ATP level can dictate disease severity and the extent of neuronal death.

mTOR inhibition by rapamycin greatly attenuates neurodegeneration caused by mitochondrial

complex I defects (Johnson et al., 2013b). This study showed a dramatic therapeutic effect of rapa-

mycin on a mouse model of Leigh syndrome, deficient in Ndufs4, a nuclearly-encoded component of

complex I. The life span is significantly extended, and neuronal degeneration is greatly attenuated.

The exact rescue mechanism is unclear, but autophagy or mitochondrial biogenesis was excluded. It

is not known if mTORC1 inhibition by rapamycin would have similar beneficial effects on the muta-

tions affecting other respiratory complexes (Vafai and Mootha, 2013).

So far, rapamycin’s effects on neuronal bioenergetics have not yet been explored. Here, we show

that rapamycin significantly preserves neuronal ATP levels, particularly when mitochondrial oxidative

phosphorylation is impaired by mitochondrial inhibitors. To test the therapeutic potential of rapamy-

cin on neurodegeneration due to energy deficiency, we developed an iPSC-based disease model of

maternally inherited Leigh syndrome (MILS), due to a T8993G mtDNA mutation in the ATP6 gene.

The MILS neurons exhibited energy defects and degenerative phenotypes consistent with patient

clinical observations. Rapamycin treatment significantly alleviated ATP deficiency, reduced aberrant

AMPK activation in MILS neurons and improved their resistance to glutamate toxicity. Mechanisti-

cally, MILS neurons and neurons treated with mitochondrial inhibitors all exhibited enhanced

mTORC1 activity, signified by elevated ribosomal S6 and S6 kinase phosphorylation, indicating a

causal link between mitochondrial dysfunction and mTOR signaling in neurons, and providing a ratio-

nale for treatment with rapamycin, which reduces protein synthesis, a major energy-consuming

process.

Results

Rapamycin preserves neuronal ATP level
The effect of rapamycin on cellular ATP level was examined in neurons derived from human embry-

onic stem cells, an approach that has been successfully used to model a variety of neurological dis-

eases (Qiang et al., 2013). Three mitochondrial drugs were used to mimic mitochondrial oxidative

defects: oligomycin, blocking the ATP synthase; rotenone and antimycin-A, inhibiting complexes I

and III, respectively, and CCCP, a mitochondrial uncoupler. We first tested whether rapamycin would

affect neuronal ATP level. After a 6 hr rapamycin treatment of cultured wild type neurons differenti-

ated from human neuroprogenitor cells (NPCs) derived from H9 human ESCs, the ATP level was

increased by ~ 13% compared to neurons treated with DMSO as control. FK-506 (tacrolimus) that

binds FKBP12, which is also a rapamycin target protein, but inhibits calcineurin signaling rather than

the mTOR pathway (Taylor et al., 2005), did not change the ATP level (Figure 1A). Oligomycin

treatment alone decreased neuronal ATP level to ~ 64% of that in neurons treated with DMSO, but

strikingly, cotreatment with oligomycin plus rapamycin maintained the ATP level at ~ 86%

(Figure 1A). Consistent with the higher ATP level, neurons cotreated with rapamycin showed lower

AMPK T172 phosphorylation, an indicator of cellular ATP deficiency, compared to treatment with oli-

gomycin alone (Figure 1B). Similar effects of rapamycin were observed in neurons treated with rote-

none and antimycin-A; but, interestingly, rapamycin was not able to preserve ATP when neurons

were treated with CCCP (Figure 1A). It should be noted that both oligomycin and rotenone/antimy-

cin-A treatment reduce ATP production by directly inhibiting oxidative phosphorylation; in contrast,

CCCP does so by uncoupling electron transport from ATP production, which not only reduces ATP

production, but also stimulates oxidative phosphorylation and induces mitochondrial substrate burn-

ing and heat production. We suspect that this difference may account for the different effects of co-

treatment with rapamycin. These data indicate that rapamycin can increase neuronal ATP levels and

preserve cellular energy when oxidative phosphorylation is impaired.

Increased ribosomal S6 and S6 kinase phosphorylation in neurons
treated with mitochondrial OXPHOS inhibitors
Phosphorylation of ribosomal protein S6, a target of mTOR complex 1 (mTORC1) signaling, is

increased in the brain lysate of Ndufs4 -/- mice, although it is unknown in what type of brain cells,

i.e. neurons or glial cells, this occurs (Johnson et al., 2013b). We found an ~ 2-fold increase in
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Figure 1. Rapamycin treatment increased neuronal ATP levels. (A) The effect of rapamycin (RAPA) on cellular ATP level was examined in 5-week

neurons differentiated from human neuroprogenitor cells (NPCs) derived from H9 ESCs. Rapamycin was used at 20 nM (final concentration).

Mitochondrial dysfunction was mimicked by chemicals disrupting mitochondrial oxidative function: oligomycin (2 mM), blocking complex V (ATP

synthase); rotenone and antimycin A (R&A; 1 mM each), complex I and III inhibitors; CCCP (20 mM), a mitochondrial uncoupler. All were prepared in

DMSO as vehicle. N-acetylcysteine (NAC) was used at 750 mM (final concentration). The treatment was done for 6 hr with neurons grown in duplicate

wells from the same batch of differentiation. The relative ATP level for each treatment was calculated as percentage after normalization to DMSO-

treated neurons. Bars are mean ± SD, n=3. *p<0.05. **p<0.01, calculated by two-tailed t-test. (B) Immunoblot analysis of cell lysates prepared from

Figure 1 continued on next page
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ribosomal S6 and S6 kinase phosphorylation in neurons treated for 6 hr with oligomycin or rote-

none/antimycin-A, but not CCCP (Figure 1B,E and 1F). Rapamycin only partially decreased mTOR

S2481 phosphorylation as previously reported (Hsu et al., 2011), but almost completely abolished

the ribosomal S6 and S6K phosphorylation observed in oligomycin-treated neurons, indicating its

dependence on mTORC1 (Figure 1B). We did not observe a consistent change of mTOR phosphory-

lation at S2481 or S2448 (not shown) upon oligomycin or rotenone/antimycin-A treatment. The

increased S6 and S6 kinase phosphorylation was not due to AMPK activation, as AICAR, an AMPK

agonist, did not alter their phosphorylation (Figure 1C). In fact, AMPK activation is generally associ-

ated with decreased mTORC1 activity and S6K phosphorylation as a result of direct phosphorylation

of Tsc2 and Raptor by AMPK (Inoki et al., 2003; Gwinn et al, 2008). Consistent with this, NPCs

treated with oligomycin or rotenone/antimycin-A for 20 min or for 6 hr showed decreased S6 and

S6K phosphorylation, increased phosphorylation of AMPK and its substrate, acetyl-CoA carboxylase

(ACC) (Figure 1H and 1I). In contrast to the 6 hr treatment, 20 min of oligomycin or rotenone/anti-

mycin-A treatment did not significantly alter S6 and S6K phosphorylation in neurons (Figure 1G).

Taken together, these results suggest that the increased S6 and S6K phosphorylation in neurons

treated for 6 hr with these mitochondria inhibitors is a neuron-selective response to some cumulative

effect caused by mitochondrial dysfunction.

Protein synthesis inhibition spares a significant amount of ATP in
neurons
As rapamycin was able to preserve ATP in neurons treated with rotenone/antimycin-A, which largely

abolishes oxidative phosphorylation, it is unlikely that the effect of rapamycin is through increasing

ATP production from mitochondrial oxidative phosphorylation. Nevertheless, we measured the basal

oxygen consumption rate in neurons treated with rapamycin, and the rate was similar to that in

DMSO-treated controls, supporting the conclusion that rapamycin’s effect does not come from

increasing oxidative phosphorylation activity (Figure 1D). Rapamycin treatment did not increase

Figure 1 continued

neurons treated with oligomycin, rapamycin or both for 6 hr. The intensity of phosphorylated protein was quantified after normalization to non-

phosphorylated signal, and was presented as fold change compared to control group treated with DMSO. (C) Immunoblot analysis of cell lysates

prepared from neurons treated with oligomycin or AICAR for 6 hr. (D) Oxygen consumption rate (OCR) measurement by Seahorse extracellular flux

analyzer. The basal OCRs of neurons treated with rapamycin for 6 hr were compared to neurons treated with DMSO as control. Bars are mean ± SD,

n=3. (E) Immunoblot analysis of cell lysates prepared from neurons treated with CCCP for 6 hr. (F) Immunoblot analysis of cell lysates prepared from

neurons treated with rotenone and antimycin-A for 6 hr. (G) Immunoblot analysis of cell lysates prepared from neurons treated with oligomycin or

rotenone & antimycin-A for 20 min. (H) Immunoblot analysis of cell lysates prepared from NPCs treated with rapamycin, oligomycin, and rotenone/

antimycin-A for 6 hr. (I) Immunoblot analysis of cell lysates prepared from NPCs treated with oligomycin or rotenone & antimycin-A for 20 min. (J) The

effect of protein synthesis inhibition on cellular ATP level was examined in 5-week neurons differentiated from human neuroprogenitor cells (NPCs)

derived from H9 ESCs. Cycloheximide (CHX) was used at 20 mg/ml, and 4E1RCat was used at 50 mM. The treatment was done for 2 hr with CHX and

4E1RCat alone, and for 6 hr when combined with mitochondrial inhibitors with neurons grown in duplicate wells from the same batch of differentiation.

(K) Five-week neurons differentiated from human neuroprogenitor cells (NPCs) derived from H9 ESCs were treated with vehicle (DMSO) or rotenone &

antimycin-A (R&A). Protein synthesis was measured by pulsing for 2 hr with 35S-Cys/Met every 2 hr from 0 to 6 hr, and 35S incorporation into protein and

neuronal ATP levels were quantified and normalized to the DMSO-treated controls. Data are mean ± SD, n=3. (L) Five-week neurons differentiated from

human neuroprogenitor cells (NPCs) derived from H9 ESCs were treated for vehicle (DMSO), rotenone & antimycin-A, rapamycin or both (R&A Rapa)

for 4 hr. Protein synthesis was measured by labeling for 2 hr with 35S-Cys/Met from 2 to 4 hr. **p<0.01, calculated by two-tailed t-test. (M) Protein

synthesis in NPCs derived from H9 ESC treated with rotenone & antimycin-A for 6 hr. Data are mean ± SD, n=3. All the experiments were repeated at

least three times. (see associated Figure 1—source data 1).

DOI: 10.7554/eLife.13378.003

The following source data and figure supplements are available for figure 1:

Source data 1.

DOI: 10.7554/eLife.13378.004

Figure supplement 1. Five-week neurons differentiated from human neuroprogenitor cells (NPCs) derived from H9 ESCs were treated for vehicle

(DMSO), cycloheximide and 4E1RCat.

DOI: 10.7554/eLife.13378.005

Figure supplement 2. The glucose concentration in the medium growing 3-week neurons derived from H9 ESCs treated with DMSO and rapamycin for

8 hr were quantified by YSI 2950 metabolite analyzer.

DOI: 10.7554/eLife.13378.006
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neuronal glucose consumption indicating that glycolysis was not increased (Figure 1—figure supple-

ment 2). Mitochondrial dysfunction leads to increased production of reactive oxygen species causing

cellular damage; however, N-acetylcysteine (NAC), a commonly used anti-oxidant, was unable to

maintain the ATP level in this assay (Figure 1A).

With long-term treatment, both oligomycin and rotenone/antimycin-A treated neurons showed

increased ribosomal S6 and S6K phosphorylation, which are indicators of mTORC1 signaling and,

indirectly, the rate of protein synthesis, a major cellular energy-consuming process (Rolfe and

Brown, 1997), and the increase in ribosomal S6 phosphorylation in oligomycin-treated neurons was

almost completely abolished by rapamycin treatment, which inhibits mTORC1 (Figure 1B). One con-

sequence of rapamycin inhibition of mTORC1 is a decrease in protein synthesis, and to explore the

potential ATP-saving effect of protein synthesis inhibition, neurons were treated for 2 hr with cyclo-

heximide (CHX), a widely-used protein synthesis inhibitor, and 4E1RCat, a protein synthesis initiation

inhibitor that blocks eIF4E:eIF4G and eIF4E:4E-BP1 interactions (Cencic et al., 2011), causing a drop

in protein synthesis to ~ 9% and ~ 55% of that of neurons treated with DMSO as control, respec-

tively (Figure 1—figure supplement 1). As a result of this inhibition, the neuronal ATP level

increased by ~26% and ~ 14%, respectively (Figure 1J). Similar to rapamycin, cycloheximide and

4E1RCat could also significantly preserve ATP levels in neurons treated with mitochondrial inhibitors

(Figure 1J). These results imply that reduction of protein synthesis is an important factor for rapamy-

cin to preserve ATP in neurons.

The increased S6 and S6K phosphorylation in neurons treated with mitochondrial inhibitors at

later times implies that an increase in protein synthesis should occur. To monitor neuronal protein

synthesis during the treatment with mitochondrial inhibitors, we labeled neuronal cultures with 35S-

cysteine/methionine at different time points after rotenone/antimycin-A treatment. During the first

2 hr, protein synthesis dropped to ~ 36% of that of neurons treated with DMSO as control, but,

interestingly, protein synthesis recovered and reached ~ 80% by 4–6 hr despite the sustained

decrease in neuronal ATP levels (Figure 1K). Such increased protein synthesis would consume more

ATP and presumably aggravate the energy crisis. When rapamycin was added together with rote-

none/antimycin-A, after 4 hr treatment, protein synthesis was ~ 38% of the control, while in neurons

treated with rotenone and antimycin-A, the protein synthesis rate was ~ 62%, and rapamycin treat-

ment alone decreased protein synthesis to ~ 60% (Figure 1L). Therefore, rapamycin may help to pre-

serve ATP through reducing protein synthesis. Protein synthesis was not restored in NPCs treated

with rotenone/antimycin-A for 6 hr (Figure 1M), consistent with the phosphorylation status of S6K

and S6 (Figure 1H).

iPSC-based model of maternally inherited Leigh syndrome
Our results so far indicated that rapamycin can preserve the ATP level in neurons treated with mito-

chondrial oxidative phosphorylation inhibitors, which cause acute mitochondrial dysfunction. To test

the therapeutic potential of rapamycin for neurodegeneration resulting from energy deficiency, we

developed an induced pluripotent stem (iPS) cell model of maternally-inherited Leigh syndrome

(MILS), an infantile neurodegenerative disease due to mitochondrial DNA mutation. We obtained a

clone of primary fibroblasts (GM13411) derived from a male MILS syndrome patient, who died at 8

months; the patient’s symptoms, disease development and brain pathology were typical of MILS

syndrome as described in a clinical report (Pastores et al., 1994). The GM13411 MILS patient fibro-

blast line has a T8993G mutation resulting in a change from a conserved leucine to arginine at amino

acid position 156 in ATP6, a subunit of Complex V/ATP synthase. Three iPS cell lines (iPSCs) were

established from GM13411 fibroblasts using a standard cocktail of reprogramming retroviruses,

expressing OCT4 (POU5F1), SOX2, KLF4, and MYC (Takahashi et al., 2007). Pluripotency markers

were assessed by RT-PCR (Figure 2—figure supplement 1) and immunostaining (Figure 2A).

Healthy control iPS cell lines were derived from BJ male human fibroblasts. Both the T8993G and BJ

iPSCs had normal karyotypes (Figure 2—figure supplement 2). The mitochondrial genomes from

these T8993G and BJ iPS cells were sequenced, and no major pathogenic mutations, apart from

T8993G, were found compared to mitochondrial genome variation databases (Figure 2—figure sup-

plement 3). Subsequently, three neural progenitor cell lines (NPC) were derived from the respective

patient iPS cell lines using the embryoid-body based protocol outlined in Figure 2—figure supple-

ment 4. Expected neural progenitor markers were present by immunostaining (Figure 2A), and all

the T8993G NPC lines retained the T8993G mutation (Figure 2B and Figure 2—figure supplement
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Figure 2. Established iPSCs and neuroprogenitor cells (NPC) from GM13411, a MILS fibroblast line. (A) T8993G iPSC expressed pluripotency markers

that included Tra-1–60, Lin28, Tra-1–81 and Nanog. NPCs derived from T8993G iPSCs were stained with anti-Sox2 and Nestin. (B) T8993G mutation

generates a Sma I restriction enzyme site. T8993G iPSCs and NPC cells still retained the mutation as confirmed by PCR and Sma I digestion. DNA

products were separated on agarose gel by electrophoresis. (C) Mitochondrial membrane potential analyzed by fluorescence-activated cell sorting

(FACS) using TMRE staining. Two lines of iPSCs, NPCs and neurons derived from BJ fibroblasts and one from H9 hESCs were used as controls (WT).

The relative mitochondrial membrane potential was presented as percentage compared to the mean of control. Bars are mean ± SD, n=3. The

experiment was repeated three times. (D) Cellular reactive oxygen species (ROS) analyzed by FACS using CM-H2DCFDA staining. Two lines of iPSCs,

NPCs and neurons derived from BJ fibroblasts and one from H9 hESCs were used as control (WT). The relative ROS level was presented as percentage

compared to the mean of control. Bars are mean ± SD, n=3. The experiment was repeated three times. (E) T8993G NPCs and neurons had higher

expression of oxidative stress response genes including SOD1, GPX1 and GSS. Two lines of iPSCs, NPCs and neurons derived from BJ fibroblasts and

one from H9 hESCs were used as control (WT). The gene expression levels were quantified by real-time PCR after normalization to b-actin. The relative

expression level was presented as percentage compared to the mean of control. Bars are mean ± SD, n=3. The experiment was repeated three times.

(F, H, J) Oxygen consumption rate (OCR) measured by Seahorse extracellular flux analyzer. FCCP (F) is a mitochondrial uncoupler; rotenone and

antimycin A (R&A) are complex I and III inhibitors. Error bars represent SD, n=6. Non-mitochondrial oxygen consumption has been subtracted. The

relative percentage of basal and maximum OCR of T8993G iPSC, NPC and neurons at 3 weeks of differentiation were calculated by comparing to the

mean of BJ and H9 cells (WT). The original data was in Figure 2—figure supplement 9. (G, I, K) Measurement of lactate secreted by iPSCs, NPCs and

neurons at 3 weeks of differentiation. The relative percentage of secreted lactate from T8993G iPSC, NPC and neurons was calculated by comparing to

the mean of BJ and H9 cells. Bars represent mean ± SD. n=3. *p<0.05. Calculated by two-tailed t-test. The experiments were repeated three times. (see

associated Figure 2—source data 1).

DOI: 10.7554/eLife.13378.007

The following source data and figure supplements are available for figure 2:

Source data 1.

DOI: 10.7554/eLife.13378.008

Figure supplement 1. RT-PCR analysis of pluripotency genes, OCT4, NANOG, KLF4 and SOX2 in T8993G and BJ iPSCs.

Figure 2 continued on next page
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5). Like the GM13411 fibroblasts, the derived iPSCs, NPCs and neurons all had an extremely high

T8993G mtDNA mutation load (Figure 2—figure supplement 6). The staining of neuronal differenti-

ation markers and electrophysiological analysis of patient and BJ neurons is described in supplemen-

tary data; representative results for T8993G neurons were shown in Figure 2—figure supplement 7,

8.

T8993G MILS cells recapitulate the mitochondrial defects found in
cybrid studies
T8993G iPSCs, NPCs and neurons all exhibited increased mitochondrial membrane potential and

cellular ROS level compared to the control BJ- and H9-derived lines (Figure 2C and 2D). ROS

responsive genes, such as SOD1, GPX1 and GSS, were also up-regulated in T8993G NPCs and neu-

rons (Figure 2E). These data are consistent with the previous studies based on a cybrid model, in

which the ATP6 T8993G mutation was found to impair the proton passage through ATP synthase,

which leads to higher mitochondrial membrane potential and ROS production (Cortés-

Hernández et al., 2007; Manfredi et al., 1999; Mattiazzi et al., 2004; Trounce et al., 1994). Extra-

cellular flux analysis of oxygen consumption rate (OCR) revealed that iPSCs, NPCs and neurons con-

taining T8993G mtDNA had a lower basal OCR but similar maximum OCR to controls (Figure 2F,H

and 2J), mechanistically consistent with ATP synthase deficiency. Significantly more lactate was

secreted by T8993G iPSCs and NPCs than controls (Figure 2G and 2I), whereas T8993G neurons

exhibited only a small increase in secreted lactate (Figure 2K). This result indicates enhanced aero-

bic glycolysis in proliferating T8993G cells. Recently, Ma et al. (2015) reported the establishment of

iPSCs from the same patient fibroblast line, which have metabolic phenotypes similar to our T8993G

iPSC lines. Although they did not differentiate patient neurons from iPSCs, by using somatic cell

nuclear transfer (SCNT) technology, they replaced the mutant mtDNA and generated corrected plu-

ripotent stem cells, which had a normal metabolic profile, proving that the metabolic phenotypes

observed in the patient iPSCs are due to mtDNA mutation.

Shutoff of aerobic glycolysis during neuronal differentiation exposes
ATP synthesis deficiency in T8993G MILS neurons
Interestingly, only T8993G neurons showed a significant ATP shortage; in contrast, T8993G iPSCs

and NPCs had slightly lower but comparable ATP levels to controls (Figure 3A). The ATP level in

MILS neurons dropped to ~ 73% of healthy control neurons, and, consistently, phosphorylation of

AMPK T172, an indicator of ATP shortage, and its substrate ACC was significantly increased in

T8993G neurons but not in T8993G NPCs, iPSCs and fibroblasts (Figure 3A). Similarly, oligomycin,

Figure 2 continued

DOI: 10.7554/eLife.13378.009

Figure supplement 2. Karyotypes of three T8993G iPSC clones, 46, XY; and one BJ iPSC, 46, XY.

DOI: 10.7554/eLife.13378.010

Figure supplement 3. Sequencing of mitochondrial DNA extracted from T8993G (GM13411) and BJ iPSCs.

DOI: 10.7554/eLife.13378.011

Figure supplement 4. The outline of the protocol used to differentiate neurons from iPSCs; representative pictures of fibroblasts, iPSCs, embryoid

bodies (EB) and neural rosettes.

DOI: 10.7554/eLife.13378.012

Figure supplement 5. Sanger sequencing confirmed the T8993G mutation (upper panel, representative result).

DOI: 10.7554/eLife.13378.013

Figure supplement 6. T8993G iPSCs, NPC cells and neurons all had an extremely high T8993G mtDNA mutation load as GM13411 fibroblast.

DOI: 10.7554/eLife.13378.014

Figure supplement 7. Neuronal marker staining.

DOI: 10.7554/eLife.13378.015

Figure supplement 8. Electrophysiological study of T8993G and BJ 5-week neurons.

DOI: 10.7554/eLife.13378.016

Figure supplement 9. Oxygen consumption rate (OCR) analysis by Seahorse extracellular flux analyzer on BJ, H9 and ATP6 T8993G iPSCs, NPCs and 3-

week neurons.

DOI: 10.7554/eLife.13378.017
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an ATP synthase inhibitor, dramatically reduced ATP levels in wild-type neurons but less significantly

in NPCs; and lactate levels increased significantly in NPCs but not neurons (Figure 3B). These results

are consistent with the fact that neurons mainly rely on mitochondria for energy production. Immu-

noblot analysis of representative enzymes in the glycolysis and TCA pathways, and mitochondrial

respiratory complexes showed no major differences between T8993G and BJ control NPCs or neu-

rons (Figure 3C). Strikingly, however, neurons did not express detectable hexokinase (HK2) or lac-

tate dehydrogenase (LDHA) proteins, the two key enzymes supporting aerobic glycolysis

(DeBerardinis and Thompson, 2012; Dang, 2012). Consistently, the production of lactate in wild

type neurons was ~ 10 fold less than in NPCs (Figure 3D). Presumably, in iPSCs and NPCs, the

increased production of lactate allows more NADH to be recycled to NAD+, which is required for

the conversion of glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate, and results in produc-

tion of more glycolytic ATP. Without LDHA and HK2, neurons appear unable to compensate for the

mitochondrial ATP deficiency through aerobic glycolysis. Moreover, the data also argue that even

when short of energy, neurons cannot turn on aerobic glycolysis, at least in MILS neurons. In spite of

ATP deficiency in T8993G neurons, we did not detect enhanced autophagy (data not shown), proba-

bly due to mTOR activation, which suppresses autophagy. Moreover, there was no marked increase

in mitochondrial mass in T8993G neurons (Figure 3C), indicating that mitochondrial biogenesis was

not deployed to compensate for cellular energy deficiency.

Figure 3. Shutoff of aerobic glycolysis during neuronal differentiation exposes mitochondrial ATP synthesis deficiency in T8993G MILS neurons. (A)

Relative ATP level of T8993G compared to healthy control (BJ, H9 hESC) in iPSCs, NPCs and neurons. The relative percentage of ATP levels in T8993G

was calculated by comparing to the mean of control cells respectively. Bars are mean ± SD, n=3. *p<0.05. Calculated by two-tailed t-test. Immunoblot

analysis of AMPK Thr172 and ACC Ser79 phosphorylation in cell lysates prepared from primary fibroblasts, iPSCs, NPCs and neurons. (B) Cellular ATP

level and secreted lactate from H9 NPCs and neurons treated with DMSO and oligomycin for 6 hr. The relative percentage of ATP levels was calculated

by comparing to the mean of DMSO-treated cells respectively. Bars are mean ± SD, n=3. (C) Immunoblot analysis of representative enzymes in

glycolysis, TCA and mitochondrial respiratory complexes in BJ and T8993G NPCs and neurons. 20 mg protein lysate from each sample were loaded for

SDS-PAGE. (D) Measurement of lactate secreted by NPCs and neurons derived from human BJ iPSCs at 3 weeks. NPC and differentiated neurons at 3

weeks were incubated in fresh medium for 12 hr, and lactate in the medium is quantified. Bars represent mean ± SD of the absolute concentration of

lactate after normalized to protein content. n=3. All the experiments were repeated at least three times. (see associated Figure 3—source data 1).

DOI: 10.7554/eLife.13378.018

The following source data is available for figure 3:

Source data 1.

DOI: 10.7554/eLife.13378.019
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Degenerative phenotype of T8993G MILS neurons
T8993G neurons showed finer neuronal fibers than control neurons, and bead-like structures along

the T8993G axons were more common (Figure 4A and 4B). Neurons at 3 and 8-weeks of differentia-

tion retained the homoplasmic T8993G mutation of the parental GM13411 fibroblasts (Figure 4C).

The bead-like structures, known as neuritic beading, are focal swellings in the axons and dendrites

of neurons, which occur upon intracellular ATP decrease (Takeuchi et al., 2005). Mitochondrial dys-

function increases neuronal vulnerability to form neuritic beading (Greenwood et al., 2007). To chal-

lenge the MILS neurons with energy demanding stress, we used a glutamate toxicity assay.

Glutamate overdosage is toxic to neurons through two mechanisms - excessive stimulation of neuro-

nal activity and non-receptor oxidative toxicity (Rothman, 1985; Murphy et al., 1989). ATP defi-

ciency is the primary trigger for neuronal toxicity caused by glutamate overdosage (Nicholls et al.,

2007). T8993G neurons were hypersensitive to increased levels of extracellular glutamate

(Figure 4D and 4E). In neurons expressing GFP driven by the neuron-specific DCX promoter to high-

light neuronal structures, a 6-h treatment with 100 mM glutamate abolished neuronal processes in

T8993G neurons, whereas the neuronal fibers from control neurons, differentiated from BJ iPSCs or

H9 hESCs, remained intact, and could tolerate up to 300 mM glutamate (Figure 4D and 4H). After a

3-h treatment, neuronal fibers, containing multiple neuritic beadings, were already apparent in

T8993G neurons (Figure 4F). Consistently, neuronal ATP levels dropped during glutamate treatment

(Figure 4G). To confirm this observation, we used oligomycin, an ATP synthase inhibitor to mimic

the defect caused by the ATP6 T8993G mutation. By measuring the basal OCRs with different con-

centration of oligomycin, 40 nM was found to partially inhibit ATP synthase (Figure 4—figure sup-

plement 1). Wild type neurons treated with 40 nM oligomycin became sensitive to 100 mM

glutamate similar to MILS neurons (Figure 4H and 4I), and neuronal ATP levels fell consistent with

their sensitivities to glutamate (Figure 4J).

Besides low ATP itself, AMPK activation may also contribute to the deleterious effect of the

T8993G mutation. We found that AICAR treatment to activate AMPK from the start of neuronal dif-

ferentiation led to collapse of neuronal extensions (Figure 4—figure supplement 2), while treatment

of already differentiated neurons with AICAR led to significant cell death (Figure 4—figure supple-

ment 3). This is consistent with the finding that activation of AMPK suppresses axon initiation and

neuronal polarization by phosphorylation of KIF5, the motor protein for the kinesin light chain

(Amato et al., 2011). However, it should be noted that the intensity of AMPK T172 phosphorylation

triggered by AICAR was stronger in BJ and H9 neurons than in T8993G neurons (not shown).

Rapamycin treatment significantly increases ATP level and decreases
aberrant AMPK phosphorylation in T8993G MILS neurons
The ATP6 T8993G mutation, similar to oligomycin treatment, hampers proton intake through ATP

synthase. Like oligomycin-treated healthy control neurons, neurons differentiated from independent

T8993G NPC lines all showed significantly increased ribosomal S6 and S6K phosphorylation com-

pared to BJ and H9, while T8993G NPCs did not show increased S6 and S6K phosphorylation

(Figure 5A). Six-h rapamycin treatment of T8993G neurons increased the ATP level by ~23% com-

pared to those treated with DMSO as control; and consistently, AMPK T172 phosphorylation also

decreased (Figure 5B). In spite of significantly lower cellular ATP levels and activated AMPK, the

rate of protein synthesis in T8993G neurons was still about 92% of BJ control neurons (Figure 5C).

Rapamycin treatment also helped T8993G neurons cope with the stress of glutamate treatment; the

neural fibers of T8993G neurons treated with rapamycin sustained a 6 hr 100 mM glutamate treat-

ment (Figure 5D).

To further confirm the therapeutic effect of rapamycin, we established another model of ATP syn-

thase deficiency using shRNA-mediated knockdown of ATP5A1, a nuclearly-encoded key component

of ATP synthase. ATP5A1 deficiency is also known to cause fatal neonatal mitochondrial encephalop-

athy (Jonckheere et al., 2013). Consistent with our previous observations, ATP5A1-depleted neu-

rons but not NPCs showed increased S6 and S6K phosphorylation similar to T8993G cells

(Figure 5E). ATP5A1-depeleted neurons at 3-weeks of differentiation already showed a significant

number of beaded neuronal processes compared to neurons infected with scramble control shRNA,

and the ATP level of ATP5A-depeleted neurons was only ~60% of the neurons transduced with

scramble control shRNA (Figure 5F). Twelve-hr treatment of rapamycin increased ATP level by
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Figure 4. Degenerative phenotype of T8993G MILS neurons. (A) Phase contrast photo of T8993G and BJ neurons at 8 weeks of

differentiation. Scale bar, 20mm. (B) The percentage of neuronal processes containing neuritic beads was quantified by counting 20 neuronal processes

for T8993G, BJ and H9 neurons as control. Bars are mean ± SD, n=3. *p<0.05 calculated by two-tailed t-test. (C) T8993G neurons differentiated at 3 and

8 weeks still retained the original high T8893G mutation load as confirmed by PCR and Sma I digestion. DNA products were separated on an agarose

gel by electrophoresis. (D) Glutamate-induced toxicity test. Eight-week T8993G and BJ neurons containing DCX promoter-driven GFP were treated with

100 mM glutamate in neuron growth medium. (E) To quantify the extent of neuronal process collapse, the number of discernible neuronal processes in

a fixed photo area (350x350 pixel) were counted at time points of 0, 3, and 6 hr. Bars are mean ± SD, n=3. *p<0.05 calculated by two-tailed t-test. (F)

Neuritic beads, indicated by white arrows, formed along the axons. (G) Cellular ATP of 8-week T8993G and BJ neurons treated with 100 mM glutamate.

The relative percentage of ATP level was calculated by comparing to the mean of 0 hr cells respectively. Bars are mean ± SD, n=3. (H) BJ neurons

containing DCX promoter-driven GFP were treated with oligomycin and glutamate in neuron growth medium for 6 hr. (I) Quantification of the extent of

Figure 4 continued on next page
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~ 26% and greatly decreased the number of beaded neuronal processes (Figure 5G, 5H and 5I).

Cycloheximide, a protein synthesis inhibitor, also had effects comparable to rapamycin in preventing

beading (Figure 5G). These data suggest that rapamycin treatment has the potential to benefit

Leigh or NARP syndrome patients by counteracting energy deficiency.

Elevated amino acids level in MILS neurons
To understand the mechanism through which long term treatment with oligomycin or MILS ATPase

deficiency results in elevated mTORC1 activity, we defined the metabolic profiles of MILS neurons,

by measuring representative glycolytic and TCA metabolites and amino acids using gas chromatog-

raphy mass spectrometry (GC-MS). The levels of 19 amino acids were quantified; we were unable to

measure the level of arginine due to instability. As shown in Figure 6A, the overall levels of amino

acids in MILS neurons were increased compared to healthy control neurons: 14 amino acids showed

significant increase; alanine, asparagine, histidine, isoleucine, leucine, lysine, methionine, phenylala-

nine, proline, serine and valine increased by ~ 40 to 80%; cysteine and threonine increased by

~ 100%; and, glycine increased by 340%. Pyruvate and lactate levels in MILS neurons were two-fold

higher, and the TCA intermediates in MILS neurons were also increased; citrate was ~ 200% of that

in control neurons, a-ketoglutarate was ~ 180%, and succinate was ~ 140%, whereas fumarate and

malate were comparable to the control (Figure 6B). These data are consistent with the ATP6

T8993G mutation defect, which decreases mitochondrial electron transport chain activity, resulting

in decreased usage of TCA and glycolytic metabolites. The increased intracellular amino acids levels

in MILS neurons may also be attributable to the accumulated glycolytic intermediates and a clogged

TCA cycle, because the synthesis and catabolism of amino acids is linked to glycolysis and the TCA

cycle; under catabolic conditions the carbon atoms of amino acids are oxidized by the TCA cycle for

ATP production (Stryer et al., 2002). Since the mTORC1 complex is a sensor of cellular nutrition,

and can be activated by amino acids (Bar-Peled and Sabatini, 2014), we suspect that the observed

enhancement of neuronal mTORC1 activity after prolonged mitochondrial OXPHOS inhibition is due

to the accumulated amino acids or other nutrients that activate mTORC1.

To further examine the change of these metabolites during mitochondrial inhibition, we measured

metabolite levels in the neurons treated with oligomycin or rotenone and antimycin A (R&A) for 6 hr.

Similar to MILS neurons, neurons treated with these mitochondrial drugs showed higher levels of

amino acids, pyruvate and lactate (Figure 6D and 6E); although there are some notable differences

between mitochondrial inhibitor-treated neurons and MILS neurons. For example, the extent of gly-

cine increase in inhibitor-treated neurons is not as pronounced as in MILS neurons. These differences

may be due to the difference in mechanism or extent of mitochondrial inhibition between mitochon-

drial inhibitors and ATP6 T8993G mutation. The large increase of glycine in MILS neurons may be an

anti-oxidant response to chronic mitochondrial oxidative stress. In the mitochondrial matrix, serine is

converted to glycine catalyzed by serine hydroxymethyltransferase 2 (SHMT2), a reaction coupled

with covalent linkage of tetrahydrofolate to a methylene group to form 5,10-methylene-tetrahydro-

folate, which is subsequently used to generate 5,10-methenyl-tetrahydrofolate and NADPH by tetra-

hydrofolate dehydrogenase 2 (MTHFD2) in mitochondria. The NADPH produced through this serine

catabolism pathway maintains mitochondrial redox by regenerating the reduced forms of

Figure 4 continued

neuronal process collapse. (J) Measurement of ATP level. The relative percentage of ATP level was calculated by comparing to the mean of untreated

BJ neurons respectively. Bars are mean ± SD, n=3. All the experiments were repeated at least three times. (see associated Figure 4—source data 1).

DOI: 10.7554/eLife.13378.020

The following source data and figure supplements are available for figure 4:

Source data 1.

DOI: 10.7554/eLife.13378.021

Figure supplement 1. Oxygen consumption rate (OCR) analysis by Seahorse extracellular flux analyzer on neurons treated with Oligomycin.

DOI: 10.7554/eLife.13378.022

Figure supplement 2. Effect of AICAR on neuron differentiation.

DOI: 10.7554/eLife.13378.023

Figure supplement 3. Effect of AICAR on 6-week differentiated neurons.

DOI: 10.7554/eLife.13378.024
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Figure 5. Rapamycin treatment alleviates ATP deficiency and aberrant AMPK activation in T8993G MILS neurons. (A) Immunoblot analysis of

phosphorylation of ribosomal S6, S6K and mTOR in 3-week neurons and NPCs. (B) Effect of rapamycin on ATP level was examined in T8993G neurons.

Five-week T8993G neurons were treated with rapamycin (20 nM) and DMSO for 6 hr. The relative ATP levels of rapamycin-treated neurons were

calculated as a percentage compared to the mean of DMSO-treated T8993G neurons. Bars are mean ± SD, n=3. *p<0.05 calculated by two-tailed t-

test. AMPK Thr172 phosphorylation was examined by immunoblot analysis and quantified. (C) Five-week neurons differentiated from BJ and T8993G

NPCs were used to measure protein synthesis rate. Protein synthesis are pulsed for 2 hr with 35S-Cys/Met. 35S incorporation into protein were

quantified and normalized to the total protein. Data are mean ± SD, n=3. (D) The effect of rapamycin on glutamate-induced toxicity test. Eight-week

T8993G neurons containing DCX promoter-driven GFP were treated with 100 mM glutamate in neuron growth medium with rapamycin (20 nM) or

DMSO. To quantify the extent of neuronal process collapse, the number of discernible neuronal processes in a fixed photo area (350x350 pixel) were

counted at time points of 0 hr and 6 hr. Bar are mean ± SD, n=3. *p<0.05 calculated by two-tailed t-test. (E) Immunoblot analysis of phosphorylation of

ribosomal AMPK, S6, S6K and mTOR in 3-week neurons and NPCs depleting of ATP5A1. Control (Ctl) lysate were from cells infected with scramble

shRNA. (F) Three-weeks ATP5A1-depleting BJ neurons containing DCX promoter-driven GFP. Neurons were infected with lenti-shRNA ATP5A1 and

scramble shRNA from day 2 of differentiation. Relative ATP levels were quantified after normalized to protein content. Data are mean ± SD, n=3. (G)

Three-weeks ATP5A1-depleted BJ neurons containing DCX promoter-driven GFP treated with DMSO, rapamycin and cycloheximide (200 ng/ml) for

Figure 5 continued on next page
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glutathione and thioredoxin (Fan et al, 2014; Lewis et al, 2014; Martı́nez-Reyes I and Chandel,

Figure 5 continued

12 hr. (H) Quantification of beaded neuronal process. (I) Measurement of ATP level. All the experiments were repeated at least three times. (see

associated Figure 5—source data 1).

DOI: 10.7554/eLife.13378.025

The following source data is available for figure 5:

Source data 1.

DOI: 10.7554/eLife.13378.026

Figure 6. Metabolite profiling of amino acids, TCA and glycolysis intermediates. (A) Metabolites measured by gas chromatography mass spectrometry

(GC-MS). The metabolites were extracted from 3-week T8993G and control including two BJ and one H9 neurons. Relative cellular amino acids were

shown. Bar are mean ± SD, n=3. (B) Metabolites of glycolysis and TCA reactions. The relative amount of metabolites in T8993G neurons was presented

as percentage compared to the mean of control. Bar are mean ± SD, n=3. (C) A simplified metabolic flow diagram of glycolysis and the TCA cycle. (D,

E) 3-week BJ neurons were treated with oligomycin (40 nM) and rotenone and antimycin A (1 mM each) for 6 hr. Bar are mean ± SD, n=3. *p<0.05.

**p<0.01, calculated by two-tailed t-test. (see associated Figure 6—source data 1).

DOI: 10.7554/eLife.13378.027

The following source data and figure supplement are available for figure 6:

Source data 1.

DOI: 10.7554/eLife.13378.028

Figure supplement 1. 10 mg protein lysate prepared form NPCs and 3-week neurons were separated on SDS-PAGE and blotted with respective

antibodies.

DOI: 10.7554/eLife.13378.029

Zheng et al. eLife 2016;5:e13378. DOI: 10.7554/eLife.13378 14 of 23

Research Article Human biology and medicine

http://dx.doi.org/10.7554/eLife.13378.025
http://dx.doi.org/10.7554/eLife.13378.026
http://dx.doi.org/10.7554/eLife.13378.027
http://dx.doi.org/10.7554/eLife.13378.028
http://dx.doi.org/10.7554/eLife.13378.029
http://dx.doi.org/10.7554/eLife.13378


2014), and is critical for tumor survival (Ye et al, 2014; DeNicola et al, 2015; Kim et al, 2015). In

MILS neurons, the expression of SHMT2, MTHFD2 and other enzymes in the de novo serine synthe-

sis pathway were significantly higher than in control healthy neurons, supporting our hypothesis

(unpublished data). We are currently investigating the role of this pathway in neuronal survival under

mitochondrial stress. On the other hand, this accumulated glycine can be used to synthesize glutathi-

one itself.

Discussion
Rapamycin treatment benefits a variety of neurodegenerative diseases in animal models

(Johnson et al., 2013a; Lipton and Sahin, 2014), and its effects are often attributable to the modu-

lation of autophagy and reduction in apoptosis. A recent study reported a dramatic therapeutic

effect of rapamycin on a mouse model of Leigh syndrome, deficient in NDUFS4, a component of

complex I (Johnson et al., 2013b). The exact rescue mechanism is unclear, but increased autophagy

or upregulation of mitochondrial biogenesis seem not be involved. Here, we demonstrated that

rapamycin treatment significantly preserved neuronal ATP level, particularly when oxidative phos-

phorylation was impaired, revealing an important beneficial mechanism of rapamycin. To test its

therapeutic potential on neurodegeneration resulting from energy deficiency, we developed an

iPSC-based disease model of maternally inherited Leigh syndrome (MILS), an infantile neurodegener-

ative disease with a complex V (ATP synthase) defect due to mitochondrial DNA mutation. Rapamy-

cin treatment significantly alleviated the ATP deficiency, reduced aberrant AMPK activation in MILS

neurons, and improved their resistance to glutamate toxicity. Strikingly, ribosomal S6 and S6K phos-

phorylation, indicators of mTORC1 activity, were increased in neurons treated for a significant time

with mitochondrial inhibitors and in MILS neurons, arguing that enhanced mTORC1 signaling might

be a frequent feature of mitochondrial dysfunction in neurons.

mTOR signaling and mitochondrial dysfunction in neurons
Our observation that in mitochondrially-defective neurons mTORC1 activity increased, rather than

decreased concurrent with AMPK activation is contrary to previous reports that pharmacological dis-

ruption of mitochondrial function leads to mTORC1 inhibition due to AMPK activation by reduced

energy levels (Zoncu et al., 2011). In proliferating NPCs, we did find that mitochondrial inhibitors

activated AMPK and, consistently, decreased S6 and S6K phosphorylation. Activation of mTORC1 in

neurons with mitochondrial dysfunction takes several hours, and appears to be a slow response to

some cumulative effect caused by mitochondria dysfunction. This paradoxical observation could be

due to unknown differences in the mTORC1 complex between NPCs and neurons. We found that

AKT Ser473 phosphorylation was dramatically decreased in wild type neurons compared to NPCs, as

was phosphorylation of its substrate PRAS40 at Thr246 (Figure 6—figure supplement 1). PRAS40 is

an inhibitor of mTORC1 signaling, and its overexpression has been shown to inhibit mTORC1 hyper-

activation in Tsc2 -/- mutant cells, with AKT-mediated phosphorylation of PRAS40 preventing its inhi-

bition of mTORC1 (Sancak et al., 2007; Vander Haar et al., 2007). An alternative explanation for

mTORC1 activation emerged from our metabolite analysis, which showed that MILS neurons and

neurons treated with mitochondrial drugs had significantly higher levels of amino acids, which can

activate mTORC1. Indeed, it has been shown that the basal activity of S6 kinase rises progressively

with increased concentration of medium amino acids in a nearly linear fashion; and at a 2-fold

increased concentration, S6 kinase activity is close to maximal and no longer shows further activation

by growth factors (Hara et al, 1998). Therefore, the increased amino acid levels in MILS neurons or

mitochondria-inhibitor treated neurons are significant, and may account for the elevated mTORC1

activity. Certainly, there are other possible mechanisms; for instance, the effect might be due to

decreased S6 and S6K phosphatase activity.

Similar paradoxical observations have been described in previous studies (Ng et al., 2012;

Nakai et al., 2015). In an extracellular matrix detachment model, Ng et al. (2012) demonstrated

that after detachment AMPK is activated in both K-Ras V12-transformed and non-transformed

mouse embryonic fibroblasts; interestingly, mTORC1 activity only decreased, in an AMPK-depen-

dent manner, in transformed but not non-transformed fibroblasts. They further showed that this

AMPK-mediated mTORC1 inhibition decreased protein synthesis, thus preserving ATP in the

detached transformed fibroblasts and delaying cell death. As in our study, rapamycin or
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cycloheximide treatment had a significant cell survival effects in their model. Notably, in the trans-

formed fibroblasts, the level of AKT Ser473 phosphorylation was markedly stronger than in non-

transformed cells, reminiscent of the situation in NPCs and neurons.

Protein synthesis, rapamycin and neuronal ATP deficiency
When neurons were treated with rotenone and antimycin-A, protein synthesis initially dropped to ~

36% but gradually recovered to almost 80%, correlating with the increase in S6 and S6K phosphory-

lation, in spite of a continuous drop in ATP levels. In the MILS neurons, S6 and S6K phosphorylation

were significantly higher than in BJ and H9 control neurons. Neuronal energy deficiency caused by

mitochondrial dysfunction occurs in the presence of sufficient oxygen and ample nutrition, a situation

that cells in vivo rarely encounter, and there is probably no selection pressure to evolve a proper

response program. We believe that the recovery of protein synthesis in such situations is an

improper response that further aggravates energy deficiency. Therefore, manipulating protein syn-

thesis to match ATP production is beneficial for neurons. Hints exist in the work of others. Overex-

pression of 4E-BP, a negative regulator of protein synthesis, rescues the neuronal degeneration

observed in Pink1 and Parkin fly mutants with mitochondrial defects (Tain et al., 2009); in light of

our finding, an alternative explanation is that reduction of protein synthesis is energetically beneficial

for neurons with mitochondrial dysfunction. Strikingly, pathogenic LRRK2 mutation in Parkinson’s dis-

ease has recently been found to induce a large increase in protein synthesis in a Drosophila model,

and, when treated with a low-dose of the anisomycin protein synthesis inhibitor, the locomotor defi-

cits and dopamine neuron loss in mutant LRRK2 transgenic flies were rescued (Martin et al., 2014).

Notably, a recent genetic screen in yeast also revealed that downregulation of protein synthesis

could rescue the growth of mutant cells with mitochondrial defects (Wang and Chen, 2015).

ATP sparing by rapamycin is significant
As discussed in the Introduction, a cellular load of ATP6 T8993G greater than 90% causes Leigh syn-

drome, a severe form of infantile neurodegeneration, whereas a 70 ~ 90% load causes a less severe

neurological disease called NARP syndrome with symptoms, such as neuropathy, ataxia, and retinitis

pigmentosa, gradually developing with age. In contrast, carriers with a ~ 50% load are generally nor-

mal, only developing late-onset cone-rod dystrophy in their forties (Porto et al., 2001). In a cybrid

study, where patient platelets containing the T8993G mtDNA mutation were fused to human osteo-

sarcoma cells devoid of mtDNA, mitochondrial ATP production was found to be negatively corre-

lated with the mutation load in a nearly linear fashion (Mattiazzi et al., 2004). In this study, we

found that rapamycin treatment of T8993G neurons increased ATP level and improved their resis-

tance to glutamate-induced neuronal fiber collapse, a process caused by decreased intracellular ATP

(Takeuchi et al., 2005). Therefore, a ~ 20% increase in ATP, the amount saved by rapamycin, which

may seem small, could indeed have a significant effect on neuronal survival in Leigh or NARP syn-

drome patients.

Use rapamycin to treat Leigh, NARP syndromes and other
mitochondria-related neurodegenerative disorders
Leigh syndrome affects 1 in 40,000 newborns in the United States (Darin et al., 2001). In one fourth

of the cases, these mutations occur in mitochondrial DNA (Finsterer, 2008; Pinto and Moraes,

2014). The neurological degenerative phenotypes are usually apparent in newborns, but, currently,

no effective therapy is available. Johnson et al. (2013b) reported a dramatic therapeutic effect of

rapamycin on a mouse model of Leigh syndrome. We also observed beneficial effects of rapamycin

in human neurons treated with mitochondria inhibitors and in an iPSC-based disease model of

maternally inherited Leigh syndrome. However, potential negative effects of rapamycin on neuronal

development should not be neglected. A previous study found that focal infusion of rapamycin into

dorsal hippocampus blocks axon fiber sprouting, but it should be noted that such a treatment is

unable to reverse already established axon organization (Buckmaster et al., 2009). Therefore, we

suggest that long-term usage of rapamycin for newborns should be considered with caution, but

could be tried on older NARP syndrome patients to delay disease progression, and short term rapa-

mycin usage could be considered for younger Leigh patients in emergency situations, such as fever,

which often drastically and irreversibly worsens the neurodegenerative symptoms (Uziel et al.,
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1997). Besides these hereditary mitochondrial diseases, mitochondrial dysfunctions are frequently

observed in neurodegenerative diseases (Lin and Beal, 2006). Elevated p70 S6 kinase activity has

been documented in the brain tissue of Alzheimer’s disease patients (An et al., 2003). Therefore, a

mild reduction in protein synthesis may be useful in other neurodegenerative diseases by increasing

ATP level and simultaneously decreasing the workload of protein folding systems.

We emphasize that, whether or to what extent, our observations from a cell culture-based mito-

chondrial disease model reflect the in vivo situation needs further investigation using animal models

with various mitochondrial deficiencies. In particular, there are some critical questions that need to

be addressed under in vivo condition, e.g., the role of ATP deficiency in the neurodegenerative pro-

cess; whether a reduction in protein synthesis can help balance neuronal energy expenditure and

thereby delay neurodegeneration. Brain tissue is composed of mixed cell types, neurons and glial

cells, which have distinct metabolic profiles and different responses to energy deficiency

(Bélanger et al, 2011; Almeida et al 2001); therefore, to study the changes in ATP levels in situ and

in specific cell types, an effective approach preferably at the single cell level is required. An engi-

neered ATP fluorescent biosensor is available for cell culture systems (Tantama et al, 2013), which

could be adapted and introduced into animal models.

Material and methods

Immunohistochemistry
Cells were fixed in cold 4% paraformaldehyde in PBS for 10 min. iPSCs, NPCs and neurons were per-

meabilized at room temperature for 15 min in 0.2% TritonX-100 in PBS. Samples were blocked in 5%

BSA with 0.1% Tween 20 for 30 min at room temperature. The primary antibodies and dilutions

used were: goat anti-SOX2 (Santa Cruz), 1:200; mouse anti-human Nestin (Chemicon), 1:200; rabbit

anti-bIII-tubulin (Covance), 1:200; mouse anti-bIII-tubulin (Covance), 1:200; rabbit anti-cow-GFAP

(Dako) 1:200; mouse anti-MAP2AB (Sigma), 1:200; secondary antibodies were Alexa donkey 488 and

568 anti-mouse, rabbit and goat (Invitrogen), used at 1:1000. Nuclear stainings were done with

Hoechst (Invitrogen).

Cell lysate preparation and immunoblotting
Cell lysates were prepared with lysis buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM

EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM b-glycerophosphate,

1 mM Na3VO4, 1 mg/ml leupeptin. 1 mM PMSF was added immediately prior to use. The protein

concentration was measured by DC protein assay (Bio-Rad). The primary antibodies and dilutions

were used as follow: glycolysis antibody sampler kits (#8337&12866, Cell Signalling) used at 1:1000;

the OXPHOS human WB Antibody cocktail, anti-CS and IDH2 used at 1:1000 (Abcam); anti-HSP60

and SUCLA2 (Santa Cruz); anti phospho AMPK T172 and AMPK, anti phospho ribosomal S6 Ser235/

236 and S6; anti phospho mTOR Ser2481 and mTOR used at 1:1000 (Cell Signaling). Generally,

20 mg of protein lysate were loaded on SDS-PAGE gel. Immunoblotting quantification was carried

out on an Odyssey Imager (Licor).

Reprogramming iPSC
The MILS patient and BJ fibroblasts were reprogrammed into iPSCs using the standard method

described by Takahashi et al. (2007). GM13411 primary fibroblasts derived from a male MILS syn-

drome patient were obtained from the Coriell Institute for Medical Research. BJ fibroblasts were

from the ATCC. Fibroblasts were cultured in DMEM media supplemented with 10% FBS, 1x Gluta-

max, 5 ng/ml FGF2. Fibroblasts from one well of a six-well dish were infected with retrovirus

expressing OCT4, SOX2, KLF4, and MYC, and after 2 days, were split onto a 10 cm plate containing

1 million mitotically-inactivated mouse embryonic fibroblasts (mEFs). The growth medium was

switched to DMEM/F12 supplemented with 20% knockout serum replacement, 1 mM L-glutamine,

0.1 mM non-essential amino acids, b-mercaptoethanol and 10 ng ml�1 FGF2 for the 21–28 days of

reprogramming. hiPSC colonies were picked and cultured onto 24-well plates coated with inacti-

vated mEFs. hiPSCs were split through mechanic passaging with a glass pipet at early passages,

while at higher passages, hiPSC could be grown on Matrigel and enzymatically digested with dis-

pase. Karyotyping analysis was performed by Cell Line Genetics (Wisconsin, MD).
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Establishment of neuroprogenitor cells and neuron differentiation
The establishment of neural progenitor cells from iPSCs and neuronal differentiation were performed

as previously described (Brennand et al., 2011). hESC and iPSC lines were mainly maintained on

Matrigel using mTeSR1. For embryoid body formation, hESC and iPSC lines were cultured on a

mitotically-inactive mouse embryonic fibroblast feeder layer in hESC medium, DMEM/F12 supple-

mented with 20% knockout serum replacement, 1 mM L-glutamine, 0.1 mM non-essential amino

acids, b-mercaptoethanol and 10 ng ml�1 bFGF. Neural differentiation was induced as follows:

hESCs grown on inactivated mEFs were fed N2/B27 medium without retinoic acid for 2 days, and

then, colonies were lifted with collagenase treatment for 1 hr at 37˚C. The cell clumps were then

transferred to ultra-low attachment plates. After growth in suspension for 1 week in N2/B27

medium, aggregates form embryoid bodies, which were then transferred onto polyornithine

(PORN)/laminin-coated plates and developed into neural rosettes in N2/B27 medium. After another

week, colonies showing mature neural rosettes with biopolar neuroprogenitor cells migrating out

from the colony border, were picked under a dissecting microscope, digested with accutase for

10 min at 37˚C and then cultured on polyornithine(PORN)/laminin-coated plates in N2/B27 medium

supplemented with FGF2.

For neuron differentiations, neuroprogenitor cells were dissociated with accutase and plated in

neural differentiation media, 500 ml DMEM/F12 GlutaMAXTM, 1x N2, 1X B27+RA, 20 ng/ml BDNF

(Peprotech), 20 ng/ml GDNF (Peprotech), 200 nM ascorbic acid (Sigma), 1 mM dibutyrl-cyclicAMP

(Sigma) onto PORN/Laminin-coated plates. For one well of a 6-well plate, 200,000 cells/well were

seeded; for one well of a 12-well plate, 80,000 cells were seeded. Neurons can be maintained for 3

months in a 5% CO2 37˚C incubator.

qRT-PCR
Total RNA was isolated using RNeasy kit (QIAGEN). 500 ng of total RNA from each sample was

used for cDNA synthesis by MMLV reverse transcriptase; and quantitative real-time polymerase

chain reaction (PCR) was performed with SYBR Green Master Mix on ABI 7000 cycler (Applied Bio-

systems) and normalized to b-actin. Primer sequences were referred from qPCR primerDepot

(http://primerdepot.nci.nih.gov/).

FACS measurement of mitochondrial membrane potential and cellular
ROS
Mitochondrial membrane potential was measured by flow cytometry of iPSCs, NPCs and neurons

stained with TMRE (Invitrogen). Cells were dissociated with accutase, spun down at 350 g for

10 min, and then, resuspended in PBS with 2% bovine serum albumin (BSA) loaded with 10 nM

TMRE for 15 min at 37˚C. The cells were washed again, filtered through a 250-mM nylon sieve and

kept in PBS on ice. The TMRE signal was quantified using the FL2 channel of a Becton Dickinson

FACScan. Each set of measurements included a control sample pretreated for 30 min with 20 mM of

CCCP, a mitochondrial uncoupler, to abolish mitochondria membrane potential. Data were analyzed

using FloJo; and the mean value was used to compare the mitochondria potential between BJ and

T8993G cells. Similarly, cellular ROS level was measured by 10 mM CM-H2DCFDA (Invitrogen) stain-

ing for 30 min and detected in the FL1 channel.

OCR, ATP and Lactate measurement
The OCR of iPSC, NPCs and neurons grown in Seahorse plates was measured using an extracellular

Flux Analyzer (Seahorse Bioscience), following the manufacturer’s instructions. After the measure-

ment, cells were lysed in 60–100 ml lysis buffer with two “freeze and thaw” cycles on dry ice. Protein

concentrations were determined by DC protein assay (Bio-Rad). The OCR values were normalized by

protein mass. For measurement of cellular ATP content, neurons were lysed directly on plates with

protein extract buffer by two freeze-and-thaw cycles in dry ice. The ATP content was quantified by

CellTiter-Glo Luminescent Cell Viability/ATP Assay kit (Promega), and normalized by protein content

measured by DC protein assay (Bio-Rad). For measurement of secreted lactate levels, medium from

iPSCs, NPCs and neurons was freshly changed and collected after 12 hr, and cells were frozen on

the plate and lysed by two freeze-and-thaw cycles on dry ice. Medium lactate was measured using

the Lactate Assay kit (BioVision) and normalized by total protein content.
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Protein synthesis measurement
To avoid the medium change effect on mTOR signaling, 10 ml (100 mCi) Express 35S protein labelling

mix (Perkin Elmer) were added into NPCs or neurons grown in 12 well plate containing 1 ml NPC or

neuronal growth medium. Cells were labelled for 2 hr and lysed on plate after two times of PBS

wash. Twenty-five ml lysate were mixed with 5 ml 100% TCA, incubated on ice for 30 min, and spot-

ted on Whatman 3MM filter paper. The filter papers were washed twice with cold 5% TCA and air-

dried. The radioactivity was determined by scintillation counting.

Metabolite analysis
Neurons were grown in a 6-well plate. After growth in fresh medium for 12 hr, cells were washed

quickly 3 times with cold PBS, and 0.45 ml cold methanol (50% v/v in water with 20 mM L-norvaline

as internal standard) was added to each well. Culture plates were transferred to dry ice for 30 min.

After thawing on ice, the methanol extract was transferred to a microcentrifuge tube. Chloroform

(0.225 ml) was added, the tubes were vortexed and centrifuged at 10,000 g for 5 min at 4˚C. The
upper layer was dried in a centrifugal evaporator and derivatized with 30 ml O-isobutylhydroxylamine

hydrochloride (20 mg/ml in pyridine, TCI) for 20 min at 80˚C, followed by 30 ml N-tert-butyldimethyl-

silyl-N-methyltrifluoroacetamide (Sigma) for 60 min at 80˚C. After cooling, the derivatization mixture

was transferred to an autosampler vial for analysis. GC-MS analysis was performed in the Cancer

Metabolism core at the Sanford-Burnham Medical Research Institute (La Jolla, California). More

details including the parameters of machine settings can be found in the publication from the center

(Scott et al., 2011).

Statistical analysis
Comparisons were done by Student’s t-test. Statistical analyses were performed using GraphPad

Prism.
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