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Abstract Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in

which the same set of neuroblasts give rise to the distinct larval and adult nervous systems,

respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in

the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage

mapping revealed that neurons born late in the embryonic phase show axonal morphology and

transcription factor profiles that are similar to the neurons born post-embryonically from the same

neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized

and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4,

generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently

during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how

proliferation of individual neuroblasts is dictated by temporal and spatial cues.

DOI: 10.7554/eLife.13399.001

Introduction
The embryonic ventral nerve cord (VNC) of Drosophila has been used as a model system for over

three decades to understand how a small number of neuronal stem cells, called neuroblasts (NBs),

generate a highly complex but organized tissue in which almost all cells adopt unique fates

(Jimenez and Campos-Ortega, 1979; Cabrera et al., 1987; Doe, CQ 1992; Skeath and Carroll,

1992; Bossing et al., 1996; Schmidt et al., 1997; 1999; Rickert et al., 2011). Patterning of the neu-

ral ectoderm is the first step in promoting neuronal diversity. The orthogonal interaction of seg-

ment-polarity genes [e.g., runt (run), wingless (wg) and gooseberry (gsb)] and columnar genes [e.g.,

ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle specific

homeobox (msh; also referred to as Drop)] divides the neuroectoderm into a Cartesian grid system,

in which each NB acquires a unique identity based on its position within the grid (reviewed in

Skeath, 1999). About 30 distinct NBs form in a segmentally repeated bilateral pattern through most

of the VNC segments, although the number of NBs is reduced in the anterior gnathal and terminal

abdominal segments (Bossing et al., 1996; Schmidt et al., 1997; 1999; Technau et al., 2014;

Birkholz et al., 2013). Each NB undergoes multiple rounds of asymmetric cell division. During each

division it renews itself and generates a secondary precursor cell, called a ganglion mother cell

(GMC), which terminally divides to generate a pair of neurons or glia (Campos-Ortega, 1993;

Goodman and Doe, 1993; Rhyu et al., 1994; Spana et al., 1995). Through successive cell divisions,

the number of which depends on the NB identity, each NB produces unique and highly diverse

progeny (Bossing et al., 1996; Schmidt et al., 1997; 1999). Recent studies have shown that many

NBs in the embryonic VNC undergo the following temporal changes of the transcription factor
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expression: Hunchback fi Kruppelfi Pdmfi Castor (Kambadur et al., 1998; Brody and Odenwald

2000; Isshiki et al., 2001; Pearson and Doe 2003; Grosskortenhaus et al. 2005). Each of these

factors defines a temporal identity window for the NB, and each is maintained in the GMC, establish-

ing different transcriptional states. The GMC then divides via Notch-mediated asymmetric cell divi-

sion to produce two sibling cells with distinct identities: the Notch-ON “A” cell and the Notch-OFF

“B” cell (reviewed in Jan and Jan, 2000). Consequently, diversity within a NB lineage is produced

through two main mechanisms: transcriptional changes in the NB that occur as the stem cell divides

and Notch mediated asymmetric cell fates of the daughters of the GMC.

Towards the end of embryogenesis, most NBs in the thoracic and gnathal segments enter a

mitotically quiescent state, whereas most NBs in the abdominal segments and a few in the thoracic

segments die through apoptosis (Peterson et al., 2002; Cenci and Gould, 2005; Baumgardt et al.,

2009). The quiescent NBs re-enter the cell cycle at the beginning of the second larval instar stage

and continue to generate progeny from the Castor (Cas) window (Tsuji et al., 2008;

Maurange et al., 2008). This quiescent state divides the neurogenesis of Drosophila, and other

insects that undergo complete metamorphosis, into two phases: an embryonic phase, which gener-

ates the neurons of the larval nervous system, and a postembryonic phase, which generates adult-

specific neurons. Because of the NB quiescence and the anatomical changes that occur in the CNS

during late embryogenesis, it has been difficult to establish the correspondence between the embry-

onic and postembryonic lineages. Recently, using the technique of Flybow, Birkholz et al. (2015)

reported the correspondence between the embryonic and postembryonic lineages. We attempted a

eLife digest Fruit flies undergo a process called metamorphosis in which they change from a

maggot or larva into an adult fly. These two life stages look and behave differently and appear to

have strikingly different nervous systems. The relationship between the two nervous systems has

been most extensively studied in the ventral nerve cord (which is the equivalent to the spinal cord in

humans). Although the ventral nerve cords of a larva and an adult fly look quite different, they are

generated by the same set of stem cells known as neuroblasts. This is made possible because the

neuroblasts proliferate in two separate phases: the first phase occurs in the embryo to generate the

neurons of the larval nervous system, and the second phase occurs in the larva to generate neurons

for the adult’s nervous system.

Now, Lacin and Truman have paired each of the neurons in the adult fruit fly’s nerve cord with

their corresponding neurons in the nerve cords of fruit fly larvae. This involved identifying the

original neuroblasts that gave rise to each of the neurons in both larval and adult fruit flies. The

results suggest that most neurons that arise from a given neuroblast produce a similar set of

molecules and extend similar nerve fibers, even though they work in two different nervous systems.

Since neuroblasts in non-metamorphosing insects proliferate continuously, these findings also

suggest that, when metamorphosis evolved, a pause was introduced to create the two separate

phases of proliferation without a big effect on the types of neurons generated.

Lacin and Truman then went on to discover three neuroblasts that appear to be unique to the

middle (or thoracic) segments of a fruit fly. The experiments reveal that the presence of these

neuroblasts depended on specific genes that control the development of animal body plans. Two of

these neuroblasts generate the so-called motor neurons that control the movement of a fly’s legs.

Flies only have legs on their thoracic segments, so this indicates that the development of new

neurons is coordinated with the development of the body plan at the stem cell level. The third

neuroblast generates neurons that connect with the leg motor neurons, and Lacin and Truman

propose that this neuroblast arose from a copy of a neighboring stem cell. The resulting extra

neurons may have enabled finer control over the leg movements required for activities such as

walking and grooming.

Following on from this work, it is now possible to investigate how molecular events that occur

from the embryonic to the adult stages of a fruit fly’s life control the formation and function of its

nervous system.

DOI: 10.7554/eLife.13399.002
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similar linkage using a suite of genetic and molecular tools to identify individual NB lineages in the

embryo and then used these tools to bridge the postembryonic lineages to their embryonic origins.

While we have concordance with most of the findings of Birkholz et al. (2015), we differ on eight of

the lineages. We also find that within a lineage, the postembryonically born neurons show significant

similarities to neurons that are born in the embryonic Cas window in terms of axonal projection and

transcription-factor expression. Moreover, our findings complete previous work on identifying

embryonic and postembryonic progeny of NBs by characterizing thorax-specific NBs, NB2-3 and

NB3-4, which produce leg motor neurons and identifying a novel NB, NB5-7. Our complete lineage

map, and the reagents we generated to follow individual lineages throughout development, lay the

groundwork for investigating how neural patterning and NB identity in the embryonic CNS direct

the formation of neural circuits in the adult.

Results and discussion

Relationship of the embryonic and postembryonic lineages for the VNC
We linked the embryonic NBs to their postembryonic progeny via a recently developed technique,

which irreversibly marks the complete progeny of a NB after the onset of GAL4 expression

(Figure 1A,B; Awasaki et al., 2014). To use this technique (which we call here “reporter immortali-

zation”), we visually screened publicly available databases (Manning et al., 2012; Kvon et al., 2014)

to identify GAL4 lines whose reporter expression is restricted to one or a few embryonic NBs. We

identified over 100 such GAL4 lines. Only a few of them marked an individual NB, while most

marked a few NBs with or without their progeny (Table 1). To identify which NB lineages are marked

by these GAL4 lines, we generated random lineage clones for each line (Lacin et al., 2009;

Nern et al., 2015) and compared their morphology and molecular-marker expression to previously

published embryonic neuronal lineages (Bossing et al., 1996; Schmidt et al., 1997;

1999; Birkholz et al., 2013 and references therein). With this information, we also intersected split

GAL4 combinations to restrict overlapping expression patterns of different drivers to individual NBs

and their progeny.

Ultimately, the GAL4 and split-GAL4 lines characterized during this study mark 28 out of 31 previ-

ously documented NBs individually (12 NBs) or in combination with a small number of other lineages

(Table 1, examples in Figure 2). Many lines also drive reporter expression in the progeny of the

marked NB, and their expression pattern is maintained into early larval stages.

Due to the large number of lineages and the repetitive nature of the lineage-tracing method, we

will discuss only a few NBs in detail to illustrate how we identified their postembryonic progeny. We

will also focus on where our results differ from Birkholz et al. (2015). All of the driver lines and

molecular markers that were used to link NBs to their postembryonic progeny can be found in

Tables 1 and 2.

NB2-4, NB2-5, NB3-5 and NB6-2 generate postembryonic lineages 18, 17, 9
and 19, respectively in the dorsal part of the nerve cord
The postembryonic lineages that are located dorsal to the neuropil include an anterior triplet, con-

sisting of lineages 9, 17 and 18, and the posteriorly located lineage 19 (Truman and Bate, 1988;

Truman et al., 2004 and 2012; Figure 3B). In the late embryonic CNS, Dpn staining, which marks all

NBs, shows the same “3+1” pattern, suggesting that these NBs generate the dorsal postembryonic

lineages (Figure 3A). A Dichaete (D)-expressing NB is always located medially in the anterior NB

triplet. We identified this NB as NB2-4 based on morphological and molecular criteria: it is marked

by eagle (eg)-GAL4, mirror-lacz and Msh (Figure 3C and not shown), which are co-expressed in

NB2-4 (Higashijima et al, 1996; Broadus et al., 1995; Isshiki et al., 1997). The morphology of line-

age clones from this NB also matches the previously published features of the NB2-4 lineage: dorso-

lateral location, presence of a motor neuron with contralateral projection across the Anterior

Commissure (AC) and into the anterior root of the Intersegmental Nerve (ISN), and the presence of

interneurons that bundle with this motor neuron to cross the midline. (Figure 3C,J; Schmidt et al.,

1997; 1999). R65G02-GAL4 marks NB2-4 and occasionally a couple other NBs (Figure 3D and not

shown). Reporter immortalization of the progeny of NB2-4 consistently labels lineage 18 (21 of 30

hemisegments) showing that NB2-4 generates lineage 18 (Figure 3E). In addition, D and Msh

Lacin and Truman. eLife 2016;5:e13399. DOI: 10.7554/eLife.13399 3 of 28

Research article Developmental biology and stem cells Neuroscience

http://dx.doi.org/10.7554/eLife.13399


Figure 1. Tracing individual NB lineages identifies postembryonic progeny of NBs. (A) Schematic illustration of the strategies used in this study to trace

NB lineages. Since expression of GAL4 lines is usually not maintained throughout the development, GAL4 expression was immortalized in progeny of

the NBs to identify their postembryonic progeny. The “reporter immortalization” technique requires several steps of transcriptions and recombinations

(Awasaki et al., 2014). Thus, cells that are born from initial divisions (marked by asterisk) after the GAL4 presence are not labeled with this technique.

(B) Schematic representations of embryonic NBs (left) and their corresponding postembryonic lineages (right) for the T2 segment shown. 30 bilaterally

symmetric NBs and 1 medial NBs generate 26 postembryonic lineages. For segment specific differences, see Figure 1—figure supplement 1. Row

identity of NBs shown in a color code. Three thoracic specific NB lineages are outlined with a thick line. Thick crosses depict NBs, which are eliminated

by apoptosis; thin crosses depict NBs, which are present at early stage embryos, but not detected at stage 17 embryos. Dashed line indicates the

midline.

DOI: 10.7554/eLife.13399.003

The following figure supplement is available for figure 1:

Figure supplement 1. Schematic representations of postembryonic lineages in different segments of the nerve cord shown.

DOI: 10.7554/eLife.13399.004
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coexpress in NB2-4 embryonically and in NB 18 postembryonically. Moreover, Unc-4 expression

marks both the embryonic progeny of NB2-4 and the postembryonic neurons of lineage 18 (Table 2;

Lacin et al., 2014b). Finally, lineage 18 is missing from T1 (Truman et al., 2004), and NB2-4 disap-

pears from the anterior triplet by late embryogenesis (Figure 3A,B). Our conclusion that NB2-4 is

the parent NB for lineage 18 differs from Birkholz et al. (2015), who concluded NB3-4 generates

lineage 18. The embryonic lineage clone that was used in their study to link NB3-4 to lineage 18

Figure 2. Sample GAL4 lines that mark NBs and their progeny. (A-K) Expression patterns of selected GAL4 lines in the nerve cords of late-stage

embryos were visualized by driving mCD8-GFP (green). Only the T2-A2 segments are shown. (A-H) GAL4 lines uniquely label individual NBs and a

subset of their progeny: NB1-2 (A), NB2-1 (B), NB3-5 (C), NB4-2 (D), NB6-1 (E), NB6-2 (F), NB7-2 (G), and NB7-4 (H). Although NB4-2 generates progeny

in both thoracic and abdominal segments, R81C12AD-R42F01DBD marks the NB4-2 lineage only in thoracic segments (D). (I-K) Expression of GAL4 lines

that sparsely label a few NBs and their progeny. Color-coded arrowheads indicate the location of the NB lineages. See Figures 2–4 for the presence of

NBs, which are revealed by Dpn staining in some of these GAL4 lines. FasII+BP102 (blue) visualizes embryonic neuronal architecture; anterior is up.

DOI: 10.7554/eLife.13399.005
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Table 1. GAL4 lines used to mark NBs and for reporter immortalization.

Line NB expression Immortalization* Figure

R16A05AD-
R28H10DBD

NB1-2 lin1 (30/30) Figure 2, Figure 4

R70D06AD-
R28H10DBD

NB2-1 lin 2 (18/ 30), lin10 (7/ 30) Figure 2, Figure 4—figure
supplement 1

R19H09AD-
R28H10DBD

NB2-2 lin10 (16/30), lin7 (4/30) Figure 4—figure supplement 1

R10C12 NB2-3 lin15 (30/30), lin25(7/30) Figure 5

R65G02 NB2-4 lin 18 (21/30), lin20-22 (9/30), lin5 (5/30) Figure 3

5172J-Gal4 NB3-1 lin4 (12/18) Figure 4—figure supplement 1

R21E09AD-
R16H11DBD

NB3-2, NB4-2 lin7 (18/24), lin13(8/24) Figure 4, Figure 4—figure
supplement 1

R21E09AD-
R28H10DBD

NB1-2, NB3-2 lin1 (15/24), lin7(8/24)

ems-Gal4 NB2-2, NB3-3, NB3-5 lin10(10/30), lin8 (15/30), lin9 (20/30) Figure 3, Figure 4—figure
supplement 1

R59E09 NB3-5 lin9 (30/30) Figure 2, Figure 3

R77B09AD-
R28H10DBD

NB2-3, NB3-4, NB2-1 lin15 (30/30), lin25(24/30); lin2 (20/30) Figure 1, Figure 4

VT0048571 NB4-1, NB7-2 lin14 (34/36), lin11 (13/24) Figure 4—figure supplement 1

R81C12AD-
R42F01DBD

NB4-2 Lin13 (30/30) Figure 2, Figure 4

R19B03AD-
R16H11DBD

NB4-3, NB3-4, NB2-3 lin21 (30/30), lin25 (19/30), lin15 (8/30), Figure 2, Figure 4—figure
supplement 1

VT0041296 NB4-4 Lin24 (20/24); lin18 (5/18) Figure 4—figure supplement 1

R54B10 NB5-3, NB5-6 lin5 (17/30) Figure 4—figure supplement 1

R19B03AD-
R45D04DBD

NB5-4, NB5-7, NB2-3 lin20 (30/30), lin22(30/30), lin15 (10/30) Figure 2, Figure 6

R24C10 NB5-7 lin20 (23/30), lin18(6/24) Figure 6

R81F01 NB6-1 lin12 (13/30), lin18 (5/30)

R70D06AD-
R42F01DBD

NB6-1 lin12 (12/24), lin13(7/24) Figure 2, Figure 4

R76D11 NB6-2 lin19 (16/30) Figure 2; Figure 3

R51B04 NB7-1, NB6-2 lin3 (22/30), lin19 (5/30) Figure 4—figure supplement 1

R35B12AD-
R28H10DBD

NB7-2 lin11 (12/30) Figure 2, Figure 4

R35B12 NB7-1, NB6-2, NB7-2 lin3(10/30), lin19 (6/30), lin11 (8/24)

R19B03AD-
R18F07DBD

NB7-4 lin23 (26/30) Figure 2, Figure 4—figure
supplement 1

R19B03** NB2-5, NB2-4 lin17 (20/24), lin18 (26/30) Figure 3

R13G03 MNB lin0 (10/18) Figure 4—figure supplement 1

lbe-K-GAL4*** NB5-6 lin5-6 (20/20) Figure 8

R45D04 NB5-2, NB5-3, NB5-4, NB5-7,
NB6-2

lin6 (30/30), lin5(30/30), lin20 (30/30), lin22(30/30), lin19
(18/30)

eg-GAL4 NB2-4, NB3-3, NB3-4, NB6-4,
NB7-3

lin18 (19/30), lin8 (12/30) lin25(16/30) Figure 5, Figure 4—figure
supplement 1

* The number of immortalized lineage per hemisegment shown in paranthesis. Corresponding NBs and lineages are color matched.

** Only dorsal part VNC scored

***NB5-6 generate postembryonic progeny only in S3 segments Lineages marked less than 15% of the time are not included. “lin” refers to postem-

bryonic lineage.

DOI: 10.7554/eLife.13399.006
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appears to be a partial NB2-4 clone that lacks early-born motor neurons. Birkholz et al. (2015) iden-

tified lineage 8 as the postembryonic progeny of NB2-4. However, our findings based on lineage

tracings and molecular markers show that the neurons of lineage 8 arise from NB3-3 (see below).

We identified the posterior NB of the anterior triplet as NB3-5 based on its expression of Ems

and lineage clones obtained from several independent GAL4 lines (Figure 3F–H; Table 1; Moris-

Sanz et al., 2014). One of these lines, R59E09, uniquely marks NB3-5, and the immortalization of its

expression labels lineage 9 in the larval VNC (30 of 30 hemisegments; Figure 3I). Moreover, we

found that Ems expression is maintained in NB3-5 from embryonic to larval stages, and we also

detected Msh, Islet (Isl) and Lim3 in both embryonic and postembryonic progeny of NB3-5 (Table 2;

Lacin et al., 2014b).

Table 2. Expression profile of transcription factors in NBs and their corresponding embryonic and postembryonic progeny.

NBs lin Embryonic progeny* Postembryonic lin** NB Marker***

MNB lin 0 En, FoxD, Vg En En, unpg-Lacz

NB1-1 lin16 Hb9, Lim3, Isl, D, Eve, Hb9, Lim3 mirr-Lacz

NB1-2 lin1 Msh, Nmr1, Hb9, Nkx6 Nmr1, Msh mirr-Lacz

NB2-1 lin2 Toy mirr-Lacz

NB2-2 lin10 Hb9, Lim3, Nkx6, Hb9, Lim3, Nkx6 mirr-Lacz, Run

NB2-3 lin15 Lim3, Nkx6, Isl, Isl, Lim3, Nkx6 mirr-Lacz, Msh, Run

NB2-4 lin18 Unc-4, Eg, Toy, Msh Unc-4 mirr-Lacz, Msh

NB2-5 lin17 Unc-4, Isl Unc-4, Isl mirr-Lacz

NB3-1 lin4 Hb9, Msh Hb9 Nkx6, Run

NB3-2 lin7 Hb9, Toy, Barh, Unc-4 Unc-4 Ey, Dbx

NB3-3 lin8 Toy, Lim3, Ems, Acj6, Eg, Eve Lim3, Ems, Acj6, Toy, Ey Ems,Run

NB3-4 lin25 Toy, Ey, Msh, Eg Toy, Nkx6 Msh, Run, Ey, Eg-Gal4

NB3-5 lin9 Ems, Msh, Islet, Unc-4 Ems, Msh, Islet Ems

NB4-1 lin14 Msh, Unc-4 Msh unpg-Lacz

NB4-2 lin13 Dbx, D, Vg,Ey, Eve Dbx, D, Vg Ey

NB4-3 lin21 Msh, Ey Msh, Ey Ey, Msh

NB4-4 lin24 Ems, Toy Ems, Toy Ems, Ey,

NB5-1 - gsb-Lacz

NB5-2 lin6 Toy, En, Vg, Hb9 Toy, En, Vg gsb-Lacz, Run

NB5-3 lin5 Vg, Toy, Ey, En Vg, Toy, gsb-Lacz, Ey, Run

NB5-4 lin22 BarH BarH gsb-Lacz, Msh

NB5-5 - unpg-Lacz

NB5-6 - EyA, Toy EyA (S3 segments) gsb-Lacz,lbe-Gal4

NB5-7 lin20 - gsb-Lacz, Msh

NB6-1 lin12 Unc-4, Nmr1, Dbx Dbx, Unc-4, Nmr1 gsb-Lacz, En, Dbx

NB6-2 lin19 Unc-4, Dbx Dbx, Unc-4 gsb-Lacz, En, D

NB6-4 - Eg, Toy, Msh gsb-Lacz, Eg-lacz

NB7-1 lin3 Unc-4, Dbx, Eve Dbx, Nkx6, gsb-Lacz, En

NB7-2 lin11 Unc-4, Nkx6 Unc-4, Nkx6, Eve En, unpg-Lacz, Dbx

NB7-3 - Hb9, Isl, Eg, Ey En, eg-GAL4

NB7-4 lin23 Unc-4, Acj6 Unc-4, Acj6 En, Msh, D

* Transcription factors that are also expressed in the postembryonic neurons are highlighted in bold.

** We failed to detect transcription factors in red in the corresponding embryonic progeny.

*** Expression of these markers is maintained from embryonic to postembryonic stages. “lin” refers to postembryonic lineage.

DOI: 10.7554/eLife.13399.007
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Figure 3. NB2-4, NB2-5, NB3-5 and NB6-2 generate lineage 18, 17, 9 and 19, respectively. Images on panels B, E, I, and M are from the larval CNS; the

rest are from the embryonic CNS. (A) Projection of dorsally located NBs, marked by Dpn (green), in the thoracic segments of a stage-17 embryo. Three

NBs (triplet) anteriorly and one NB posteriorly reside in each hemisegment (white and yellow arrowheads in the left panel, respectively). Note the T1

segment is missing a NB in the anterior region. Dichaete (red) marks the medial NB of the anterior triplet and the posterior NB (right panel). NB

identities were determined based on lineage clones (see below). (B) Schematic view of the postembryonic lineages in the dorsal part of the larval

thoracic nerve cord (depicted based on Truman and Bate, 1988, Truman et al., 2004 and 2010, and Li et al., 2014). Pattern of these postembryonic

lineages is the same as that of dorsal embryonic NBs (compare A and B). (C-E) NB2-4 is the progenitor of lineage 18. (C) A NB2-4 lineage clone

generated with eg-GAL4 includes the medial D+ NB (D, red; Dpn, blue). A contralateral motor neuron crossing the midline via AC and exiting the CNS

via ISN (arrowhead) is a characteristic feature of NB2-4 lineage. (D) R65G02 specifically marks NB2-4 and its progeny, which shows the same

morphology as in (C) (not shown). (E) Immortalization of R65G02 in NB2-4 progeny constantly and specifically marks lineage 18 in the larval CNS. (F-I)

NB3-5 is the progenitor of lineage 9. (F) ems-GAL4 marks NB3-5 which is the posterior NB in the triplet. (G) R59E09 specifically labels NB3-5 and its

progeny. (H) A NB3-5 lineage clone obtained with R59E09. (I) Immortalization of R59E09 uniquely marks lineage 9. (J) R19B03 marks NB2-4 (green

clone) and NB2-5 (red clone) lineages in the embryonic CNS. NB2-5 is located anteriorly (J-i) and NB2-4 is located medially (J-ii). (K-M) NB6-2 is the

progenitor of lineage 19. (K) The posterior NB is located in a NB6-2 lineage clone obtained with en-GAL4. (L) R76D11 specifically marks NB6-2 and (M)

its immortalization in NB6-2 progeny visualizes lineage 19. Wavy dashed lines indicate segment boundaries. White bar indicates the midline. FO, flip-

out lineage clone; IM, immortalization; A.C., anterior commissure; P.C., posterior commissure; SN, segmental nerve; ISN, inter segmental nerve. In this

and subsequent figures, lineage is abbreviated as "lin".

DOI: 10.7554/eLife.13399.008
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The remaining NB in the anterior triplet is NB2-5. As shown in Figure 3J, R19B03 (a driver from

the Msh locus) labels two NBs with their progeny in the dorsal nerve cord: one is NB2-4 and the

other is NB2-5 based on its distinctive intersegmental neurons, which extend ipsilaterally into the

anterior segments. Reporter immortalization of R19B03 labels cells of both lineage 17 and lineage

18 in the dorsal nerve cord (not shown and Table 1). Thus, NB2-5 generates lineage 17 since NB2-4

generates lineage 18.

Flip-out clones generated by engrailed (en)-GAL4 contained the most posterior NB in the dorsal

part of the nerve cord. Neurons in these clones extend two separate bundles across the posterior

commissure and express Dbx (Figure 3K and not shown). These are unique features of NB6-2

(Schmidt et al., 1997; 1999; Lacin et al., 2009), and thus we identified this progenitor cell as NB6-

2. R76D11 labels NB6-2, and reporter immortalization of R76D11 marks lineage 19 (16 of 30 hemi-

segments; Figure 3L,M). The dorsal location of NB6-2 in late-stage embryos (Figure 3K) compared

to its ventral position in early-stage embryos (Doe, 1992) suggests that this cell migrates dorsally

during development. Indeed, using the R76D11 reporter, we detected NB6-2 in a ventral position in

stage-12 embryos, becoming more dorsal as the embryos aged. In both embryonic and larval nerve

cords, the NB of this lineage expresses gsb-LacZ, En, and D, and the embryonic and postembryonic

neurons express Dbx and Unc-4 (Table 2; Lacin et al., 2014b).

A lineage map of all NBs in the VNC
Using the same approaches as detailed for the dorsally located NBs, we unambiguously identified

the postembryonic progeny of all the NBs except NB1-1 and NB5-2, for which we failed to identify

specific GAL4 lines (Figure 4—figure supplement 1). To identify the postembryonic progeny of

these last two NBs, we used a fact that emerged during our lineage-tracing experiments: in almost

all lineages, embryonic and postembryonic progeny of a NB showed significant similarities in how

they extended their axons and in the molecular markers they expressed. For example, a subset of

the embryonic progeny of NB1-2 send axons ipsilaterally to the next anterior segment while others

extend contralateral axons that turn with a characteristic posterior hook (Figure 4Aii). The same pat-

tern is seen in the postembryonic progeny of this NB, with the set of 1B interneurons projecting

anteriorly into the next ipsilateral neuropil and their 1A sibs crossing the midline and showing the

posterior hook (Figure 4Aiii; Truman et al., 2004). We used this strategy of comparing embryonic

and postembryonic projections and molecular markers to identify the progeny of NB1-1 and NB5-2.

In stage-16 embryos, NB1-1 is located medial to NB1-2 (not shown). Since NBs appear to retain

their relative positions between stage-16 embryos and larval stages (e.g., dorsal NBs in Figure 3),

we expected that the postembryonic progeny of NB1-1 would lie medial to NB1-2 progeny (lineage

1). Lineage 16 resides medial to lineage 1 (Truman et al., 2004), and in agreement with this, we

found that embryonic interneurons from NB1-1 express Hb9 and Lim3 and extend their axons lat-

erally in a similar manner to lineage 16 postembryonic interneurons that are also Hb9+ Lim3+

(Table 2; Figure 4—figure supplement 2A). Moreover, using NB-specific GAL4 lines we had

assigned all of the surrounding NBs to other postembryonic lineages. Thus, we concluded that NB1-

1 generates lineage 16. With a similar strategy we identified lineage 6 as the postembryonic progeny

of NB5-2. We found that both NB5-2 embryonic progeny and lineage 6 neurons express En, Twin of

eyeless (Toy), and Vestigial (Vg), and their axons use the same routes in the posterior commissures

to cross the midline (Table 2; Figure 4—figure supplement 2B).

We failed to find postembryonic progeny of NB5-1, NB5-5, NB5-6, NB6-4, or NB7-3, suggesting

these NBs lack the second, postembryonic neurogenic phase. Indeed, NB5-6 is eliminated by apo-

ptosis during embryogenesis (Baumgardt et al., 2009), and a similar fate was concluded for NB7-3

(Karcavich and Doe, 2005). To verify these findings and determine the fates of the other NBs, we

surveyed the VNC by TUNEL staining, which marks dying cells. In the thoracic segments, NB7-3,

NB6-4 and NB5-6 were TUNEL-positive in stage-14, -15 and -16 embryos, respectively, and could no

longer be found in stage-17 embryos (Figure 4—figure supplement 3C–G; not shown). Hence,

these three NBs die late in embryogenesis. Further, while we detected NB5-1 and NB5-5 in stage-13

embryos by gsb-lacZ and/or unplugged (unpg)-lacZ expression, we could not identify them at stage

17 (Figure 4—figure supplement 3A and not shown). However, we did not observe any TUNEL

staining in either NB. Either they died and we missed their TUNEL-positive window, or they lost their
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progenitor and underwent terminal differentiation as is seen in some of the other NBs at the end of

their postembryonic phase (Maurange et al., 2008).

The lineage map that we determined based on the above approaches is shown in Figure 1B and

differs for eight of the lineages from the map by Birkholz et al., (2015) based on the flybow

approach (Table 3). We differ on the designations for lineages 7, 8, 11, 13, 15, 18, 20, and 25. We

Figure 4. NB1-2, NB4-2, NB6-1 and NB7-2 generate lineages 1, 13, 12 and 11, respectively. (A-D) Four examples showing identification of

postembryonic lineages via reporter immortalization of NB-specific GAL4 lines. (i and ii) Nerve cords dissected from late stage embryos; Dpn (red)

marks NBs. (i) Indicated GAL4 lines drive GFP reporter expression in an individual NB (arrows) in each hemisegment in addition to some of its progeny.

ii) Flip-out lineage clones showing the morphology of individual embryonic NB lineages were used to find the identity of NBs. (iii) Nerve cords from

wandering stage larvae in which reporter expression of the indicated GAL4 lines was immortalized in the progeny of NBs. This technique almost

exclusively marks postembryonic progeny and rarely embryonic progeny (see Materials and methods and Figure 1). In each hemisegment, reporter

immortalization of NB specific GAL4 lines marks a single postembryonic lineage. Arrowheads (ii and iii) show the similarities in neuronal morphology

between embryonic and postembryonic progeny of an individual NB. For example, contralateral axons of lineage 1 turn with a characteristic posterior

hook; embryonic neurons of the same lineage also exhibit a similar turn (Aii-iii). NB7-2 postembryonic progeny (lineage 11) extend two ipsilateral axonal

bundles; NB7-2 embryonic neurons have similar axonal projections (arrows in Dii-iii). Dashed lines indicate segment boundaries. White bar indicates the

midline. HRP (blue) in embryos (i, ii) and Phalloidin (Red) in larvae (iii) visualize neuronal architecture.

DOI: 10.7554/eLife.13399.009

The following figure supplements are available for figure 4:

Figure supplement 1. Postembryonic progeny of the remaining NBs.

DOI: 10.7554/eLife.13399.010

Figure supplement 2. (A) NB1-1 generates lineage 1.

DOI: 10.7554/eLife.13399.011

Figure supplement 3. (A-B) NB5-5 disappears in the late stage embryos.

DOI: 10.7554/eLife.13399.012
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identified NBs 2–3, 3–4, and 5–7 as the stem cells for lineages 15, 25, and 20, respectively. NBs 2–3

and 3–4 had not been characterized prior to this study, and NB5-7 was first described here, thus

identification of these NBs and their progeny is explained in detail below (Figures 5, 6). We found

NB3-2, NB3-3, NB7-2, NB 4–2 and NB2-4 were the stem cells for lineages 7, 8, 11, 13 and 18,

respectively (Figure 3C, 4B,D and Figure 4—figure supplement 1D, L).

Postembryonic lineages 7 and 13 are produced by NB3-2 and NB4-2,
respectively
NB3-2 and NB4-2 generate progeny with similar morphologies: both generate ipsilateral motor neu-

rons and contralateral interneurons. The exit routes of their motor neurons from the CNS, however,

are different (Bossing et al., 1996; Landgraf et al., 1997; Schmid et al., 1999). We screened for

molecular markers that would unambiguously identify these lineages in the embryo. We found that

NB3-2 expresses Dbx, and its interneurons express Unc-4 whereas NB4-2 is negative for Dbx, and its

interneurons express D and Dbx (Table 2). Based on this information, we identified the split-GAL4

combination R81C12AD-R42F01DBD, which uniquely marks NB4-2 in the embryo. Immortalization of

this reporter line marks lineage 13 (30 out of 30 hemisegments), thus indicating NB4-2 generates

lineage 13. In agreement, lineage 13 neurons in the larva express D and Dbx (Lacin et al., 2014b).

R21E09AD-R16H11DBD marks NB3-2 consistently and NB4-2 occasionally. (Figure 4—figure sup-

plement 1D). Its reporter immortalization marks lineage 7 (18 out of 24 hemisegments) and lineage

13 (8 out of 24 hemisegments). We concluded that NB3-2 generates lineage 7, since NB4-2 gener-

ates lineage 13. In support of this conclusion, we found that Dbx marks both NB3-2 and the NB of

lineage 7 and Unc-4 marks both NB3-2 embryonic progeny and postembryonic lin7 neurons (Table 2;

Lacin et al., 2014b). Moreover, immortalization of another driver combination, R21E09AD-

R28H10DBD, which marks NB3-2 in the embryo, identifies lineage 7 as its progeny (Table 1).

Table 3. Lineages that are assigned to different NBs by this study and Birkholz et al. (2015).

Lin
Findings on lineage tracing supporting assignments of this
study

Findings on molecular markers supporting assignments of
this study

lin7
NB3-2*
NB4-2**

Immortalization of R21E09AD-R28H10DBD, which marks lin7, labels
NB3-2 in the embryo, but not NB4-2.

NB3-2 and NB of lin7 are Dbx+versus NB4-2 is Dbx-. Embryonic
progeny of NB3-2 and lin7 neurons are Unc4+ versus NB4-2
progeny are Unc4-.

lin8
NB3-3*
NB2-4**

Immortalization of ems-GAL4, which marks lin8, labels NB3-3 in
the embryo, but not NB2-4 (Figure 4—figure supplement 1).

NB3-3 and NB of lin8 are Ems+versus NB2-4 is Ems-. Embryonic
progeny of NB3-3 and lin8 neurons are Acj6+ versus NB2-4
progeny are Acj6-.

lin11
NB7-2*
NB6-4**

Immortalization of R35B12AD-R28H10DBD, which specifically
marks lin11, labels only NB7-2 in the embryo, but not NB6-4
(Figure 4). NB6-4 dies (TUNEL+) in late stage embryos
(Figure 4—figure supplement 3).

NB7-2 and NB of lin11 are marked by unpg-LacZ versus NB6-4 is
not. NB6-4 is Msh+ versus NB of lin11 is Msh-. Embryonic progeny
of NB7-2 and lin11 neurons are Unc4+ versus NB6-4 progeny are
Unc4-.

lin13
NB4-2*
NB3-3**

Immortalization of R81C12AD-R42F01DBD, which specifically marks
lin13, labels only NB4-2 in the embryo, but not NB3-3 (Figure 4).

NB4-2 and NB of lin13 are Ey+ versus NB3-3 is Ey-. Embryonic
progeny of NB4-2 and lin13 neurons are Dbx+/D+/Vg+ versus
NB3-3 progeny are Dbx-/D-/Vg- (Figure 11).

lin15
NB2-3*
NB3-2**

Immortalization of R10C12, which specifically marks lin15, labels
only NB2-3 in the embryo, but not NB3-2 (Figure 5).

Lineage 15 NB and NB2-3 are Msh+ versus NB3-2 is Msh-.

lin18
NB2-4*
NB3-4**

Immortalization of R65G02, which specifically marks lin18, labels
only NB2-3 in the embryo, but not NB3-4 (Figure 5). Dorsal
location of NB2-4 correlates with lineage 18.

Embryonic progeny of NB2-4 and lin18 neurons are Unc4+ versus
NB3-4 progeny are Unc4-.

lin20
NB5-7*
NB5-4**

Immortalization of R24C10, which marks lin20, labels NB5-7 in the
embryo, but not NB5-4 (Figure 6).

NB5-7 shares similar molecular markers with NB5-4.

lin25
NB3-4* -**

Lineage tracing via eg-GAL4, R77B09AD-R28H10DBD, and
R19B03AD-R16H11DBD lines, all of which mark lin25, label NB3-4 in
the embryo (Figure 5).

Lineage 25 is first described here and assigned to NB3-4, which
has not been previously characterized in detail.

*NB assignment by this study

** NB assignment by Birkholz et al. (2015) “lin” refers to postembryonic lineage

DOI: 10.7554/eLife.13399.013
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Postembryonic lineage 8 is produced by NB3-3
ems-GAL4 marks NB2-2, NB3-3, and NB3-5 and its immortalization labels lineages 10, 8, and 9 (Fig-

ure 4—figure supplement 1L; Estacio-Gomez et al., 2013; Moris-Sanz et al., 2014). Lineage trac-

ing via NB-specific GAL4 lines identified postembryonic lineages 10 and 9 as progeny of NB2-2 and

NB3-5, respectively (Figure 4—figure supplement 1B; Figure 3F–I), thus leaving the lineage 8 neu-

rons as the progeny of NB3-3. This conclusion is supported by our detection of the Ems protein,

which marks embryonic NB3-3 (Hartmann et al., 2000), in the NB of lineage 8 and the presence of

common transcription factors in both embryonic progeny of NB3-3 and postembryonic lineage 8

neurons (Table 2). In addition, the axonal morphology of thoracic NB3-3 embryonic progeny is virtu-

ally identical to the morphology of postembryonic lineage 8 neurons (Figure 4—figure supplement

1L). Thus, we concluded NB3-3 generates lineage 8 neurons. This designation differs from

Birkholz et al. (2015) who concluded that NB2-4 was the progenitor of lineage 8. We think their

designation is unlikely since NB2-4 is located in the dorsal surface of the nerve cord (unlike NB3-3

and lineage 8), does not express Ems and generates the dorsally located lineage 18 (Figure 3C–E).

Postembryonic lineage 11 is produced by NB7-2
Reporter immortalization of R35B12AD-R28H10DBD marks specifically lineage 11 (12 of 30 hemiseg-

ments; Figure 4D). In the embryo, R35B12AD-R28H10DBD marks a single NB. Progeny of this NB

have contralateral projections across the posterior commissure and intersegmental ipsilateral projec-

tions extending posteriorly. These are the unique features of the NB7-2 lineage. Thus, we concluded

that NB7-2 generates lineage 11. Birkolz et al. (2015) identified NB6-4 as the stem cell for lineage

11 based on embryonic flybowl clones (Birkholz et al., 2015). Although the embryonic progeny of

NB6-4 show morphological similarities to the NB7-2 lineage, the ipsilateral projections of NB6-4 line-

age are short and local. Our findings, which indicate that NB6-4 is eliminated by apoptosis during

embryogenesis, also favor NB7-2 as the founder cell of lineage 11. Moreover, unpg-lacZ, which

labels NB7-2 but not NB6-4 (Doe, 1992) marks the NB of lineage 11 (Figure 4—figure supplement

3H).

Postembryonic lineage 15 is produced by NB2-3
In the embryo, R10C12-GAL4 marks a single NB in each thoracic hemi-segment (Figure 5A). We

immortalized R10C12 expression in its progeny and found that this NB generates lineage 15, which

is composed of a large number of leg motor neurons and glial cells (Figure 5C). To find the identity

of this NB, we assayed a panel of molecular markers and found that mirror-lacZ, Runt, and Msh label

this NB (Figure 5A; not shown). Based on previous studies, NB2-3 is the only NB that delaminates

from Msh+ neuroectoderm and expresses mirror-lacZ and Runt (Doe, 1992; Broadus et al, 1995;

Dormand and Brand, 1998; Isshiki et al., 1997). Also, the NB marked by R10C12 typically resided

in row two and column three of the NB layer (Supp. Figure 5A). Little is known about NB2-3 and its

progeny, but it was previously suggested that it produced leg motor neurons (Schmid et al., 1999).

Two previous studies attempted to find embryonic progeny of NB2-3 via DiI labeling; both experi-

enced difficulties and observed unusual rates of cell death (Schmidt et al, 1997; 1999). One study

was able to label NB2-3 progeny only in the thoracic segments and showed that NB2-3 progeny

comprise a few extraordinarily large cells without axons (9 microns in diameter) and a few interneur-

ons with contralateral projections (Schmid et al., 1999). To visualize NB2-3 embryonic progeny with

a less invasive approach, we generated lineage clones with R10C12 and three additional indepen-

dent lines (R11B05, R28H10 and R77B09AD-R28H10DBD), all of which label NB2-3. We recovered line-

age clones containing this NB only from the thoracic segments (n>50). The largest clones,

presumably the entire embryonic lineage, contained 10 cells in addition to the NB (n=8), and the

only axonal projection was into the periphery unlike the previously documented NB2-3 progeny

(Schmid et al., 1999). These axons exited the CNS in two bundles via the segmental nerve but did

not innervate any muscles in stage-17 embryos (Figure 5B). We obtained similar-looking clones with

pan-neuronal elav-GAL4, indicating that embryonic progeny of NB2-3 extend only efferent axons

(n=3; not shown). Like postembryonic lineage 15 neurons, NB2-3 embryonic progeny express Lim3,

Isl and Nkx6. Birkholz et al. (2015) identified NB3-2 as the progenitor of lineage 15, but NB3-2

does not express Msh, whereas NB2-3 in the embryo and lineage 15 NB in the larva do both express

Msh (Figure 5A, L).
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Postembryonic lineage 25 is generated by NB3-4
We found a new postembryonic lineage (named lineage 25) that was previously overlooked, presum-

ably because of its small number of progeny. We observed lineage 25 when we immortalized

reporter expression of R19B03AD-R16H11DBD, eg-GAL4, and R77B09AD-R28H10DBD lines (Figure 5I,

Figure 5. Thoracic-specific NB2-3 and NB3-4 generate lineage 15 and lineage 25, respectively. (A) R10C12 marks uniquely Msh+ NB2-3 (arrows) in each

thoracic hemisegment but not in abdominal ganglia. Dpn, blue; Msh, red (B) A lineage clone containing NB2-3 (arrow) extends only efferent axons,

which splits into two bundles after exiting the CNS via the segmental nerve (SN). (C) Immortalization of R10C12 expression in the NB2-3 progeny marks

lineage 15, which is composed of motor neurons (arrowhead) and glia (arrow). (D) T3 and A1 segments from a stage 12 embryo shown. eg-lacZ (red)

and Msh (green) co-staining reveal differences in NB (blue) pattern of T3 and A1 segments. Schematic representation is shown on the right. Msh marks

three thoracic specific NBs (NB2-3, NB3-4, and NB5-7; white arrowheads). NB3-4, which is marked by both eg-lacZ and Msh, resides medial to NB3-3. In

abdominal segments, no NB with lacZ and Msh expression is detected medial to NB3-3; note the region immediately medial to NB3-3 does not have

any NB (asterisks). (E-I) R77B09AD-R28H10DBD used to identify the postembryonic progeny of NB2-3 and NB3-4. (E-G) Nerve cords from late stage

embryos shown. NB3-4 (arrowhead) and its progeny express Eg (red) while NB2-3 (arrow) and its progeny do not. Inset shows the magnified views of

NB2-3 (left) and NB3-4 (right) lineages. (F) A lineage clone via R77B09AD-R28H10DBD separates two NB lineages: NB3-4 lineage is marked with red.

Progeny of NB3-4 (H) extend axons out of the CNS using the SN route like NB2-3 progeny (G) but do not extend them as far as NB2-3 progeny (see

inset H). (I) Nerve cord from a late-stage larva shown. Msh, red; Dpn, blue. Immortalization of R77B09AD-R28H10DBD expression marks lineage 15 (NB2-3

progeny) and lineage 25 (NB3-4 progeny). (J) Immortalization of eg-GAL4 marks Toy expressing lineage 8 (NB3-3 progeny; red arrowheads; see also

Figure 4—figure supplement 1L) and lineage 25 (white arrowheads). (K) Lineage 25 contains glial cells (arrow). (L-M) elav-MARCM clones showing

lineage 25 have a small cluster of Msh expressing cells (arrowheads) and two Nkx6 expressing motor neurons (arrows). Msh expressing cells reside

closely to Msh+ NB3-4, but do not extend any processes (arrowheads in L and M). Note glial cells in lineage 25 are not visible in MARCM clones since

elav-GAL4 does not mark glial cells. White bar indicates the midline. FO, flip-out lineage clone; IM, immortalization; A.C., anterior commissure; P.C.,

posterior commissure; white bar, midline.

DOI: 10.7554/eLife.13399.014

The following figure supplement is available for figure 5:

Figure supplement 1. (A) Stage 12 embryonic nerve cord; Engrailed (En; red) marks row 6 and 7 NBs as well as NB1-2.

DOI: 10.7554/eLife.13399.015
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K; not shown). It also appeared in MARCM clones generated with elav-GAL4 and actin-GAL4 lines

(Figure 5L,M; not shown). At the wandering larval stage, lineage 25 is located lateral to lineage 15

(NB2-3), and includes the NB, a small cluster of closely adhering cells expressing Msh, and two

motor neurons expressing Nkx6 (Figure 5I,L, and M). It is similar to lineage 15 in several ways: (i)

neurons in both postembryonic lineages extend their axons towards leg discs, indicating they are

leg motor neurons (not shown); (ii) both lineages contain glial cells located around the leg neuropil

(Figure 5C,K); and (iii) both NBs express Msh and Runt (Figure 5I; not shown). To find the embry-

onic origin of lineage 25, we generated lineage clones in the embryo with the lines mentioned

above. Common to all lines, we identified a thoracic specific NB, which is located ventrolaterally. For

example, reporter immortalization of R77B09AD-R28H10DBD results in lineage 15 and more laterally

lineage 25 in addition to medially residing lineage 2 neurons (Figure 5E,I; lineage 2 not shown).

Based on the lineage clones generated with this line in the embryonic CNS, we found that

R77B09AD-R28H10DBD marks NB2-1 (the stem cell for lineage 2; not shown), NB2-3 (stem cell for

lineage 15; Figure 5E,F), and a more lateral NB (the stem cell for lineage 25; Figure 5E,G). The lat-

eral NB had five progeny in their lineage clones and their axons exit the CNS in the segmental nerve

but do not extend as far as the NB2-3 motor neurons (Figure 5G). This NB and its progeny in the

embryo expressed Msh, Runt, Eg, and Eyless (Ey) (Figure 5D,E; not shown), and it was the only NB

found in common to all of the GAL4 lines whose reporter immortalization marks lineage 25

(Figures 5I,7J-K; not shown). Hence, we concluded that it is the stem cell of lineage 25.

The embryonic designation of this stem cell was difficult to determine because no NB expressing

Msh, Runt, Eg, and Ey and giving rise to progeny with this morphology, has been reported

(Schmidt et al., 1997; 1999; Birkholz et al., 2013). Among these transcription factors, Eg has been

used in many studies because it marks only four NBs: NB2-4, NB3-3, NB6-4, and NB7-3

(Higashijima et al, 1996; Dittrich et al., 1997; Mettler et al. 2006, Tsuji et al., 2008). However,

when we analyzed eg-lacZ, eg-Gal4, or Eg protein expression in the nerve cords of stage-12

embryos, when NB delamination was complete, we observed four Eg+ NBs in abdominal segments,

but five such NBs in the thoracic segments (Figure 5—figure supplement 1B-C). The extra Eg+ NB

in the thorax is the lineage 25 stem cell, since it is also labeled by Msh, Runt, and Ey (Figure 5D; not

shown). This NB resides in the third row and third column of the thoracic NB array. This position is

perplexing because we find NB3-3, which is characterized by being Msh- and Eg+, in the fourth posi-

tion in the third row of the thoracic array, although it occupies the third position in the abdominal

array (Figure 5D). Although misplaced, we propose this thoracic-specific NB is NB3-4 because: (i)

NB3-4 is the only NB in the vicinity that has not been well characterized, and previous studies failed

to identify its progeny with confidence (Schmidt et al., 1997; 1999); and (ii) in both abdominal and

thoracic segments, only three NBs reside near but lateral to NB3-3: the Msh+ NBs 2–4 and NB2-5,

and the EMS+ NB3-5, indicating that NB3-4 cannot be lateral to NB3-3. Earlier studies may have

confused NB3-3 and NB3-4 (Doe, 1992; Higashijima et al., 1996). In agreement with our findings, a

recent study in T. castaneum identified an Msh+ NB in the third row and third column of the NB array

in the thoracic segments. However, the authors identified this NB as NB3-3 and explained the dis-

crepancy in Msh expression as a difference between two species (Biffar and Stollwerk, 2015). Since

lineage 25 is first described here, Birkholz et al. (2015) did not attempt to identify its stem cell;

however, they assigned NB3-4 as the progenitor of lineage 18 based on a Flybow lineage clone that

appears to be a partial NB2-4 clone (Birkholz et al., 2015). As discussed above, the molecular

markers argue that lineage 18 is produced by NB2-4, and we conclude that NB3-4 gives rise to the

newly described lineage 25.

Lineage 20 is generated by NB5-7
Lineage 20 and lineage 22 are postembryonic lineages with very similar morphological and molecu-

lar features. Axon bundles of both lineages extend similarly and apparently terminate in neighboring

compartments of the leg neuropil, NBs of both lineages express Msh, and neurons in both lineages

express BarH (Truman et al, 2004; Lacin et al., 2014b). Reporter immortalization of R19B05AD-

R45D04DBD marks both of these lineages in the larval CNS (Figure 6G). In the embryonic nerve cord,

this driver marks two neighboring NBs, presumably the progenitors of these two lineages

(Figure 6A–F). Both NBs express Msh and gsb-lacZ, and neither of them expresses En (which marks

row 6/7 NBs) or unpg-lacZ (which marks NB5-5) (Figure 6C-D, E; not shown). Previous studies
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identified only one NB, NB5-4, with such molecular expression (Birkholz et al., 2013) and proposed

that lineage 20 and lineage 22 both arise from NB5-4 (Birkholz et al., 2015). Indeed, we identified

one of these NBs as NB5-4 based on embryonic clones generated with the R19B05AD-R45D04DBD

line. These clones contained a single NB and several motor neurons exiting the CNS via the SN as

previously shown for the progeny of NB5-4 (Figure 6A—figure supplement 1B; Schmidt et al.,

1997). However, clones from the other NB always appeared as a single large cell without any associ-

ated progeny. This pattern of one NB with progeny and the other without was evident in clones gen-

erated with R19B05AD-R45D04DBD and the GAL4 driver R17A10 (Figure 6B—figure supplement

1C). The lineage clones mentioned above tend to contain the entire progeny of the NB because we

induced clone formation in gastrulating embryos. Thus, the isolated NB does not appear to make

any embryonic progeny. Also, we never found the two NBs in the same clone, as would be expected

if they came from the same precursor. Finally, we found the isolated NB only in the thoracic seg-

ments (Figure 5D). We believe this NB has not been previously described, so we named it NB5-7.

The GAL4 line R24C02-GAL4 marks NB5-7 but not NB5-4 in the embryonic CNS, and its immortaliza-

tion results in lineage 20 in the postembryonic CNS (Figure 6I).

We proposed that NB5-7 evolved from a duplication of NB5-4 in the thoracic segments for the

following reasons: (i) NB5-7 and NB5-4 are similar in terms of their molecular marker expression; (ii)

their postembryonic progeny (lineage 20 and 22) project their axons in a similar manner

(Truman et al., 2004); and (iii) these two lineages were the most tightly correlated among all post-

embryonic lineages with regard to enhancer expression, suggesting that they share the most genes

in common (Li et al., 2015). In the adult, the neuronal activity of lineage 20 and lineage 22 regulates

leg posture (Harris et al., 2015).Thus, it is likely that during the evolution of Drosophila, the increase

in the number of these neurons via NB5-4 duplication provided finer control over locomotion.

Figure 6. NB5-4 and NB5-7, a novel NB, generate almost identical lineages, lineage 22 and 20, respectively. (A, F) R19B03AD-R45D04DBD marks two

adjacent NB in the embryonic (A-E) and the larval CNS (F). Hemisegments on the right of the midline are shown. (A-B) GFP (green) shows complete

GAL4 expression pattern; lineage clones are in red. (A) NB5-4 (arrowheads) resides usually anterior and lateral to the other NB (arrows) and contains

several motor neurons in its progeny (red clone). (B) The other NB (arrow), named NB5-7, does not have any progeny (red cell) during embryogenesis.

(C-E) Molecular characterization of NB5-4 and NB5-7: gsb-lacZ (C) and Msh (D) co-label both NBs and unpg-lacZ, which marks NB5-5 dorsally (not

shown), spares both NBs. (F) pH3, a mitotic marker, labels both NBs in the second instar larva. (G) Immortalization of R719B03AD-R45D04DBD marks

lineage 20 and lineage 22 as postembryonic progeny of these NBs. Arrow and arrowheads indicate two separate bundles coming from two different

lineages. (H) R24C10 marks medially located NB5-7 (arrows) but not NB5-4 (arrowhead). gsb-lacz (gray) and Msh (red) co-expression labels both NBs (G)

Immortalization of R24C10 expression in NB5-7 progeny visualizes lineage 20, which extends a single bundle (arrows).

DOI: 10.7554/eLife.13399.016

The following figure supplement is available for figure 6:

Figure supplement 1. (A-C) Late stage embryos shown.

DOI: 10.7554/eLife.13399.017
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Segmental differences during neurogenesis
Hox genes restricts NB2-3, NB3-4 and NB5-7 to thoracic segments
Overall, we identified 30 paired NBs and one unpaired NB in the thoracic embryonic array. The num-

ber was reduced to 27 pairs as we moved into the abdomen with the loss of Msh expressing NBs-

NB2-3, NB3-4, and NB5-7 (Figure 5D). It was possible that they formed in the abdominal segments

but had very short lineages and were eliminated quickly by apoptosis. To investigate this possibility,

we used H99 mutant embryos, which do not exhibit apoptosis (White et al., 1994). We did not

detect any ectopic Msh+ NBs in the abdominal segments of H99 mutant embryos; thus, it seems

that these cells simply do not form in the abdominal segments (Figure 7—figure supplement 1A,B).

We next asked what factors are responsible restricting these NBs to the thoracic segments. HOX

proteins specify segment identity and control segment-specific structure formation. We used

R77B09 line, which marks NB2-3 and NB3-4, to examine whether HOX genes control formation of

these NBs. Antennapedia (Antp) is necessary for the proper development of thoracic segments

(Wakimoto and Kaufman, 1981). In antp mutant embryos, NB2-3 and NB3-4 lineages formed nor-

mally, but their axons failed to exit the CNS, especially in the T2 and T3 segments (Figure 7B,C). In

agreement with this phenotype, in wild-type animals, we detected significantly higher level of Antp

protein in the T2-T3 segments compared to the T1 segment (Figure 7A). Although there is an over-

all reduction of Antp in the T1 segment, Antp levels in these lineages are higher than in surrounding

lineages (Figure 7A). During postembryonic development, Antp function is similarly necessary to

direct leg motor neurons to innervate their target muscles (Baek et al., 2013).

Ultrabithorax (Ubx), another Hox protein, is excluded from NB2-3 and NB3-4 lineages and most

of the thoracic segments; however, its expression reaches maximum at the posterior edge of the T3

segments and most of the A1 segments (Figure 7D). In ubx mutant embryos, we detected ectopic

NB2-3 and NB3-4 lineages in the A1 segments (Figure 7F). Previous studies have shown that Ubx

functions together with Abdominal-A (Abd-A) to specify abdominal fates in the nerve cord and that

in embryos mutant for both ubx and abd-A, almost all abdominal segments acquire thoracic fates

(Prokop and Technau, 1994). In agreement with these findings, we detected ectopic NB2-3 and

NB3-4 lineages in A1-A8 segments of embryos lacking both ubx and abdA (Figure 7G). Moreover,

when we stained these double mutant embryos against Msh, we detected NB5-7 as well as NB2-3

and NB3-4 in the abdominal segments (not shown). Therefore, as expected, the Hox genes serve to

restrict NB2-3, NB3-4 and NB5-7 to the thoracic segments.

Since NB2-3 and NB3-4 generate leg motor neurons, their presence only in the thoracic segment

is not surprising. However, NB4-4, which also produces only leg motor neurons postembryonically

(lineage 24; Figure 4—figure supplement 1H), is present in both abdominal and thoracic segments,

but this stem cell also produces a variety of interneurons during its embryonic phase.

Segment-specific postembryonic survival of NBs
The number of embryonic NBs that also have a postembryonic neurogenic phase differs between

the segments. Previous studies suggested that larval T2 segment contains the greatest number of

these NBs and that the number of segmental NBs decreases as one moves anteriorly or posteriorly

by the loss of members from this T2 set (Truman et al., 2004, Figure 1—figure supplement 1). We

find, however, that NB5-6 provides an exception to this rule.

NB5-6 is eliminated in the thoracic and abdominal segments late in embryogenesis

(Baumgardt et al., 2009). To confirm this, we immortalized lbe-GAL4 expression, which uniquely

marks NB5-6 (Figure 8A–B). As expected, we did not observe any postembryonic lineage arising

from NB5-6 in the thoracic and abdominal segments, but detected a postembryonic lineage in the

S3 segment of the subesophageal ganglion (SEG) (Figure 8C). Neurons in this postembryonic line-

age expressed Eyes Absent (EyA) and extended axons in a similar manner to EyA+ embryonic NB5-6

progeny, which are born in the “Cas” window during late embryonic stages (Figure 8A–

C; Baumgardt et al., 2009). We concluded that NB5-6 survives in the S3 segment during post

embryogenesis to generate a postembryonic lineage. This conclusion is further supported by forcing

NB5-6 to survive in the thorax by expressing the apoptosis suppressor p35 in this lineage. This

resulted in an ectopic postembryonic lineage in the thoracic set and this lineage shared the position

and projection pattern seen in its S3 counterpart.
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The postembryonic lineage of NB5-6 that we detected in S3 segments was previously assigned to

lineage 5 (NB5-3) based on morphological similarities to thoracic lineages (Kuert et al., 2014); how-

ever, the above results and our previous work disagree with this designation (Li et al., 2014).

Neurons produced during embryonic versus postembryonic
neurogenesis
The NBs of insects with incomplete metamorphosis, like grasshoppers, generate all of their progeny

during embryogenesis (Bate, 1976; Shepherd and Laurent, 1992). With the evolution of metamor-

phosis, this single phase of neurogenesis was split into two, with the embryonic phase producing the

neurons of the larva and the postembryonic phase dedicated to making adult neurons. We wanted

to know if NB arrest late in embryogenesis simply interrupts the temporal progression of neural

types or if the arrest somehow “reprograms” the NB so that cell classes produced after the arrest

bear no resemblance to those produced before.

NB2-3 produces leg motor neurons during both its embryonic and
postembryonic neurogenic phases
The clearest example of a continuity of generating a cell class through the arrest is seen for NB2-3,

which produces the postembryonic cluster of leg motor neurons constituting lineage 15. In the larva,

Figure 7. Hox genes restrict NB2-3 and NB3-4 lineages to the thoracic segments. (A-G) 77B09-lexAp65 driven GFP marks NB2-3 and NB3-4 lineages in

wild type embryos (A, B, D and E) and embryos mutant for antp (C), ubx (F), and double mutant for abd-A and ubx (G). All embryos are at stage 16. (A)

Antp expression (red) is significantly higher in T2-T3 segments than T1 segments (only T1 and T2 segments shown). (Inset) in the T1 segment, NB2-3

and NB3-4 progeny (outlined by dashed lines) express Antp at higher levels compared to other lineages. (B-C) Transverse view of the T2 segment

showing that axons of NB2-3 and NB3-4 progeny exit the CNS in a wild type embryo (B) but fail to do so in an antp mutant embryo (C). (D) Highest Ubx

expression (red) in a wild type embryo is detected around the A1 segments and thoracic segments virtually lack Ubx expression. (F-G) whole nerve

cords from embryos with indicated genotypes shown. (E) 77B09-lexAp65 marks thoracic specific NB2-3 and NB3-4 lineages and in the abdominal

segments it marks neurons of NB2-1 and NB7-3. Note also axons of sensory neurons entering the nerve cord in all abdominal segments (some marked

by arrowheads) and these axons are thinner compared to exiting motor axons in the thoracic segments. (F) In embryos that are mutant for ubx, ectopic

NB2-3 and NB3-4 lineages form in the A1 segment. (G) In embryos that are double mutant for ubx and abd-A, ectopic NB2-3 and NB3-4 lineages form

in all abdominal segments except the terminal segment. Inset shows a magnified view of hemisegments of A5-A6 where Dpn (red) marks ectopic NB2-3

and NB3-4. WT, wild type; White bar, midline.

DOI: 10.7554/eLife.13399.018

The following figure supplement is available for figure 7:

Figure supplement 1. Apoptosis is not responsible for the lack of NB2-3, NB3-4 and NB 5–7 in the abdominal segments.

DOI: 10.7554/eLife.13399.019
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these neurons arrest after extending their axons into the periphery towards the leg discs and wait

until metamorphosis before invading the developing leg disc (Figure 5C, Truman et al., 2004;

Baek and Mann, 2009; Brierley et al., 2009 and 2012). Like their postembryonic counterparts, the

embryonic progeny of NB2-3 are primarily arrested motor neurons that lack muscle targets at hatch-

ing. We identified two lines, R77B09AD-R28H10DBD and VT006878, which mark ventrally and dorsally

located NB2-3 embryonic progeny, respectively (Figure 9D). These arrested motor neurons are evi-

dent in these lines at hatching. By feeding larvae on food containing EDU from hatching and then

examining the clusters just prior to metamorphosis (Figure 9A,E), we found that all of the arrested

motor neurons lacked EDU incorporation, showing that these lines do not add any of the postem-

bryonic members of this lineage. Their axons split into two bundles after exiting the larval CNS. One

bundle extends across the body wall, and, in T1 only, includes one functional motor neuron that

innervates a muscle field while the rest of the axons appear to stall in their peripheral nerve (not

shown). The other bundle extends towards the leg disc but its axons also stall out on the nerve

(Figure 9C,F). Except for the T1 motor neuron, these stalled neurons are also negative for vGLUT

expression (a marker of mature motor neurons) (Figure 9B). Thus, our results suggest that almost all

of the embryonic progeny of NB2-3 are developmentally arrested and a subset are potentially leg

motor neurons.

We immortalized the expression of VT006878 into the adult stage (see Materials and methods) to

assess the fates of the arrested motor neurons. VT06878 marks 7.8 +- 0.6 (n=10) neurons per tho-

racic hemisegment in the larval VNC (Figure 9G). Immortalized expression marked 6.2+-0.7 (n=6)

neurons per hemisegment in the adult VNC, and all of these neurons expressed vGLUT and

extended axons into the leg (Figure 9I and not shown), where they innervated muscles of the coxa,

trochanter and femur (Figure 9J–L). Consequently, it appears that for NB 2–3, its arrest occurs early

in its program of making adult leg motor neurons resulting in a few being made prior to the arrest

and the remainder after.

The embryonic progeny of NB3-4 also appear to be developmentally arrested motor neurons

(Figure 5J–M), but we lacked the proper reagents to investigate their fate.

Figure 8. NB5-6 generates postembryonic progeny only in the S3 segments. Expression of lbe-K-Gal4 in the embryonic nerve cord (A-B) and

immortalization of its expression in NB5-6 progeny with (C) or without p35 in the larval CNS (B). (A) S3-A1 segments of stage 16 embryos showing lbe-

K-Gal4 driven GFP expression, which specifically marks Dpn+ NB5-6 (red in inset) and its progeny. (B) NB5-6 lineage clone from a stage 17 embryo

extend axons in several different directions. (C) Immortalization of lbe-K-Gal4 expression marks NB5-6 postembryonic lineage (yellow arrowhead) in S3

segments and late-born embryonic neurons (white arrowhead) of NB5-6 in thoracic segments; NB5-6 does not generate a postembryonic lineage in

thoracic segments. (D) When apoptosis is blocked by p35 misexpression, NB5-6 generates ectopic postembryonic progeny (red arrowheads). Both

endogenous S3 and ectopic thoracic postembryonic progeny of NB5-6 express EyA (red) and extend axons in a similar manner to EyA+ neurons that

are born in the embryonic “Cas” window of NB5-6 (Baumgardt et al., 2009; white arrowheads). HRP (blue) in embryos (A, B) and Phalloidin (Red) in

larvae (C, D) visualize neuronal architecture. FO, flip-out lineage clone; IM, Immortalization.

DOI: 10.7554/eLife.13399.020
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Figure 9. Embryonic progeny of NB2-3 are developmentally arrested during larval life, but differentiate during

metamorphosis to be leg motor neurons. (A, E) R77B09AD-R28H10DBD (A) and VT006878 (E) expression in T2

hemisegments from a late stage larva shown. EDU (red) labels all of the postembryonic neurons but not NB2-3

progeny (outlined with dashed lines); hence outlined cells are born embryonically. (B) None of these embryonic-

born cells marked by R77B09AD-R28H10DBD express vGLUT (indicator of mature motor neurons) with the exception

of a motor neuron in the T1 segment (arrow). VT006878 marked neurons do not express vGLUT either (not shown).

(D) R77B09 (red) and VT006878-LexA (green) mark ventral and dorsal embryonic progeny of NB2-3, respectively.

Transverse view shown on the right; dorsal up. (C, E) T2 lineage clones, which are generated via R77B09AD-

R28H10DBD(C) and VT006878 (E) are induced in an early embryo and visualized in the late-stage larva. Like in the

embryo (see Figure 5), axons of NB2-3 embryonic progeny split into two bundles after exiting the CNS. One of

these bundles extends toward the leg disc (arrowheads). (E) VT006878 expression in T2-T3 segments in the larval

CNS. (H-L) Immortalization of VT006878 expression visualizes these neurons in the pupal (H) and adult nerve cord

(I) and innervation pattern of their axons in the adult leg (J-L). (J) VT006878 marked neurons innervate muscles in

the coxa, trochanter, and femur parts of the leg but not the tibia. High magnification views from coxa (K) and

trochanter (L).

DOI: 10.7554/eLife.13399.021
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Larval-born neurons follow the axonal path of late-born embryonic
interneurons
The motor neurons are unusual in that even the embryonic-born members of the class are main-

tained in an arrested state until the start of metamorphosis. A similar pattern is also seen for one of

the flight motor neurons (Consoulas et al., 2002). The vast majority of embryonic interneurons,

though, become functional neurons in the larva, but some of these neurons still share characteristics

with their postembryonic-born siblings (e.g., Figure 3). For example, axons of a subset of NB6-1

embryonic progeny bundle with the lineage 12A neurons (the postembryonic progeny of NB6-1),

and both populations of neurons express Unc-4 (Figure 10A and not shown). Interestingly, in com-

plex embryonic lineages with several different axonal projections, the postembryonic born neurons

followed only one or two of these projections. For example, the embryonic progeny of NB4-1 are

quite complex, with four main types of neurons: (i) efferent neurons, (ii) intersegmental interneurons,

(iii) local interneurons that cross the midline via the posterior commissure, and (iv) local interneurons

that cross the midline via the anterior commissure (Bossing et al., 1996; Schmid et al., 1999). The

last class can be further subdivided based on whether they cross in dorsal or ventral neuropil

(Figure 10B). The postembryonic progeny of NB4-1 conform to the two subclasses of the type-iv

interneurons: axons from the 14A hemilineage cross the midline via the ventral anterior commissure,

whereas axons of the 14B hemilineage use the dorsal anterior commissure (Figure 10D). We sus-

pected that the postembryonic cells shared features with the last class of embryonic neurons to be

born. To identify when these embryonic neurons are born, we roughly mapped their birth order of

the NB4-1 progeny based on clone induction time and clone size. The smallest embryonic clones

consistently contained only the two type-iv subtypes (Figure 10C), showing that they are the last

type of neurons that are produced in the embryo. Cells with these two projection patterns then con-

tinue to be made through the entire postembryonic phase to generate the 14A and 14B hemili-

neages. Most of the 14B neurons, though, die soon after their birth (Truman et al., 2010).

We observed the same pattern in the NB3-2 and NB5-3 lineages, in which neurons born in the

last embryonic divisions showed similar axonal projections to those of the postembryonic-born sib-

lings. For example, during embryogenesis, NB3-2 generates two distinct sets of motor neurons

(BarH+ and Hb9+motor neurons) and contralaterally projecting interneurons (Figure 10E and not

shown; Landgraf et al., 1997; Garces et al., 2006). The postembryonic progeny of NB3-2, lineage

7, have similar axonal projections and bundle with the embryonic-born interneurons (Figure 10J,K

and not shown). Moreover, both embryonic- and larval-born interneurons express Unc-4, but motor

neurons do not. We mapped the birth order of NB3-2 embryonic progeny and found that motor

neurons (first BarH+, then Hb9+) are born from the early cell divisions, while Unc-4+ interneurons are

born from the late embryonic divisions of NB3-2. Thus, NB3-2 generates Unc-4+ interneurons before

entering quiescent state in the embryo and then resumes generating Unc-4+ interneurons with simi-

lar morphology in the larval stages.

For the NB3-3 lineage, Castor expression marks a temporal neurogenesis window that lasts from

late embryonic to mid-larval stages (Tsuji et al., 2008). Indeed, we found that Cas expression is

maintained in many NBs including NB3-2 during these stages (not shown). We hypothesized that

both embryonic and postembryonic Unc-4+ interneurons are born in the Cas window and that these

neurons would therefore not form in animals lacking cas function, since Cas is necessary for the for-

mation of neurons born during the embryonic Cas window (Kambadur et al., 1998; Isshiki et al.,

2001). As expected, embryonic-born Unc-4+ interneurons do not form in cas mutant embryos

(Figure 10H–I), indicating that these neurons indeed arise in the Cas temporal window and that Cas

function is necessary for their formation. However, the larval-born Unc-4+ interneurons in cas-null

MARCM clones formed and extended their contralateral axon similar to those of wild type (not

shown), indicating that larval born neurons do not require Cas function for their identity and that

temporal identity in these two phases of neurogenesis may be regulated differently.

We found a similar scenario in the lineages of NB5-3 and NB5-6, where neurons born in the Cas+

embryonic window extend axons whose route is then later followed by the postembryonic progeny

of these NBs (Figure 10—figure supplement 1 and Figure 8). Thus our findings suggest that NBs

generate similar types of neurons before and after the quiescent state, although these become

incorporated into circuitry to control very different types of bodies, larval versus adult.
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Figure 10. Late-born embryonic neurons and postembryonic neurons show significant similarities. (A) A transverse view of the larval thoracic nerve

cord. R24B02 driven GFP is in green; flip-out clones, which are induced in the embryo via R24B02, are in red. Within the NB6-1 lineage, mature axons of

the embryonic-born neurons (red cells) bundle with the immature axons of the larval-born neurons (lineage 12A neurons; green cells). Both embryonic

and postembryonic-born neurons express Unc-4 (blue; inset). Note that the reporter driven via flip-out shows stronger signal than R24B02 driven GFP;

thus, it visualizes embryonic progeny of NB6-1. (B, C) Transverse views from stage 17 embryos shown. R78A08 used to generate embryonic NB4-1

lineage clones. (B) An early-induced lineage clone showing the entire embryonic progeny of NB4-1. (C) Late induced lineage clone showing late-born

embryonic progeny of NB4-1. (D) A MARCM clone from a larva showing that postembryonic progeny of NB4-1 extend their axons contralaterally in the

ventral anterior commissure (lineage 14A) or dorsal anterior commissure (lineage 14B) in a similar manner to late born embryonic neurons in the

lineage. (E-G) Nerve cords from stage 17 embryos shown. R21E09 used to generate embryonic NB3-2 lineage clones, which were induced at different

time points (E, earliest; G, latest). (E-F) Earlier induced clones contain motor neurons (arrows). (G) The late induced clone contains only interneurons,

which express Unc-4 (inset) and extend contralateral axons. (H-I) A single thoracic hemisegment from wild-type (H) and cas mutant (I) embryos shown.

Both embryos are at stage17. (H) Unc-4 + neurons of NB3-2 (red) reside adjacent to Eve+ NB3-3 neurons (green). (I) In a cas mutant embryo, Unc-4+

neurons of NB3-2 are not detected. (J-K) Transverse views of embryonic and postembryonic progeny of NB3-2 shown. Late-born Unc-4+ embryonic

neurons in the embryonic CNS (J) and Unc-4+ postembryonic neurons in the larval CNS (K) use the same route to cross the midline, anterior

intermediate commissure. (E-G, J); immortalization of R21E09AD-R16H11DBD marks lineage 7 (K). (L) Schematic representation of NB3-2 neurogenesis

from embryonic to larval stages. NB3-2 generates motor neurons and presumably sibling interneurons in early cell divisions. NB3-2 later produces Unc-

4+ contralateral interneurons in the Cas window. At the end of embryogenesis, it enters quiescent state. At the beginning of second larval stage, NB3-2

Figure 10 continued on next page
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Late-born embryonic neurons and postembryonic lineages show similar
patterns of transcription factor expression
As noted above for a few lineages, embryonic and postembryonic progeny of a given NB express

similar transcription factors and show similar axonal projections. Moreover, the late-born embryonic

neurons are the most similar to the postembryonic group. We examined whether this pattern of

common transcription factor expression is universal, by assaying all lineages for the expression of

transcription factors at both embryonic and postembryonic stages (Lacin et al., 2014b, data in this

study). We performed antibody staining against these transcription factors in embryos with FLP-out

clones that marked specific embryonic lineages. As shown in Table 2, we found that, in almost all lin-

eages, transcription factors that mark a specific postembryonic lineage are also expressed in some

of the embryonic progeny of the same lineage. Moreover, neurons expressing these transcription

factors in the embryo tended to be located nearest to the NB, indicating they are born late in the

embryonic lineage. For example, the first division of NB4-2 generates Eve+ RP2 and Dbx+ RP2-sib

neurons (Lacin et al., 2009). Later divisions generate Hb9+ CoR motor neurons with their Dbx+ sib-

ling interneurons, followed by more interneurons (Landgraf et al., 1997; Schmid et al., 1999;

Lacin et al., 2009). Based on our lineage clones, we found that these late-born neurons express D

and Dbx (Figure 11A–C). Interestingly, the expression of D and Dbx in these late-born neurons is

Figure 10 continued

resumes cell division and generates more Unc-4+ contralateral interneurons in the Cas window. FO, lineage clone; IM, immortalization. Dorsal is up for

images showing transverse views; for the rest anterior is up. HRP (blue) visualizes embryonic neuronal architecture (A, C, and J). BP104 (blue; D) and

Phalloidin (blue; K) visualize larval neuronal architecture. FO, flip-out lineage clone; IM, Immortalization; White bars mark the midline.

DOI: 10.7554/eLife.13399.022

The following figure supplement is available for figure 10:

Figure supplement 1. (A-C) NB5-3 lineage clones, which were induced at different time points (A, earliest; C, latest).

DOI: 10.7554/eLife.13399.023

Figure 11. Dicheaete and Dbx marks both embryonic ands postembryonic NB4-2 progeny. Nerve cord images from the embryo (A-D) and larva (E). (A)

R81F02 drives reporter expression only in thoracic segments. R81F02 marks D+ neurons (red) of NB4-2; abdominal segments do not have these D+

cells. (i) A single confocal section from the outlined region. D+ cells reside adjacent to its stem cell, NB4-2 (arrowhead). (ii, iii) A transverse view of the

same region. The NB and D+ cells are on the ventral surface of the nerve cord. (B-D) NB4-2 lineage clones in the thoracic embryonic nerve cord.

R42F01 used to generate the clones (B) Dashed lines outline Dbx+ cells of NB4-2 lineage in T3 and A1 segments. Like D+ cells, some of these Dbx+

cells are present only in thoracic segments. (C) Hb9+ motor neurons are adjacent to Dbx+ neurons. (D-E) Dbx (red) and D (blue) are expressed in NB4-2

embryonic progeny (D) and postembryonic progeny, lineage 13 (E). FO, flip-out lineage clone. White bars mark the midline. Anterior is up. Dorsal is up

in transverse view.

DOI: 10.7554/eLife.13399.024
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restricted to thoracic lineages and is carried over to the postembryonic progeny of NB4-2, with Dbx

being expressed in hemilineage 13A and D expressed in hemilineage 13B (Figure 11D–E;

Lacin et al., 2014b).

We also identified molecular markers with which we can uniquely identify most NBs from embry-

onic to larval stages (Table 2). Interestingly, some of these transcription factors are expressed exclu-

sively in the NB of some lineages while in other lineages they are expressed in the progeny but not

in the NB. For example, Dbx is expressed in NB3-2 during embryonic and postembryonic neurogen-

esis but not in its progeny. On the other hand, Dbx expression in the NB4-2 lineage is restricted to

the progeny. Moreover, we also found that expression of NB patterning genes such as Gsb, Mirror,

Ey, and Unpg is maintained from embryonic to larval development (Table 2).

Conclusion
The segmental NB array in Drosophila embryos has been the focus of many studies to investigate

neurogenesis. Individual NBs have been identified based on their large size and location in the array,

by molecular marker expression including genetic handles such as lacZ and GAL4 lines, or by the

morphology of their progeny. Only a few NBs have been studied comprehensively including all these

features [e.g., NB5-6 (Baumgardt et al., 2009). Here, we have used a suite of molecular markers

and a library of GAL4 lines, many of which are specific to individual NBs, to characterize the entire

set of thoracic NBs, including their embryonic and postembryonic progeny.

We found that 26 of 30 (+1 medial) thoracic NBs survive into larval stages to generate neurons

for the adult nervous system. We found that three of these NBs appear to be confined to the thorax,

and two of them (NB2-3 and NB3-4) are dedicated to producing motor neurons for the leg. The

third NB, NB5-7, had not been previously described and is unique in that it appears to have only a

postembryonic neurogenic phase. Although the segmental NB array has been highly conserved

through insect evolution (Thomas et al., 1984; Truman and Bate, 1988), we think that NB5-7 is a

recent addition, likely by a duplication of NB5-4.

This two-phase pattern of neurogenesis evolved from a simpler scheme, such as seen in grasshop-

pers, in which all neurons were generated during an extended embryonic phase (Bate 1976;

Shepherd and Bate, 1990). The similarity of the neurons just before and after quiescence in flies

suggests that the insect NBs dealt with metamorphosis by simply suspending their ongoing fate

determination through the arrest period and then resuming from that point once neurogenesis was

restarted. In other words, metamorphosis did not likely require the resetting of a fate determination

clock on the development of a novel postembryonic system.

Materials and methods

Fly Stocks
We used the following fly strains with indicated genotypes during this study Canton-S as wild type,

gsbn-lacZ.4z1 (Li and Noll, 1994), lbe(K)-GAL4 (Baumgardt et al., 2009), mirror-lacZ

(Broadus et al., 1995), unpg-lacZ (Doe, CQ 1992), 5172J-GAL4 (Lacin et al., 2014a), elav-GAL4

(DiAntonio et al., 2001), en- GAL4 (Brand and Perrimon, 1993), ems-GAL4 (Estacio-Gomez et al.,

2013), eg-kinesin-lacZ (Higashijima et al., 1996), eg-GAL4 (Ito et al., 1995), antp25 (Abbott and

Kaufman, 1986), Df(3L)H99 (Abbott and Lengyel, 1991), Df(3R)Ubx109 (Lewis, 1980), cas24/TM6b

(Cui and Doe, 1992), pJFRC19-13XLexAop2-IVS-myr::GFP, pJFRC7-20XUAS-IVS-mCD8::GFP

(Pfeiffer et al. 2010).

TUNEL and EDU labeling
Cell death was detected by TUNEL labeling (Roche, in situ cell death detection kit, TMR red).

Embryos were first labeled with primary and secondary antibodies, and then treated with proteinase

K (2 ug/ml) for 5 min at 37˚C. TMR labeling was performed according to manufacturer’s instructions.

To mark all cell born postembryonically, newly hatched first-instar larvae were fed yeast paste

containing 300 mM EdU. At the wandering larval stage, larvae were dissected, fixed and stained as

described previously (Lacin et al., 2014b).
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Lineage tracing
Multi-Color Flipout generation
Embryos were collected for three hours from the crosses of flies carrying GAL4 lines with flies carry-

ing hsFlp2::PEST;; HA_V5_FLAG (MCFO-1; Nern et al., 2015).

Embryos were incubated at 25˚C for three or five hours and then dechorionated with bleach. To

induce heat-shock mediated clone formation, embryos were floated in 60% glycerol on a 24X60-mm

coverslip and incubated in a 37˚C water bath for three to six minutes depending on the Gal4 expres-

sion. We then washed the embryos with wash buffer (Patel, 1994) and incubated them at 18 or 25˚C
in a Petri dish humidified with wet Kimwipes until the desired stage of fixation.

Irreversible reporter expression
To drive reporter expression permanently in the progeny of a NB, flies carrying NB specific GAL4

transgenes were crossed to flies carrying following transgenes: dpn>KDRT-stop-KDRT>Cre:

PEST, lexAop-myrGFP;UAS-KD (Awasaki et al., 2014) and Act5c>loxP-stop-loxP>LexA::p65 (a gift

from T Lee). Crosses were performed at 22˚C for Gal4 lines and 25˚C for split-Gal4 combinations.

We used tub-GAL80ts (McGuire et al., 2003) for eg-GAL4-mediated reporter immortalization to

restrict this event only Eg-Gal4+ embryonic NBs since it marked several other NBs after embryogen-

esis. To do that, we collected embryos for two hours at 25˚C, incubated these embryos at 29˚C until

they reach first instar stage and then let them develop into late third instar stage at 18˚C. Dissection
and staining were performed before they become white pupae.

To irreversibly mark VT0048571-expressing neurons, we crossed flies carrying this GAL4 driver

with flies carrying 5XUAS-FlpPEST (Nern et al., 2011). Progeny carrying both transgenes from this

cross were mated with flies of the following genotype: w;13XLexAop2-IVS-myr::GFP,

Actin5Cp4.6>dsFRT>nlsLexAp65;tub-gal80TS (Pfeiffer et al. 2010; Harris et al., 2015;

McGuire et al., 2003). To immortalize only third-instar larval expression, progeny from this cross

were kept at 18˚C except between 100–112 hr after egg laying, when they were incubated at 29˚C.

MARCM clone generation
The MARCM technique was used to generate lineage clones (Lee and Luo, 1999). Newly hatched

first instar larvae were incubated at 37˚C for 30 min and nerve cords of late third instar larvae were

dissected, fixed and stained. The following lines were used: elav-Gal4; FRT42B, tub-Gal80 and hs-

FLP; FRT42B, UAS-mCD8-GFP or hs-FLP; FRT42B, UAS-mCD8-GFP and UAS-mCD8-GFP, FRT40A,

act-Gal4.

Immunochemistry
Tissue fixation and staining were performed as described by Patel (1994). To visualize major axonal

tracts we used AMCA-conjugated HRP or combination of BP102 and FasII in embryos, Alexa Fluor

568-conjugated Phalloidin or BP104 in larvae, and NC82 in adult flies. Secondary antibodies were

obtained from Jackson Immunoresearch and Life Technologies and used at 1/200 dilution. Tissues

were mounted in Vectashield (Vector labs). To get better resolution, some samples were cleared

with xylene and mounted in DPX (Truman et al., 2010).

The following antibodies were used at indicated dilutions: Rabbit Runt (1/1000; E. Wieschaus),

rabbit Vg (1/50; Williams et al., 1991), guinea pig Toy (1/500; U. Walldorf), guinea pig Ems (1/300;

U. Walldorf), rabbit Msh (1/1000; Isshiki et al., 1997), rabbit Ey (1/1000; U. Walldorf), guinea pig

Dbx (1/1000; Lacin et al., 2009), rabbit Hb9 (1/1000; Broihier and Skeath, 2002), guinea pig Hb9

(1/1000; Broihier and Skeath, 2002), rat Islet (1/500; Broihier and Skeath, 2002), guinea pig Lim3

(1/100; Broihier and Skeath, 2002), rat Nkx6 (1/500; Broihier et al., 2004), rabbit Unc-4 (1/1000;

Lacin et al., 2014b), guinea pig Dpn (1/1000; J. Skeath), rabbit Dichaete (1/1000; Nambu and

Nambu, 1996), rabbit Nmr1 (1/1000; Leal et al., 2009), rabbit anti-Eagle (1/500; Dittrich et al.,

1997), rabbit Ubx (1/500; Marin et al., 2012) chicken GFP (1/500; # A10262, Life Tech.), Alexa Fluor

568 Phalloidin (1/250; # A12380, Life Tech.), rabbit HA (1/500; # 3724S, Cell Sig.), rat HA (1/500;

3f10, Roche), rat Flag (1/200; # NBP1-06712, Novus B.), Chicken V5 (1/500; # ab9113, Abcam),

mouse B-gal (1/1000), rabbit B-gal (1/1000; # A11132, Life Tech.), Goat AMCA-HRP (1/200; # 123-

155-021, Jackson L.). The following mouse primary antibodies were obtained from Developmental
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Studies Hybridoma Bank: Engrailed-4D9 (1/5), BP104 (1/40), BP102 (1/100), FasII-D4 (1/100), NC82

(1/100), Antp-8C11 (1/20).

Image analysis
A Zeiss LSM 710 was used to collect confocal images. Z projections were performed via FIJI (http://

fiji.sc/Fiji): To the show presence of NB of interest in the clone, we projected Dpn channel by includ-

ing only the sections that displayed this NB. Similarly, for channels in which neuronal architecture

was shown by markers such HRP or BP102, we projected only the sections where the major bundles

were located. In Figure 10A, a contaminating from a different segment was removed manually.
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