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Abstract Midbrain dopamine neurons have been proposed to signal reward prediction errors as

defined in temporal difference (TD) learning algorithms. While these models have been extremely

powerful in interpreting dopamine activity, they typically do not use value derived through

inference in computing errors. This is important because much real world behavior – and thus many

opportunities for error-driven learning – is based on such predictions. Here, we show that error-

signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not

been paired with reward and do so in the same framework as they track the putative cached value

of cues previously paired with reward. This suggests that dopamine neurons access a wider variety

of information than contemplated by standard TD models and that, while their firing conforms to

predictions of TD models in some cases, they may not be restricted to signaling errors from TD

predictions.

DOI: 10.7554/eLife.13665.001

Introduction
Midbrain dopamine neurons have been proposed to signal the reward prediction errors defined in

temporal difference (TD) learning algorithms (Schultz et al., 1997; Sutton, 1988). This proposal was

initially based on observations that these neurons fired more strongly to unpredicted than to pre-

dicted reward, suppressed firing on omission of a predicted reward, and developed firing to reward-

paired cues with learning (Mirenowicz and Schultz, 1994). Further work has shown that phasic activ-

ity in dopamine neurons obeys formal predictions for such TD error signals under more complex con-

ditions (Waelti et al., 2001; Tobler et al., 2003; Lak et al., 2014; Pan et al., 2005; Hart et al.,

2014; Bayer and Glimcher, 2005; Hollerman and Schultz, 1998), including in tasks such as blocking

and conditioned inhibition, in which experimental conditions are arranged to precisely distinguish

between prediction error signals and other possible explanations of such activity. These studies have

confirmed that the neural correlates correspond closely to the theoretical accounts. Indeed careful

work in monkeys has shown that the activity provides a quantitative match with the error signal

described in the TD model (Bayer and Glimcher, 2005). With the advent of optogenetic techniques

and Cre-driver lines in rats, it has also been shown in rats that artificially stimulating or inhibiting

likely dopamine neurons for very brief periods is sufficient to restore the associative learning driven

by endogenous positive or negative prediction errors (Steinberg et al., 2013; Chang et al., 2016),

suggesting that phasic activity in dopamine neurons can act like a prediction error, at least in some

downstream targets and behavioral paradigms (Glimcher, 2011; Schultz, 2002).
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But is it a TD prediction error? The errors in TD models, at least as they have been applied to

interpret the firing of dopamine neurons, are based on the value that has been assigned to events

based on direct experience (Glimcher, 2011; Schultz, 2002; Niv and Schoenbaum, 2008;

Clark et al., 2012). This so-called cached value is pre-computed and resides in the predictive event,

be it a primary reward or reward-predicting cue. The value is calculated free of any other predictive

information about the environment, defining this class of algorithms as model-free. While these TD

models have been extremely powerful in interpreting the activity of dopamine neurons in tasks in

which value is based on experienced reward, they are unable to compute prediction errors elicited

in situations in which value is derived through inference rather than through direct experience. Deriv-

ing a value (or a prediction) based on inference – meaning to deduce from an understanding of the

relationships amongst environmental stimuli and events - is a hallmark of a second class of algo-

rithms, termed model-based (Daw et al., 2005).

This distinction between algorithms is important because much of our real world behavior, and

thus many of our opportunities for error-driven learning, is based on this model-based inference

(Daw et al., 2005; Doll et al., 2012). Rarely does one engage in value-based behavior that is simply

a pure repetition of prior learning; typically moderating or mitigating information acquired in other

situations, separate from the original learning, influences our decision-making. This basic concept is

operationalized (and the effect of such inferred or model-based value, isolated) in sensory pre-condi-

tioning (Brogden, 1939). In this task, animals first learn that one innocuous cue (cue A) predicts

another (cue B), in the absence of reward, and then later learn that the second cue (B) is a reliable

predictor of reward. Cue A has not been directly paired with reward and thus it has not had any

opportunity to acquire any cached value (Glimcher, 2011; Niv and Schoenbaum, 2008). As a result,

cue A cannot elicit a TD prediction error, despite the fact that it has value as defined by the animal’s

responding and its ability to modulate error-driven learning (Jones et al., 2012). If TD models are an

accurate and complete description of the information contained in dopamine neuron activity, then

cue A should not elicit dopamine neuron firing, at least not above the level of a control cue.

Results
To test this, we trained 14 rats with recording electrodes implanted in the ventral tegmental area

(VTA) in a sensory-preconditioning task. In the first phase, rats learned to associate two pairs of

eLife digest Learning is driven by discrepancies between what we think is going to happen and

what actually happens. These discrepancies, or ‘prediction errors’, trigger changes in the brain that

support learning. These errors are signaled by neurons in the midbrain – called dopamine neurons –

that fire rapidly in response to unexpectedly good events, and thereby instruct other parts of the

brain to learn about the factors that occurred before the event. These events can be rewards, such

as food, or cues that have predicted rewards in the past.

Yet we often anticipate, or infer, rewards even if we have not experienced them directly in a

given situation. This inference reflects our ability to mentally simulate likely outcomes or

consequences of our actions in new situations based upon, but going beyond, our previous

experiences. These inferred predictions of reward can alter error-based learning just like predictions

based upon direct experience; but do inferred reward predictions also alter the error signals from

dopamine neurons?

Sadacca et al. tested this question by exposing rats to cues while recording the activity of

dopamine neurons from the rats’ midbrains. In some cases, the cues directly predicted rewards

based on the rats’ previous experience; in other cases, the cues predicted rewards only indirectly

and based on inference. Sadacca et al. found that the dopamine neurons fired in similar ways in

response to the cues in both of these situations. This result is consistent with the proposal that

dopamine neurons use both types of information to calculate errors in predictions. These findings

provide a mechanism by which dopamine neurons could support a much broader and more complex

range of learning than previously thought.

DOI: 10.7554/eLife.13665.002
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environmental cues (A->B; C->D) in the absence of reward. As there was no reward, rats showed no

significant responding at the food cup and no differences in responding during the different cues

(ANOVA, F3, 55 = 0.7, p=0.52; Figure 1A). In the second phase, rats learned that the second cue of

one pair (B) predicted reward and the other (D) did not; learning was reflected in an increase in

responding at the food cup during presentation of B (ANOVA, main effect of cue: F 1, 163 = 280.1,

p<0.001, main effect of session: F 5, 163 = 9.7, interaction: F 5, 163 = 10.81, p<0.001; Figure 1B).

Finally, in the third phase, the rats were presented again with the four cues, first a reminder of cue B

and D’s reward contingency followed by an unrewarded probe test of responding to cues A and C.

As expected, the rats responded at the food cup significantly more during presentation of A, the

cue that predicted B, than during presentation of C, the cue that predicted D (ANOVA, main effect

of cue: F 1, 167 = 8.7, p<0.001, main effect of trial: F 5, 167 = 6.08, p<0.001, interaction: F 5, 167 =

2.07, p=0.07; Figure 1C).

Single unit activity was recorded in the VTA throughout training. To identify putative dopamine

neurons, we used a recently developed, optogenetically-validated strategy that classifies VTA neu-

rons on the basis of their response dynamics during Pavlovian conditioning. In published work

(Cohen et al., 2012; Eshel et al., 2015), this strategy identified VTA dopamine neurons (i.e. neurons

expressing Cre under the control of the promoter for the dopamine transporter) with near perfect

fidelity. Here we applied this same analysis to the mean normalized responses of all VTA neurons

recorded during conditioning and reminder sessions (n = 632; Figure 2A). We extracted the major

modes of variation among the neurons with principal components analysis (PCA; Figure 2B) and

then performed hierarchical clustering on those PCs (Figure 2C). This analysis successfully extracted

the 3 previously described VTA response types from our data (Figure 2D): neurons with sustained

excitation to cues and reward (putative GABAergic), neurons with phasic excitation to cue onset and

reward onset (putative dopaminergic), and neurons with sustained inhibition to cue and reward

(unknown). We then assessed the responses of the putative dopamine neurons (n = 304) to the cue

and reward over the course of conditioning. Consistent with their classification, we found changes in

firing during conditioning that were in accord with signaling of reward prediction errors. Specifically,

early in conditioning, these neurons’ maximal response occurred just after reward delivery

Figure 1. Rats infer the value of cues during sensory preconditioning. Panels illustrate the task design and show the percentage of time spent in the

food cup during presentation of the cues during each of the three phases of training. In the ’preconditioning’ phase (A) rats learn to associate auditory

cues in the absence of reinforcement; during this phase there is minimal food cup responding (ANOVA, F (3, 55) = 0.7, p = 0.52). In subsequent

’conditioning’ (B), rats learn to associate one of the cues (B) with reward; conditioned responding at the food cup during B increases across sessions

(ANOVA, main effect of cue: F (1, 163) = 280.1, p<0.001, main effect of session: F (5, 163) = 9.7, interaction: F (5, 163) = 10.81, p<0.001). In a final

’probe’ test (C), rats are presented with each of the 4 auditory cues; conditioned responding at the food cup is maintained to B and is also now evident

during presentation of A, the cue that had been paired with B in the preconditioning phase (ANOVA, main effect of cue: F (1, 167) = 8.7, p<0.001, main

effect of trial: F (5, 167) = 6.08, p<0.001, interaction: F (5, 167) = 2.07, p=0.07).

DOI: 10.7554/eLife.13665.003
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(Figure 2E, top trace), whereas late in conditioning, the maximal response occurred just after onset

of the cue predicting that reward (Figure 2E, lower traces). As a result, the difference in activity at

the time of cue onset versus reward increased significantly from the start to the end of conditioning

(r 302 = 0.24, p<0.01; Figure 2F), consistent with signaling of TD prediction errors (Glimcher, 2011;

Schultz, 2002).

Having established that putative dopamine neurons identified in this manner exhibit firing during

conditioning consistent with signaling of TD errors, we next examined activity in neurons recorded in

just the probe test. We again identified these neurons by their pattern of firing to the reward predic-

tive cue (n = 102; Figure 3A–D). As before, this analysis identified a group of cells with strong phasic

responses to B, the cue that had been directly paired with reward (n = 52). While this response gen-

eralized somewhat to D, the control cue that had been presented without reward during condition-

ing sessions, these neurons fired significantly more during the first second of B than to D (t 51 =

4.40, p<0.001, black versus gray lines, respectively, with shading for SEM, Figure 3E).

However, in addition to this expected pattern of firing, these cells also had strong phasic

responses to both preconditioned cues (blue and red traces, A and C, respectively, with shading for

SEM, Figure 3E). While the common element of these responses could reflect novelty or salience,

since these cues had not been presented for a number of days, or perhaps generalization from con-

ditioning to B, the actual phasic neural response was significantly stronger for A, the cue that pre-

dicted the reward-paired cue, than for C, the preconditioned control cue (t 51 = 5.02, p<0.001). This

difference cannot be explained on the basis of novelty, salience, or generalization, since A and C

were treated similarly. Nor can it be explained by direct experience with reward, because A was

never paired with reward, and it was only paired with B before conditioning. Thus, the phasic

response in these putative dopamine neurons appeared to be influenced by inferred value of cue A.

Interestingly, the neural response was perhaps somewhat better at discriminating A from C

(Figure 3E, bottom panel) than B from D (Figure 3E, top panel), perhaps reflecting the differences

in training between A and C, which were only presented a few times in unrewarded sessions, versus

B and D, which were presented many times across several days of conditioning. Despite this, the

Figure 2. VTA dopamine neurons exhibit firing to a reward-paired cue that is consistent with TD error signaling. We recorded 632 neurons across all

days of conditioning and the final reminder session. (A) Normalized responses (AUC) are displayed for each neuron, sorted by the classification

algorithm applied by Cohen, Uchida and colleagues (Cohen et al., 2012). The first three principal components (PCs) were extracted, to find the major

modes of this population’s response (B), then hierarchical agglomerative clustering was used on those PCs to identify similar neural responses; groups

identified are highlighted in color (C); The mean group response of each of the populations identified are displayed (D); in accordance with previous

results (Cohen et al., 2012) we found populations undergoing sustained excitation, phasic excitation, and sustained inhibition. Consistent with

identification as putative dopamine neurons, the average (AUC) response to cue B from the phasic group on each day of conditioning exhibited a peak

response that was highest to reward early in conditioning and migrated to earlier cue onset across conditioning (E–F, r(302) = 0.24, p<0.01). This

change in firing is in accordance with signaling of a TD error.

DOI: 10.7554/eLife.13665.004
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influence of the inferred value of cue A on the firing of these neurons during the first second of their

cue response was strongly and significantly correlated with the influence of value on these neurons

firing at the onset of B, the cue directly paired with reward (r 50 = 0.63, p<0.001; Figure 3F). Notably

this was also true for a handful of neurons (n = 4) that exhibited the classic wide, polyphasic wave-

forms traditionally used to identify dopamine neurons (Figure 3F, filled circles, see Figure 3—figure

supplement 1 for PSTH’s). This relationship in the initial phasic response to the cues did not reach

significance in the other two neural subtypes identified by the clustering analysis (see Figure 3—fig-

ure supplements 2 and 3 for analyses of tonically-modulated neurons).

Beyond their phasic responses at the start of the cues and to reward, the putative dopamine neu-

rons also exhibited another notable feature: the average response of these neurons throughout cues

A and C was above baseline, and this sustained firing was significantly higher to cue A than C

(Figure 3E, final 9s of cues, t51 = 2.56, p<0.05). This elevated firing may be a sign of dopamine’s

reported ability to anticipate proximity to reward or to signal state value (Howe et al., 2013;

Hamid et al., 2016), if our rats’ expectation of reward delivery is based on knowing that progression

to the offset of cue A should lead to the subsequent presentation of cue B and then reward. Impor-

tantly, in our design, reward is presented during B rather than at its termination. This would explain

why this pattern of sustained firing is not present throughout cue B (Figure 3E, t51= 1.09, p=0.278).

Interestingly this pattern of sustained and differential firing to A (vs C) and not to B (vs D) in the

putative dopamine neurons is the mirror image of firing in neurons classified as tonically excited,

which showed relatively modest changes in sustained firing to A and C and much larger increases in

firing to B (see Figure 3—figure supplement 2). This relationship would be consistent with recent

proposals that these neurons, thought to be GABAergic (Cohen et al., 2012), exert tonic inhibition

to suppress the firing of dopamine neurons (Eshel et al., 2015).

Figure 3. VTA dopamine neurons exhibit firing to a pre-conditioned cue that is not consistent with TD error signaling. We recorded 102 neurons during

the probe test. AUC normalized neural responses were classified with a hierarchical clustering as in Figure 2 (A–D) in order to identify putative

dopamine neurons (n = 52). In addition, we also identified 4 neurons based on traditional waveform criteria. While the classified putative dopamine

neurons showed firing to all cues, they exhibited the largest responses at the onset of B, the reward-paired cue (significantly above responding to D, t

(51) = 4.40, p<0.001), and to A, the cue that had been paired with B in the preconditioning phase (significantly above responding to control cue C, t

(51) = 5.02, p<0.001) (E–F). Further, the activity elicited by these two cues was strongly correlated (F), suggesting that dopamine neurons code errors

elicited by these two types of cues in a common framework (correlation between B–D and A–C, r (50) = 0.63, p<0.001).

DOI: 10.7554/eLife.13665.005

The following figure supplements are available for figure 3:

Figure supplement 1. Neural responses from phasic and tonic wide-waveform neurons.

DOI: 10.7554/eLife.13665.006

Figure supplement 2. Neural responses from 39 neurons classified as tonically excited by cue B.

DOI: 10.7554/eLife.13665.007

Figure supplement 3. Neural responses from 11 neurons classified as tonically inhibited by cue B.

DOI: 10.7554/eLife.13665.008
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Discussion
Here we report that VTA dopamine neurons, identified based either on traditional waveform criteria

or through an optogenetically-validated clustering analysis of their response properties to a condi-

tioned cue, exhibited phasic cue-evoked responses that were influenced by inferred value. These

responses were observed even though the critical cue had no prior history of direct pairing with any

rewarding event. In addition, they were greater than responses to a control cue that was treated

similarly and thus had similar levels of salience or novelty or generalized value, all variables that have

been proposed to explain phasic activity in other settings that appeared to be at odds with the stan-

dard explanation of phasic dopamine activity (Kakade and Dayan, 2002; Bromberg-Martin et al.,

2010; Matsumoto and Hikosaka, 2009). These data show that the phasic activity of dopamine neu-

rons can reflect information about value that is not contemplated by TD models, at least as they

have been applied to understand the phasic firing of these neurons (Glimcher, 2011; Schultz, 2002;

Niv and Schoenbaum, 2008; Clark et al., 2012).

Our finding is consistent with a number of recent reports, suggesting that dopamine neurons are

likely to access more complex information than is available to standard TD models. For example,

dopamine neurons in the rat VTA utilize input from the orbitofrontal cortex to disambiguate states

that are not easily distinguished via external information in order to more accurately calculate predic-

tion errors (Takahashi et al., 2011). While this result does not require the use of inference in calcu-

lating errors, merely access to state information, it suggests that dopamine neurons have access to a

major source of this information, given the central role of the orbitofrontal cortex in inference-based

behavior (Stalnaker et al., 2015).

The phasic activity of dopamine neurons has also been shown to track the value of one cue after

changes in the value of an associated cue (Bromberg-Martin et al., 2010b). Again these data sug-

gest that dopamine neurons have access to higher order information, which could be described as

inference. Indeed these authors describe their results in terms of inference; however, as they note in

their discussion (Bromberg-Martin et al., 2010b, final paragraph of discussion), the inference seen

in their task may differ from that shown here in that it does not require access to model-based infor-

mation, but could instead be based on direct, ’cached’ value from earlier training sessions.

Finally elevated dopamine has also been found using microdialysis during an aversive version of

the sensory preconditioning task used here (Young et al., 1998). However the use of an aversive

paradigm, a measurement technique with low temporal resolution, and the lack of control conditions

to confirm signaling of cached value errors make it difficult to apply these results to address the very

specific proposal that phasic changes in the firing of dopamine neurons signal TD prediction errors

in appetitive paradigms.

Our study addresses the limitations of these best available prior reports. We are recording phasic

activity of dopamine neurons at their source. We have identified dopamine neurons by two different

classification schemes, an old one that has been used repeatedly across labs and species to identify

error-signaling dopamine neurons (Mirenowicz and Schultz, 1994; Waelti et al., 2001;

Tobler et al., 2003; Pan et al., 2005; Roesch et al., 2007; Jo et al., 2013; Morris et al., 2006;

Jin and Costa, 2010), as well as a new, optogenetically-validated approach that has identified error

signals in mice (Cohen et al., 2012) and is favored by those that dislike the use of waveform criteria

(Margolis et al., 2006). We used a carefully designed behavioral preparation in which our critical

cue of interest has no prior history of association with reward, thus unique firing to this cue cannot

be explained as any sort of cached value (see ‘A comment on the basis of responding to the precon-

ditioned cue’ in the behavioral Methods for further information). Further this appetitive task includes

two important control cues: one designed to rule out explanations based on generalization and

salience (cue C) and another designed to reveal cached value prediction errors (cue B). The inclusion

of this cue in particular is important because it allows us to assess the relationship between tradi-

tional error signals and any influence of inferred value on the firing of the dopamine neurons.

The close relationship in the firing of the dopamine neurons to B, the cue directly paired with

reward, and A, the cue that predicts reward only through B, suggests that whatever is ultimately sig-

naled when a cue with inferred, model based value is presented may be similar to what the same

neurons signal in response to the unexpected appearance of a cue that has been directly paired

with reward. While this might be explained as error signaling to B, calculated from TD models, and

error signaling to A, calculated from something beyond TD models, this solution is cumbersome,
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particularly given that inferred and experienced value are actually confounded for a cue directly

paired with reward (a fact illustrated by the normal efficacy of reinforcer devaluation at changing

conditioned responding [Holland and Straub, 1979]). A more parsimonious explanation is that

dopamine neurons, unlike standard TD models, have access to a wide variety of information when

computing expected value. And that while their firing may conform to what is expected for errors

calculated from TD models in some special cases, they may not be signaling TD derived errors. Such

a suggestion aligns nicely with recent proposals that dopamine neurons signal errors based on

changes in economic utility (Schultz et al., 2015), and it would be consistent with data presented in

abstract form suggesting that cue-evoked dopamine release in nucleus accumbens is sensitive to

devaluation of a paired reward (Martinez et al., 2008), though it contradicts data only just published

from a similar study in which cue-evoked release was not immediately altered when reward value

was manipulated via salt depletion (Cone et al., 2016). This variability in correspondence between

our unit data and evidence from studies of dopamine efflux in accumbens may reflect to the differ-

ent dynamics of the two processes or it may indicate some specificity with regard to the information

content of the dopaminergic afferents in accumbens versus other areas.

Finally it is important to explicitly note that the general proposal that phasic changes in dopamine

are a TD error signal incorporates two very separate sets of predictions. One set, most relevant to

the single unit correlates that form the basis of this hypothesis, concerns the information used to

construct the error signals. This is obviously the part of the question we have addressed in the cur-

rent study. That is, do dopaminergic errors reflect only model-free information derived from TD sys-

tems or do they also incorporate the predictions of non-TD, model-based systems? We believe our

data favor the latter position.

The second set of predictions, not addressed by our study, concerns what the dopaminergic

errors do downstream. Do they act only to stamp in the so-called cached values that are acquired

through learning in TD models or do they act more broadly to facilitate increases in the strength of

associative representations in a way that is orthogonal to distinctions between the systems, model-

free or model based, in which those representations reside? The latter role would be more in accord

with earlier learning theory accounts that viewed prediction errors as acting on the strength of asso-

ciative representations (Glimcher, 2011; Bush and Mosteller, 1951; Rescorla et al., 1972). Impor-

tantly the answer to the second question is formally separate from the answer to the first. In other

words, phasic changes in dopamine may reflect model-based information and yet only act to support

model-free, cached-value learning. Or phasic changes in dopamine could act more broadly, support-

ing both model-free and model-based learning, even if they only reflected value predictions from

the former system.

Notably the jury remains out on what sort of learning the brief phasic changes in dopamine

thought to signal prediction errors serve to support. In support of dopamine’s role in supporting

model-based learning, prediction errors observed in ventral striatal target regions seem to reflect

both model based and model free information (Daw et al., 2011). Further studies have shown that

elevated dopamine levels, either observed (Deserno et al., 2015) or directly manipulated

(Wunderlich et al., 2012; Sharp et al., 2016), bias subjects towards making model-based decisions,

as do changes to dopaminergic gene expression (Doll et al., 2016). While suggestive, these studies

do not directly distinguish the effects of phasic changes in dopamine neuron firing or release from

the effects of slower tonic changes. Such tonic changes may play a very different role from the pha-

sic error signals observed in single unit activity (Hamid et al., 2016; Niv et al., 2007). Further these

studies do not isolate the effects of errors themselves, independent from other confounding varia-

bles. Such isolation and specificity can be achieved using Cre-driver lines in rodent species, and as

noted earlier, there is now strong evidence from such studies that brief, phasic changes in dopamine

neuron firing can act like a prediction error, at least in some downstream targets and behavioral

paradigms (Steinberg et al., 2013; Chang et al., 2016). However the behavior supported by the

artificially induced prediction errors in these experiments may be either model-based or model-free

(or a mixture). A more definitive answer to this question will require these approaches to be married

to paradigms that distinguish these two types of learning.
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Materials and methods

Subjects
14 adult Long-Evans rats (10 male, 4 female weighing 275–325 g on arrival) were individually housed

and given ad libitum access to food and water, except during behavioral training and testing, which

which they received 15 min of ad-lib water access following each training session. Rats were main-

tained on a 12-hr light/dark cycle and trained and tested during the light cycle. Experiments were

performed at the National Institute on Drug Abuse Intramural Research Program, in accordance with

NIH guidelines. The number of subjects was chosen to have sufficient power to assess learning on

the final test-day (Jones et al., 2012), and to gather a sufficient number of isolated neurons (>100)

for subsequent analysis on the final test day.

Apparatus
Behavioral training and testing were conducted in standard behavior boxes with commercially-avail-

able equipment (Coulbourn Instruments, Allentown, PA). A recessed dipper was placed in the center

of the right wall approximately 2 cm above the floor. The dipper was mounted outside the behavior

chamber and delivered 40 ul of flavored milk (Nestle) per dipper elevation. Auditory cues (tone,

siren, 2 Hz clicker, white noise) calibrated to ~65 dB were used during the behavioral testing.

Surgical procedures
Rats underwent surgery for implantation of chronic recording electrode arrays. Rats were anesthe-

tized with isoflurane and placed in a standard stereotaxic device. The scalp was excised, and holes

were bored in the skull for the insertion of ground screws and electrodes. Multi-electrode bundles

[16 nichrome microwires attached to a microdrive] were inserted 0.5 mm above dorsal VTA [antero-

posterior (AP) 5.4 mm and mediolateral (ML) 0.8 mm relative to bregma (Paxinos and Watson,

1998); and dorsoventral (DV) 7.0 mm from dura]. In 3 rats, microwire electrodes were also implanted

0.5 mm above ipsilateral orbitofrontal cortex [AP 3.2 mm and ML 3.0 mm relative to bregma (Paxi-

nos and Watson, 1998); and DV 4.0 mm from the dura], and in 2 other rats, microwire electrodes

were also implanted 0.5 mm above ipsilateral ventral striatum [AP 1.0 mm and ML 3.0 mm relative

to bregma (Paxinos and Watson, 1998); and DV 6.0 mm from the dura]. Once in place, the assem-

blies were cemented to the skull using dental acrylic. Six rats also received infusions of 1.0 ul of

AAV5-DIO-HMD4 into central VTA [anteroposterior (AP) 5.4 mm and mediolateral (ML) 0.8 mm rela-

tive to bregma, and 8.1 mm below dura]; there were no effects of this treatment on any of the

results we have reported.

Behavioral training
Rats began sensory preconditioning 2 weeks after electrode implantation. The sensory precondition-

ing procedure consisted of three phases, of similar design to a prior study (Jones et al., 2012).

Preconditioning
Rats were shaped to retrieve a liquid reward from a fluid dipper over three sessions; each session

consisted of twenty deliveries of 40 ul of flavored milk. After this shaping, rats underwent 2 days of

preconditioning. Each day of preconditioning, rats received twelve trials in which two pairs of audi-

tory cues (A->B and C->D) were presented sequentially, with no delay between cues, six times each,

in a blocked design. Cues were each 10 s long, the inter-trial intervals varied from 3 to 6 min, and

the order the blocks alternated across days. Cues A and C were white noise or clicker (counterbal-

anced), and cues B and D were siren or tone, (counterbalanced).

Conditioning
After preconditioning, rats underwent conditioning. Each day, rats received a single training session,

consisting of six trials of cue B paired with the flavored milk reward and six trials of D paired with no

reward. The flavored milk reward was presented three times via the dipper in the food cup at 1, 4,

and 7 s into the 10 s presentation of cue B. Cue D was presented for 10 s without reward. The two

cues were presented in 3-trial blocks, counterbalanced. The inter-trial intervals varied between 3 and

6 min. Ten rats were given 6 days of conditioning, while two were advanced to the probe test after

Sadacca et al. eLife 2016;5:e13665. DOI: 10.7554/eLife.13665 8 of 13

Short Report Neuroscience

http://dx.doi.org/10.7554/eLife.13665


5 days due the presence of putative wide waveform neurons at the beginning of the sixth condition-

ing day. There was no difference between these groups in the final test.

Probe test
After conditioning, the rats underwent a single probe test, which consisted of three reminder trials

of B paired with reward and three trials of D unpaired interleaved, followed by presentation of cues

A and C, alone, six times each, without reward, with the presentation order counterbalanced across

animals. In six animals A and C trials were blocked, while in 8 animals they were interleaved; both

groups showed all reported effects and were merged. Cue durations, timing of reward, and inter-

trial intervals were as above.

A comment on the basis of responding to the preconditioned cue
We have interpreted our sensory preconditioning effect in terms of an associative chaining or value

inference mechanism. An alternative account, which has been employed in other recent studies using

similar procedures (Kurth-Nelson et al., 2015; Wimmer and Shohamy, 2012), is that the condi-

tioned responding to cue A results from mediated learning that occurs during the second phase of

the experimental procedure (Rescorla and Freberg, 1978). Briefly, this account suggests that fol-

lowing the initial pairings of A and B, subsequent presentations of B for conditioning activate a

representation of A in memory within a relatively close temporal contiguity with the delivery of

sucrose, resulting in the representation of A becoming directly associated with this reward. If this

were to occur, then at test, the subsequent conditioned responding to A might reflect the cue’s

direct association with sucrose, rather than requiring B to bridge the experiences of A and sucrose.

While there is significant evidence within the literature for the phenomenon of mediated learning

(reviewed in Ward-Robinson and Hall, 1996; Holland, 1990), several features of our behavioral

design were chosen to bias strongly against the operation of this mechanism.

First, we used forward (AfiB) rather than simultaneous (AB) or backward pairings (BfiA) of the

pre-conditioned and conditioned cues. This is important because mediated learning in rodents has

been suggested to operate primarily when A and B are presented simultaneously (Rescorla and Fre-

berg, 1978) or as the serial compound BfiA (i.e. backward sensory preconditioning; 52). The reason

for this is intuitive because either of these temporal arrangements maximizes the chances that B will

evoke a representation of A during the conditioning phase and concurrent with reward delivery, an

arrangement that obvious benefits in maximizing the ability of an evoked representation of A to

become directly associated with reward.

Our design avoids this by initially presenting A and B as the serial compound AfiB, an arrange-

ment which, as far as B is concerned, parallels a backward conditioning procedure. Backward cue-

outcome pairings have generally been shown to yield weak, if any, excitatory conditioning (Mackin-

tosh, 1974). For this reason, it is widely accepted that AfiB pairings will render B relatively ineffec-

tive at subsequently conjuring up a memory of A, thus making the contribution of mediated learning

insubstantial (Hall, 1996).

Second, the amount of training given in Phase 2 of conditioning, with B-reward pairings, was also

designed to discourage mediated learning. As noted above, the presentation of B in conditioning

should activate a representation of A in memory. However, with repeated presentations of B without

A, the representation of A evoked by B will also extinguish. For this purpose, we present 3 times as

many B (not A) trials in the conditioning phase as we present A and B pairings, further undermining

the likelihood that an evoked A representation will be maintained.

In conclusion, we believe our implementation of these specific behavioral parameters should

largely eliminate any potential contribution of mediated learning to the sensory preconditioning

effect in our particular design, and favor the parsimonious interpretation of the sensory precondi-

tioning effect in terms of an associative chaining or value inference mechanism. We would note that

this interpretation is supported by our own prior report that OFC inactivation at probe test in this

exact paradigm abolishes responding to A and has no effect on responding to B (Jones et al.,

2012), since mediated learning is basically simple conditioning and OFC manipulations typically

have no effect on expression of previously acquired conditioned responding (Takahashi et al., 2009;

2013).
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Electrophysiology
Neural signals were collected from the VTA during each behavioral session. Differential recordings

were fed into a parallel processor capable of digitizing 16-to-32 signals at 40 kHz simultaneously

(Plexon). Discriminable action potentials of <3:1 signal/noise ratio were isolated on-line from each

signal using an amplitude criterion in cooperation with a template algorithm. Discriminations were

checked continuously throughout each session. Time-stamped records of stimulus onset and neuro-

nal spikes were saved digitally, as were all sampled spike waveforms and the discrimination file. Off-

line re-analysis incorporating 3D cluster-cutting techniques confirmed and corrected on-line discrimi-

nations. Except where explicitly noted, all neurons identified via off-line sorting were included in

each analysis.

Statistical analyses
Raw data were processed with Matlab to extract food cup entries and spike-timing relative to cue-

onset. Entries were converted to a response measure: the percentage of time rats spent with their

head in the food cup during cue presentation as measured by an infrared photo beam positioned at

the front of the food cup. Spike times were binned and analyzed as specified below. In comparing

cue-evoked to reward-evoked activity, bins spanning the first 500ms of each period were analyzed.

In comparing response differences evoked by different cues, bins spanning the first 1 s of cue-

evoked activity were analyzed. For all statistical tests, an alpha level of 0.05 was used.

AUC calculation
As per prior reports (Cohen et al., 2012), we normalized the firing rate of individual neurons by

comparing the histogram of spike counts during each bin of spiking activity (100 ms, test bins from

each trial for a cue, at a particular time post-stimulus) against a histogram of baseline (100 ms) bins,

from all trials for that cue. The ROC in question is calculated by normalizing all test and baseline bin

counts, such that the minimum bin count was 0 and the maximal bin count was 1 sliding a discrimina-

tion threshold across each histogram of bins, from 0 to 1 in 0.01 steps, such that fraction of test bins

identified above the threshold was a ‘true positive’ rate and the fraction of baseline bins above the

threshold was a ‘false negative’ rate for an ROC curve. The area under this curve was then estimated

by trapezoidal numerical estimation, with an auROC below 0.5 being indicative of inhibition, and an

auROC above 0.5 being indicative of excitation above baseline.

Classification of dopamine neurons by response dynamics
In order to isolate VTA neuron response types shown to be indicative of putative dopaminergic and

GABAergic genetic identities (Cohen et al., 2012), we took the auROC normalized responses of

neurons during their response to the cue predictive of reward (cue B), and performed a simple classi-

fication to separate neural responses. We first performed principal components analysis on a matrix

of neural responses during cue B and reward presentation (neuron-by-time) to simplify the neural

dynamics to the 3 most descriptive ways in which neurons differed. We then classified this descrip-

tion of the neural population (first 3 principal components) with a simple unsupervised hierarchical

clustering algorithm, finding the similarity (Euclidean distance) between all pairs of neurons in princi-

pal components space, and iteratively grouping the neurons them into larger and larger clusters on

the basis of their similarity (i.e. agglomerative complete-linkage clustering). A distance-criterion was

then set to extract exactly 3 clusters from this hierarchical tree.

Classification of dopamine neurons by waveform
Neurons were screened for wide waveform and amplitude characteristics, calculated on their mean

action-potential across a recording session. Neurons were identified as dopaminergic if their nega-

tive half-width exceeded a standard criterion (450 ms) and the ratio of (max) positive to (min) nega-

tive voltage deflections was greater than zero (Mirenowicz and Schultz, 1994; Takahashi et al.,

2011; Roesch et al., 2007; Jo et al., 2013). Four such neurons were identified as wide waveform

across the probe sessions.
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Histology
After the final recording session, rats were euthanized and perfused first with PBS and then 4% for-

malin in PBS. Electrolytic lesions (1 mA for 10 s) made just before perfusion were examined in fixed,

0.05 mm coronal slices stained with cresyl violet. Anatomical localization for each recording was veri-

fied on the basis of histology, stereotaxic coordinates of initial positioning, and recording notes.
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