
*For correspondence: Pedro.

Herrera@unige.ch

Competing interest: See

page 14

Funding: See page 14

Received: 18 December 2015

Accepted: 07 April 2016

Published: 19 April 2016

Reviewing editor: Guy Rutter,

Imperial College London, United

Kingdom

Copyright Damond et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Blockade of glucagon signaling prevents
or reverses diabetes onset only if residual
b-cells persist
Nicolas Damond1,2,3, Fabrizio Thorel1,2,3, Julie S Moyers4, Maureen J Charron5,
Patricia M Vuguin6, Alvin C Powers7,8, Pedro L Herrera1,2,3*

1Department of Genetic Medicine and Development of the Faculty of Medicine,
University of Geneva, Geneva, Switzerland; 2Institute of Genetics and Genomics in
Geneva, University of Geneva, Geneva, Switzerland; 3Centre facultaire du diabète,
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Abstract Glucagon secretion dysregulation in diabetes fosters hyperglycemia. Recent studies

report that mice lacking glucagon receptor (Gcgr-/-) do not develop diabetes following

streptozotocin (STZ)-mediated ablation of insulin-producing b-cells. Here, we show that diabetes

prevention in STZ-treated Gcgr-/- animals requires remnant insulin action originating from spared

residual b-cells: these mice indeed became hyperglycemic after insulin receptor blockade.

Accordingly, Gcgr-/- mice developed hyperglycemia after induction of a more complete, diphtheria

toxin (DT)-induced b-cell loss, a situation of near-absolute insulin deficiency similar to type 1

diabetes. In addition, glucagon deficiency did not impair the natural capacity of a-cells to

reprogram into insulin production after extreme b-cell loss. a-to-b-cell conversion was improved in

Gcgr-/- mice as a consequence of a-cell hyperplasia. Collectively, these results indicate that

glucagon antagonism could i) be a useful adjuvant therapy in diabetes only when residual insulin

action persists, and ii) help devising future b-cell regeneration therapies relying upon a-cell

reprogramming.

DOI: 10.7554/eLife.13828.001

Introduction
Glucagon, a 29-amino acid-long hormone synthetized in pancreatic a-cells through cleavage of its

precursor, proglucagon, by prohormone convertase 2 (PC2), counterbalances the effects of insulin

on blood glucose homeostasis by stimulating hepatic glycogenolysis and gluconeogenesis

(Gromada et al., 2007). In addition, the two hormones act in a paracrine fashion to reciprocally reg-

ulate a- and b-cell function (Unger and Orci, 2010).

Hypersecretion of glucagon in diabetes exacerbates hepatic glucose output, thereby fostering

hyperglycemia and ketogenesis (Unger et al., 1970; Unger, 1971; Sherwin et al., 1976; D’Ales-

sio, 2011). In consequence, antagonists of glucagon signaling are currently being tested in clinical tri-

als for diabetes (Campbell and Drucker, 2015). The importance of glucagon signaling in diabetes was
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recently highlighted in studies performed with glucagon receptor knockout (Gcgr-/-) mice and in ani-

mals lacking a-cells due to pancreatic aristaless-related homeobox (Arx) deficiency. Surprisingly, these

animals did not exhibit the usual signs of diabetes, such as hyperglycemia or glucose intolerance, after

streptozotocin (STZ)-mediated b-cell destruction (Conarello et al., 2006; Lee et al., 2011;

2012; Hancock et al., 2010). These findings lead to hypothesize that glucagon is responsible for the

features of diabetes (Unger and Cherrington, 2012). Although suppression of glucagon action is

likely to attenuate the consequences of insulin deficiency, its primary role in the hyperglycemia is

uncertain. Indeed, because STZ causes an incomplete b-cell ablation due to variations in administra-

tion protocols and in genetic background-dependent sensitivity (Deeds et al., 2011; Cardinal et al.,

1998; Gurley, 2006), it is possible that the “diabetes resistance” phenotype of Gcgr-/- mice relies on

the action of insulin from residual b-cells. Thus, to determine whether lack of glucagon signaling would

also prevent hyperglycemia and diabetes in the context of a more severe insulin deficiency, we used a

transgenic model of diphtheria toxin (DT)-mediated b-cell ablation, termed RIP-DTR, which leads to an

almost complete b-cell elimination (Thorel et al., 2010; Chera et al., 2014). Also, because adult RIP-

DTR mice spontaneously reconstitute new insulin-producing cells by a-cell transdifferentiation in this

condition of severe insulin insufficiency, we explored whether the compensatory a-cell hyperplasia

due to glucagon signaling blockade (Furuta et al., 1997; Gelling et al., 2003; Longuet et al., 2013)

influences the reprogramming of a-cells toward insulin production.

Here we show that near-total b-cell loss triggers severe hyperglycemia and all the metabolic fea-

tures of type 1 diabetes (cachexia, glucose intolerance, and death) in mice with constitutive or

eLife digest After meals, digested food causes sugar to accumulate in the blood. This triggers

the release of the hormone insulin from beta cells in the pancreas, which allows liver cells, muscle

cells and fat cells to use and store the sugar for energy. Other cells in the pancreas, called alpha

cells, release a hormone called glucagon that counteracts the effects of insulin by telling the liver to

release sugar into the bloodstream. The balance between the activity of insulin and glucagon keeps

blood sugar levels steady.

Diabetes results from the body being unable to produce enough insulin or respond to the insulin

that is produced, which results in sugar accumulating in the blood. Diabetes also increases the

production of glucagon, which further increases blood sugar levels. Recently, some researchers have

reported that mice that lack the receptor proteins through which glucagon works do not develop

diabetes, even when they are treated with a drug called streptozotocin that wipes out most of their

beta cells. This suggests that the high blood sugar levels seen in diabetes result from an excess of

glucagon, and not a lack of insulin.

Drugs that block the action of glucagon have been found to reduce the symptoms of mild

diabetes in mice and are now being tested in humans. However, it is less clear whether this

treatment has any benefits in animals with more severe diabetes.

Streptozotocin destroys most of a mouse’s beta cells but a significant fraction of them persist,

while a different system relying on diphtheria toxin destroys more than 99% of these cells. Damond

et al. have now found that treating mice that lack glucagon receptors with diphtheria toxin causes

the mice to develop severe diabetes. Mice that lacked glucagon receptors that had been treated

with streptozotocin also developed diabetes after they had been treated with an insulin-blocking

drug. Further experiments showed that blocking glucagon receptors in typical mice with diabetes

reduces blood sugar, but only if there is some insulin left in their bodies.

Damond et al. also found that the glucagon receptor-lacking mice have more alpha cells, which

have the ability to convert into insulin-producing cells after the widespread destruction of beta cells.

Together, the experiments suggest that blocking glucagon could be a useful treatment for diabetes,

but only in individuals who still have some insulin-producing cells. Such treatment would help reduce

the release of sugar from the liver and increase the production of insulin in converted alpha cells in

the pancreas. Damond et al. are now investigating how alpha cells convert into beta cells, with the

aim of learning how to make beta cells regenerate more efficiently.

DOI: 10.7554/eLife.13828.002
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Figure 1. Gcgr-/- mice become diabetic after massive b-cell ablation. (A) Random-fed glycemia (left) and area under the glycemia curve (AUC) between

days 0 and 7 after DT (right) in untreated (Untr.) and DT-treated RIP-DTR;Gcgr+/- and RIP-DTR;Gcgr-/- females. (B) Body weight (left) and AUC body

weight (days 0–7 after DT; right). †, all mice of the group were dead at this time point (see Figure 1C). *p<0.05; **p<0.01; Mann-Whitney U test. C:

Figure 1 continued on next page
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induced glucagon signaling deficiency. We report that the absence of hyperglycemia observed in

glucagon-deficient mice after STZ treatment can be explained through the persistence of a residual

b-cell mass, which ensures a low level of insulin action.

Results

Near-total b-cell ablation leads to full-blown diabetes in mice lacking
glucagon signaling
Recent reports indicate that Gcgr-/- mice do not develop hyperglycemia after STZ-mediated b-cell

loss. Here we aimed at determining the effect of the absence of glucagon action in the context of a

more extreme insulin deficiency. For this purpose, we crossed Gcgr-/- mutant animals (Gelling et al.,

Figure 1 continued

Survival curve of RIP-DTR;Gcgr+/- and RIP-DTR;Gcgr-/- mice after DT treatment (N=5–6). Survival analysis of DT-treated animals (Gcgr+/- versus Gcgr-/-):

p=0.044; Log-rank test.

DOI: 10.7554/eLife.13828.003

The following figure supplement is available for figure 1:

Figure supplement 1. Insulin administration stabilizes body weight and allows survival of DT-treated Gcgr-/-mice.

DOI: 10.7554/eLife.13828.004
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Figure 2. Anti-GCGR mAb-treated mice become diabetic after massive b-cell ablation. (A) Experimental design. (B-C) Random-fed glycemia (B) and

body weight (C) after DT in C57BL/6 males pre-treated with vehicle or mAb (N=3).

DOI: 10.7554/eLife.13828.005

The following figure supplements are available for figure 2:

Figure supplement 1. Anti-GCGR mAb administration recapitulates the metabolic and cellular phenotypes of Gcgr-/- mice.

DOI: 10.7554/eLife.13828.006

Figure supplement 2. Insulin administration is required to stabilize body weight and allow survival of anti-GCGR-treated mice after DT.

DOI: 10.7554/eLife.13828.007
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2003) with RIP-DTR mice, in which diphtheria toxin (DT) injection triggers the near-total (>99% ) b-

cell loss (Thorel et al., 2010).

RIP-DTR;Gcgr-/- mice, like Gcgr-/- mice, displayed lower basal glucose levels than controls (RIP-

DTR;Gcgr+/+ and RIP-DTR;Gcgr+/-; not shown) (Gelling et al., 2003). Upon DT-induced b-cell abla-

tion, both control and knockout animals developed severe hyperglycemia, with a slower kinetics in

RIP-DTR;Gcgr-/- mice (Figure 1A). Animals of both groups lost weight at similar rates (Figure 1B),

and died in absence of exogenous insulin treatment (Figure 1C). By contrast, administration of long-

acting insulin, although insufficient to normalize blood glucose levels, permitted survival and body

weight maintenance (Figure 1—figure supplement 1). As soon as insulin treatment was discontin-

ued, blood glucose levels and body weight quickly deteriorated in all groups. Altogether, these find-

ings indicate that Gcgr-/- mice are not protected against hyperglycemia after near-total b-cell loss,

but develop classical signs of type 1 diabetes and require insulin therapy.

Constitutive Gcgr deletion leads to increased embryonic lethality, and defects in pancreatic

development and islet-cell maturation (Vuguin et al., 2006; Vuguin and Charron, 2011;

Ouhilal et al., 2012). Since these abnormalities may encompass long-lasting compensatory

Figure 3. DT administration leads to a more complete b-cell ablation than STZ. (A) Islet sections stained for insulin

(red) and glucagon (green) from untreated, STZ-, or DT-treated RIP-DTR;Gcgr-/- females, 6 days after the last STZ

or DT injection. Scale bars: 20 mm. (B-D) b-cell mass (B), pancreatic insulin content (C) and fed plasma insulin levels

(D) in untreated (Untr.), STZ-, or DT-treated RIP-DTR;Gcgr-/- males and females, 6 days after the last injection. STZ

administration: two injections (200 and 150 mg/kg). *p<0.05; **p<0.01; Mann-Whitney U test.

DOI: 10.7554/eLife.13828.008

The following figure supplements are available for figure 3:

Figure supplement 1. RIP-DTR;Gcgr-/- mice remain hyperglucagonemic and a-cell mass is not affected after STZ-

or DT-treatment.

DOI: 10.7554/eLife.13828.009

Figure supplement 2. Higher efficiency of b-cell ablation after DT- than after STZ-treatment in mice with normal

glucagon signaling.

DOI: 10.7554/eLife.13828.010
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Figure 4. Inhibition of insulin action triggers hyperglycemia in STZ-treated Gcgr-/-mice. (A) Random-fed glycemia after STZ and/or S961 administration

in Gcgr+/- and Gcgr-/- females (left), and area under the glycemia curve (AUC) during S961 treatment (right). (B-D) Hepatic Pepck (top) and Glucokinase

(bottom) mRNA levels relative to those of untreated Gcgr+/- (control) mice (N=4–6). (B) Glucagon deficiency: Gcgr-/- background. (C) Insulin deficiency:

b-cell ablation or insulin signaling inhibition. (D) Combined deficiency: b-cell ablation and/or insulin signaling inhibition in a Gcgr-/- background. (E-G)

FoxO1 mRNA levels in skeletal muscle, relative to those of untreated Gcgr+/- mice (N=4–6). STZ administration: 200 mg/kg at day 0 and 150 mg/kg at

day 7. S961 treatment: osmotic pump (days 15 to 21). *p<0.05; **p<0.01; Mann-Whitney U test. Only groups that exhibited a > twofold regulation as

compared to controls (dashed lines) were tested.

DOI: 10.7554/eLife.13828.011

The following figure supplements are available for figure 4:

Figure 4 continued on next page
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metabolic adaptations, we conditionally inhibited glucagon action in adult mice that had developed

normally using a glucagon receptor antagonizing monoclonal antibody (anti-GCGR mAb). We first

assessed its activity in C57BL/6 wild type mice (Figure 2—figure supplement 1A). In agreement

with a previously described antibody (Gu et al., 2009; Yan et al., 2009), anti-GCGR treatment led

to a reduction in basal glycemia (Figure 2—figure supplement 1B), and triggered a-cell hyperplasia

and hypertrophy, as observed in Gcgr-/- animals (Figure 2—figure supplement 1C–D)

(Gelling et al., 2003). In addition, antibody-treated Gcgr+/+ mice showed altered responses, like

Gcgr-/- animals, to intraperitoneal glucose and insulin tolerance tests (Figure 2—figure supplement

1E–F). Anti-GCGR administration in Gcgr+/+ mice therefore phenocopies the main metabolic and

cellular alterations of Gcgr-/- mice and thus represents a valuable tool for inducing glucagon signal-

ing antagonism in vivo.

To assess whether induced glucagon receptor blockade prevents diabetes upon near-total b-cell

ablation, we pre-treated adult RIP-DTR mice with the anti-GCGR mAb for 3 weeks, and then injected

them with DT (Figure 2A). In agreement with the above results using RIP-DTR;Gcgr-/- animals, all

mice became severely hyperglycemic and lost weight after DT, regardless of antibody treatment

(Figure 2B–C). Moreover, only insulin administration allowed for survival following b-cell ablation,

not glucagon receptor inhibition (Figure 2—figure supplement 2). Collectively, these observations

indicate that the lack of glucagon signaling is not sufficient per se to prevent severe hyperglycemia

and diabetes following extreme b-cell loss, and contrast with previous studies in which Gcgr-/-, or

anti-GCGR-treated mice did not develop the metabolic manifestations of the disease when b-cell

ablation was mediated by STZ (Conarello et al., 2006; Lee et al., 2011; 2012; Wang et al., 2015).

DT leads to a more complete b-cell ablation than STZ
The different impact of STZ and DT treatments on glycemia in Gcgr-/- mice may result from a differ-

ence in completeness of b-cell destruction. To test this hypothesis, we compared the relative abla-

tion efficiencies of these two methods. To maximize b-cell destruction, we treated Gcgr+/- and

Gcgr-/- mice with two high doses of STZ (200 and 150 mg/kg, one week apart). Following the first

injection, control mice became severely hyperglycemic. By contrast, Gcgr-/- animals remained nor-

moglycemic even after the second STZ injection, as previously reported (not shown) (Lee et al.,

2011; 2012). RIP-DTR;Gcgr-/- animals remained markedly hyperglucagonemic after STZ- or DT-medi-

ated b-cell loss and a-cell mass was not affected (Figure 3—figure supplement 1A–B). Histologi-

cally, we observed that nearly 90% of islet sections were totally devoid of b-cells after DT, versus

only 45% after STZ (Figure 3A). Accordingly, the b-cell mass and pancreatic insulin content were

reduced by 98–99% after DT, but only by 70–80% after STZ (Figure 3B–C). In addition, plasma insu-

lin levels were just above detection threshold after DT, but readily detectable after STZ (Figure 3D).

We made similar observations in mice with normal glucagon signaling (Figure 3—figure supplement

2). Together, these results indicate that b-cell destruction is more complete after DT- than after STZ-

treatment in Gcgr-/- mice.

Residual insulin action protects STZ-treated Gcgr-/- mice from
hyperglycemia
Because b-cell ablation was incomplete after STZ, we aimed at determining whether the action of

residual circulating insulin might, in combination with glucagon signaling deficiency, protect Gcgr-/-

mice from diabetes.

To test this hypothesis, we inhibited insulin action using the insulin receptor antagonist drug S961

(Schäffer et al., 2008). In vivo, S961 administration induces hyperglycemia in wild type animals and

closely recapitulates the phenotype of mice with liver-specific insulin receptor deletion (Yi et al.,

Figure 4 continued

Figure supplement 1. Higher hepatic PEPCK protein expression after DT in both Gcgr+/- and Gcgr-/- mice.

DOI: 10.7554/eLife.13828.012

Figure supplement 2. Liver glycogen concentration is reduced after DT-treatment in both RIP-DTR-Gcgr+/- and RIP-DTR-Gcgr-/- mice.

DOI: 10.7554/eLife.13828.013

Figure supplement 3. Expression of genes negatively regulated by insulin signaling in skeletal muscle.

DOI: 10.7554/eLife.13828.014
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Figure 5. Anti-GCGR mAb treatment does not normalize hyperglycemia after efficient STZ-mediated b-cell

ablation. (A) Random-fed glycemia in C57BL/6 males treated with STZ (single injection at day 0: 175 or 225 mg/kg)

and/or anti-GCGR mAb (osmotic pump, days 6 to 14; N=3–6). (B) Area under the glycemia curves during mAb

treatment. (C) Pancreatic insulin content. *p<0.05; **p<0.01; Mann Whitney U test.

DOI: 10.7554/eLife.13828.015

The following figure supplement is available for figure 5:

Figure supplement 1. Hepatic Pepck and Glucokinase expression after STZ and/or anti-GCGR mAb treatment.

DOI: 10.7554/eLife.13828.016
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2013; Michael et al., 2000). In agreement with its previously reported action, S961 administration in

Gcgr+/- mice triggered a strong increase in glycemia (Figure 4A; blue dashed vs black continuous

line). Interestingly, Gcgr-/- animals exhibited a smaller but significant increase in glycemia, indicating

that glucagon deficiency has a beneficial effect in this situation of relative insulin deficit (purple

dashed vs red continuous line). Although STZ-treated Gcgr-/- mice remained normoglycemic, as pre-

viously reported (Conarello et al., 2006; Lee et al., 2011; 2012), they developed severe hypergly-

cemia after insulin receptor inhibition (continuous vs dotted purple line). This suggests that residual

insulin action, likely originating from STZ-escaping b-cells, is still present after STZ administration in

Gcgr-/- animals, and is necessary to prevent hyperglycemia and diabetes.

To better characterize the effect of insulin insufficiency in a glucagon-deficient context, we evalu-

ated hepatic transcript levels of Phosphoenolpyruvate carboxykinase (Pepck) and Glucokinase (Gck),

two hormone-sensitive enzymes whose transcription is regulated by the relative levels of glucagon

and insulin signaling (Rucktäschel et al., 2000; Chakravarty et al., 2005; Iynedjian et al., 1995).

Liver is a relevant organ to assess the impact of insulin and glucagon deficiency because re-expres-

sion of the glucagon receptor in the liver of STZ-treated Gcgr-/- mice, and conditional inactivation of

the insulin receptor in hepatocytes are both sufficient to trigger hyperglycemia (Lee et al., 2012;

Figure 6. Absence of glucagon signaling does not block the appearance of new glucagon-insulin bihormonal cells

after b-cell ablation. (A) Islet sections exhibiting glucagon-insulin co-expressing cells (arrowheads) from RIP-DTR;

Gcgr+/+ and RIP-DTR;Gcgr-/- females (1 m after DT). Scale bars: 20 mm. (B-D) Percentage of glucagon+ cells that

co-express insulin (B), bihormonal cells per islet section (C), and pancreatic insulin content (D) in RIP-DTR;Gcgr+/+

and RIP-DTR;Gcgr-/- females (1 m after DT, N=5–6). (E-F) Percentage of glucagon+ cells that co-express insulin (E),

and bihormonal cells per islet section (F) in vehicle- or anti-GCGR mAb- treated RIP-DTR males (2 weeks after DT,

N=3). *p<0.05; Mann-Whitney U test.

DOI: 10.7554/eLife.13828.017

The following figure supplement is available for figure 6:

Figure supplement 1. Newly formed bihormonal cells in Gcgr-/- mice are reprogrammed a-cells.

DOI: 10.7554/eLife.13828.018
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Michael et al., 2000). In conditions of glucagon deficiency (increased insulin/glucagon ratio; Gcgr-/-

mice), we observed a decreased expression of the gluconeogenic enzyme Pepck and an increased

expression of the glycolytic enzyme Gck as compared to Gcgr+/- controls (Figure 4B), which is con-

sistent with a previous study (Yang et al., 2011). By contrast, upon induced insulin deficiency

(decreased insulin/glucagon ratio), as in STZ-, S961-, or DT-treated Gcgr+/- animals, Pepck and Gck

exhibited the opposite regulation (Figure 4C). We observed the strongest effect after DT, which

caused a 1000-fold decrease in Gck expression, suggesting that it led to a more complete suppres-

sion of insulin action than STZ or S961. When inducing insulin insufficiency in a Gcgr-/- background, a

situation of combined insulin and glucagon deficiency, we observed Pepck and Gck mRNA levels

similar to those measured in untreated Gcgr+/- control mice, except after DT, which induced a strong

downregulation of Gck expression in Gcgr-/- livers (Figure 4D). We also confirmed the increase in

hepatic PEPCK expression after DT at the protein level (Figure 4—figure supplement 1). Similarly,

DT-, but not STZ-treatment depleted liver glycogen stores in RIP-DTR;Gcgr-/- animals (Figure 4—fig-

ure supplement 2). These results suggest that lack of glucagon action can compensate for the effect

of partial insulin insufficiency on the expression of rate-limiting enzymes and hepatic glycogen

metabolism, but not after near-total b-cell loss, a situation where the effect of insulin deficiency out-

weighs that of glucagon deficiency.

We then assessed insulin signaling activity in skeletal muscle by measuring the expression of the

transcription factor Forkhead box protein O1 (FoxO1) and of several of its target genes, such as

Insulin receptor substrate 2 (Irs2), which are induced upon insulin insufficiency (Long et al., 2011).

FoxO1 mRNA levels were similar in untreated Gcgr+/- and Gcgr-/- mice (Figure 4E). In Gcgr-/- ani-

mals, STZ or S961 administration did not significantly affect FoxO1 expression. By contrast, FoxO1

and its targets were strongly upregulated upon combined STZ and S961-, or DT-treatment, reflect-

ing a more severe insulin insufficiency (Figure 4G and Figure 4—figure supplement 3).

Together, these results indicate that lack of glucagon signaling efficiently compensates for the

consequences of insulin insufficiency only if residual insulin action persists after b-cell loss.

Glucagon signaling blockade attenuates hyperglycemia after STZ-
mediated b-cell loss only when residual insulin production persists
As Gcgr-/- mice exhibit resistance to STZ-induced hyperglycemia, we assessed the impact of gluca-

gon signaling blockade on C57BL/6 mice made hyperglycemic with a single injection of either 175

or 225 mg/kg STZ. Once the animals were hyperglycemic, we implanted them with an osmotic

pump containing the anti-GCGR mAb. In mice injected with 175 mg/kg STZ, antibody treatment

strongly reduced, but did not completely normalize, blood glucose levels (Figure 5A and B). By con-

trast, animals that had received 225 mg/kg STZ remained severely hyperglycemic (>30 mM) after

anti-GCGR mAb administration. As expected, residual pancreatic insulin content negatively corre-

lated with the dose of STZ (Figure 5C). We thus observed beneficial effects of glucagon signaling

inhibition only in diabetic mice that had retained a relatively higher pancreatic insulin after STZ-medi-

ated b-cell loss. Strikingly, the impact of glucagon signaling inhibition on the glycemia of diabetic

mice was dependent on very small measurable differences in residual pancreatic insulin, as seen after

175 and 225 mg/kg STZ (respectively 1.79% and 0.45% of the pancreatic insulin content of non-

ablated controls). As seen in Gcgr-/- animals, anti-GCGR mAb administration resulted in a lower

expression of hepatic Pepck (Figure 5—figure supplement 1). In addition, the highest STZ dose

triggered a stronger glucokinase downregulation than the 175 mg/kg dose in mAb-treated mice.

Collectively, our findings support the notion that, regardless the method of b-cell ablation (STZ or

DT), the beneficial effects of inhibiting glucagon action, either genetically or pharmacologically, rely

upon residual insulin action.

Induction of insulin production in a-cells after b-cell ablation also occurs
in absence of glucagon signaling
We have previously shown that massive b-cell ablation triggers insulin expression in a small fraction

of the a-cell population, with the appearance of glucagon/insulin bihormonal cells (Thorel et al.,

2010). We report above that in such a situation of near-total b-cell loss, lack of glucagon action fails

to normalize glycemia. We then assessed whether the a-cell expansion triggered by glucagon signal-

ing inhibition could have a beneficial effect on a-cell reprogramming. One month after DT-mediated
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b-cell ablation, we observed bihormonal cells in RIP-DTR;Gcgr+/+ and RIP-DTR;Gcgr-/- mice

(Figure 6A). Because RIP-DTR;Gcgr-/- animals have a-cell hyperplasia (Gelling et al., 2003;

Longuet et al., 2013) and the number of bihormonal cells was proportional to the number of a-cells

in both groups (Figure 6B), we observed a significant increase in the absolute number of bihormonal

cells in RIP-DTR;Gcgr-/- mice (Figure 6C). Consistent with these observations, they had a higher pan-

creatic insulin content (Figure 6D). These results indicate that there is an increased number of a-cells

engaged into reprogramming in mice lacking glucagon signaling. We also observed the appearance

of bihormonal cells in DT-treated adult RIP-DTR mice undergoing anti-GCGR mAb treatment

(Figure 6E–F). We confirmed the a-cell origin of these newly formed bihormonal cells using a previ-

ously described tetracycline-activated system, which allows the specific and efficient doxycycline

(DOX)-dependent irreversible tracing of a-cells with YFP (Figure 6—figure supplement 1A–B)

(Thorel et al., 2010). One month after DT injection in Gcgr-/- mice, we observed that a significant

fraction of insulin-producing cells were also YFP-positive and therefore derived from cells that had

previously expressed glucagon (Figure 6—figure supplement 1C). We confirmed these observa-

tions in animals in which conditional GCGR inhibition was applied after DT-mediated b-cell ablation

(Figure 6—figure supplement 1D).

Together, these findings indicate that although glucagon signaling blockade does not prevent

hyperglycemia in diabetic mice that exhibit extreme insulin deficiency, it results in enhanced forma-

tion of new insulin-producing cells by increasing the absolute number of converting a-cells.

Discussion
Glucagon receptor inhibition decreases hyperglycemia in various animal models of diabetes

(Gu et al., 2009; Johnson et al., 1982; Brand et al., 1994; Sloop et al., 2004; Mu et al., 2011;

Sorensen et al., 2006), as well as in patients with type 2 diabetes (Kelly et al., 2015). The extent of

these benefits remains however disputed in situations where the b-cell population is nearly

completely depleted, as in long-standing type 1 diabetes (Wang et al., 2012; Meier et al., 2005).

Previous studies have shown that STZ-mediated b-cell ablation does not induce diabetes in the

Gcgr-/- mouse model (Conarello et al., 2006; Lee et al., 2011; 2012), giving rise to the hypothesis

that mice cannot develop hyperglycemia in absence of glucagon action (Unger and Cherrington,

2012). Here, we show that Gcgr-/- and anti-GCGR mAb-treated animals develop severe hyperglyce-

mia after massive DT-mediated b-cell ablation (Figures 1 and 2). Our results suggest that the dispar-

ity in blood glucose levels observed between STZ- and DT-treated Gcgr-/- animals originate from a

difference in b-cell destruction efficiency (Figure 3).

Recent studies reached conflicting conclusions regarding the beneficial effect of glucagon signal-

ing blockade in severely diabetic mice: Wang et al reported that anti-GCGR mAb treatment was suf-

ficient to normalize glycemia of STZ-treated BALB/c animals (Wang et al., 2015), whereas

Steenberg et al did not observe improvements in glucose tolerance after GCGR antagonism or glu-

cagon immunoneutralisation in C57BL/6 mice (Steenberg et al., 2016). These discrepancies may be

explained by differences in completeness of b-cell ablation linked to the protocol of injection (single

high dose versus multiple low doses) and/or to strain-dependent sensitivity; it was indeed reported

that BALB/c mice are less sensitive to STZ than C57BL/6 animals (Cardinal et al., 1998; Gur-

ley, 2006). Here, we injected C57BL/6 mice with two different high doses of STZ that triggered a

severe hyperglycemia; after anti-GCGR mAb treatment, however, we observed a decrease in glyce-

mia only in animals treated with the lowest STZ dose. These results indicate that a small difference in

pancreatic insulin, such as that observed after 175 and 225 mg/kg STZ, can cause a major difference

in glycemia in animals lacking glucagon signaling, thereby highlighting the importance of residual

insulin action and providing a potential explanation for discrepancies between previous studies (Fig-

ure 5). Remarkably, STZ-treated Gcgr-/- mice became hyperglycemic upon S961-mediated insulin

receptor antagonism, illustrating the requirement of residual insulin action for maintenance of nor-

moglycemia in these animals (Figure 4). Collectively, these findings demonstrate that a total

absence of glucagon action is not sufficient to prevent hyperglycemia in case of severe insulin

deficiency.

Although Gcgr-/- mice developed diabetes upon massive b-cell ablation, lack of glucagon action

reduced or normalized glycemia in conditions of less severe insulin deficiency. In particular we

observed that i) anti-GCGR mAb administration reduced hyperglycemia in C57BL/6 mice treated
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with the lowest STZ dose (Figure 5) and ii) S961 treatment caused a less severe increase in glycemia

in Gcgr-/- than in Gcgr+/- animals (Figure 4A). Our data on hepatic expression of Pepck and Gck,

two rate-limiting enzymes of gluconeogenesis and glycolysis, respectively, suggest that lack of gluca-

gon signaling counterbalances the effects of insulin insufficiency after STZ or S961. This would pre-

vent, or limit, the rise in net hepatic glucose output by decreasing gluconeogenesis and

glycogenolysis, and by increasing glycolysis and glycogenesis. Absence of glucagon action is how-

ever not sufficient to compensate severe insulin deficiency after DT, as reflected by Gck downregula-

tion and reduced hepatic glycogen content, thereby contributing to the elevation of blood glucose.

Interestingly, the mRNA levels of FoxO1 target genes in skeletal muscle were strongly upregulated,

reflecting insulin signaling insufficiency, after DT and STZ+S961, the two conditions that led to

hyperglycemia (Figure 4 and Figure 4—figure supplement 3). In addition, gonadal adipose tissue

was markedly depleted in experimental conditions leading to hyperglycemia (in Gcgr-/- mice after

STZ+S691 and DT; in Gcgr+/- mice after STZ and DT; not shown). Together, these findings provide

new insights into the mechanisms by which lack of glucagon signaling protects against elevated

blood glucose levels in situations of insulin insufficiency. Recent studies have shown that protection

against STZ-mediated hyperglycemia also rely on the high levels of circulating glucagon-like pep-

tide-1 (GLP-1) in Gcgr-/- animals (Gu et al., 2010; Ali et al., 2011; Jun, 2014; Omar et al., 2014).

Yet, these high levels of GLP-1 combined with a lack of glucagon action were insufficient to maintain

normoglycemia after near-total b-cell loss.

Finally, we report here that lack of glucagon signaling does not compromise the ability of a-cells

to convert to insulin production after DT-mediated near-total b-cell loss. Indeed, YFP-traced a-cells

become glucagon/insulin bihormonal cells after DT in RIP-DTR;Gcgr-/- mice and in animals treated

with the anti-GCGR antibody (Figure 6 and Figure 6—figure supplement 1). The proportion of a-

cells co-expressing insulin after DT is comparable between mice with either intact, reduced or absent

glucagon signaling, indicating that glucagon does not play an essential role in the a-to-b transdiffer-

entiation process. Interestingly, because glucagon signaling inhibition leads to a compensatory a-

cell hyperplasia (Furuta et al., 1997; Gelling et al., 2003; Longuet et al., 2013), the absolute num-

ber of newly formed insulin-producing cells through a-cell conversion was augmented in RIP-DTR;

Gcgr-/- mice. As previously described in adult mice (Chera et al., 2014), we also observed the d-to-b

conversion in b-cell-ablated RIP-DTR;Gcgr-/- mice (not shown).

In conclusion, although inhibition of glucagon action alone is insufficient to prevent diabetes in

conditions of near-total insulin deficiency, it is beneficial when residual insulin action persists, as in

STZ-treated Gcgr-/- animals. Combination of glucagon inhibition with insulin therapy may however

increase the risk of hypoglycemia. We encountered this problem when using subcutaneous insulin

pellets in DT-treated RIP-DTR;Gcgr-/- mice: they became hypoglycemic and died likely as a conse-

quence of the constitutive insulin release from the pellets, which could not be compensated by glu-

cagon action. Our findings suggest that diabetes therapy through glucagon suppression would be

unsafe if exogenous insulin has to be supplemented, but may be beneficial in patients with sufficient

residual insulin action. In case of near-total insulin deficiency, transient glucagon receptor blockade

could also serve as a means to increase the a-cell mass before triggering insulin production in these

cells, a strategy that might be envisioned as a novel therapy to treat diabetes.

Materials and methods

Mice
Gcgr-/- (Gelling et al., 2003), RIP-DTR (Rat insulin promoter - diphtheria toxin receptor)

(Thorel et al., 2010), Gcg-rtTA (Glucagon promoter - reverse tetracycline transactivator)

(Thorel et al., 2010), TetO-Cre (Tetracycline operator - Cre recombinase) (Perl et al., 2002), and

R26-YFP (Rosa26 promoter - yellow fluorescent protein) (Srinivas et al., 2001) mice were described

previously and bred on a C57BL/6-enriched mixed genetic background. As pups born from Gcgr-/-

mothers die perinatally (Vuguin et al., 2006), Gcgr+/- females were used for breeding. C57BL/6

mice were purchased from Janvier Labs (France). All mice used in this study were adult (10–20 week

old) males or females. They were housed and treated in accordance with the guidelines and regula-

tions of the Direction Générale de la Santé, state of Geneva. Blood glucose was measured from tail
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blood using a handheld glucometer (detection range: 0.6 to 33.3 mM, values exceeding 33.3 mM

were artificially set to 34 mM).

Diphtheria toxin (DT), Streptozotocin (STZ), and Doxycycline (DOX)
treatments
For b-cell ablation in RIP-DTR mice, DT (D0564, Sigma, St. Louis, MO) was injected i.p. in 3 injections

of 125 ng each, at days 0, 3, and 4. STZ (S0130, Sigma) was used as an alternative method of b-cell

ablation. It was freshly diluted in citrate buffer and administered in 5-h fasted mice. Two different

protocols were used depending on the genetic background: i) Gcgr+/- and Gcgr-/- mice: two i.p.

injections of 200 and 150 mg/kg, one week apart; ii) C57BL/6 mice: single i.p. injection (175 or 225

mg/kg). For inducible a-cell labeling in Gcg-rtTA;TetO-Cre;R26-YFP mice, DOX (D9891, Sigma) was

added to drinking water (1 mg/ml) for 2 weeks followed by at least 2 weeks of clearance before DT

injection.

Anti-GCGR mAb
Anti-GCGR monoclonal antibody A-9 was generated at Eli Lilly and Company (Yan H, Hu S-FS,

Boone TC, Lindberg RA, inventors; Amgen Inc., assignee. Compositions and methods relating to

glucagon receptor antibodies. United States patent US 8158759 B2, 2012 Apr 17). It was delivered

either via i.p. injections, thrice weekly (9 mg/kg per injection), or using a s.c. implanted osmotic

pump (model 2002, Alzet, Cupertino, CA) containing 11 mg/ml of anti-GCGR mAb in PBS (estimated

delivery rate: 5.5 mg/h for 2 weeks).

S961
The insulin receptor inhibitor S961 was a kind gift of Lauge Schäffer (Novo Nordisk, Denmark)

(Schäffer et al., 2008). Mice were implanted s.c. with an osmotic pump (model 1007D, Alzet) loaded

with 40 nmol S961 (estimated delivery rate: 0.25 nmol/h for 1 week).

Insulin
Long-acting insulin detemir (Levemir, Novo Nordisk) was freshly diluted in NaCl 0.9% and injected

s.c. twice per day (1.7 U/kg in the morning, 3.3 U/kg in the evening). Insulin pellets (LinShin Canada

Inc., Canada) were implanted s.c.

Intraperitoneal glucose tolerance test (ipGTT) and insulin tolerance test
(ITT)
For the ipGTT, mice were fasted overnight (15 hr) and then injected i.p. with 2 mg/kg D-glucose.

For the ITT, mice were fasted for 5 hr and injected i.p. with 0.7 U/kg insulin (Humalog, Eli Lilly).

Immunofluorescence
Following euthanasia, collected pancreata were processed as described (Desgraz and Herrera,

2009). Paraffin and cryostat sections were 5 and 10 mm-thick, respectively. Primary antibodies:

guinea pig anti-insulin (1:400, Dako, Denmark), mouse anti-glucagon (1:250 to 1:1000, Sigma), and

rabbit anti-GFP (1:200, Molecular Probes Inc., Eugene, OR). Secondary antibodies were coupled to

Alexa Fluor dyes 488, 568, or 647 (1:500, Molecular Probes Inc.); or to FITC, Cy3, or Cy5 (1:500,

Jackson ImmunoResearch, West Grove, PA). Images were acquired on a confocal microscope (TCS

SPE, Leica Microsystems, Germany). For cell mass measurement, 8 to 12 equally spaced sections per

pancreas were imaged on a Leica M205 FA stereo microscope. Islets were manually selected using

ImageJ (NIH) and thresholding was applied to measure the insulin- and glucagon-positive areas.

RNA extraction and RT-qPCR
After dissection, liver and skeletal muscle (gastrocnemius) were immediately stored in RNAlater

(Sigma). Tissues were homogenized with a Polytron and total RNA was extracted with the Qiagen

(Germany) RNeasy mini kit (standard kit for liver, fibrous tissue kit for muscle). Reverse transcription

was performed using the Qiagen QuantiTect RT kit. qPCR reactions and analyses were performed as

described (Thorel et al., 2010); each sample was run in triplicate. For normalization, eight house-

keeping genes were tested and the three more stable across our experimental conditions were
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defined using geNorm (Vandesompele et al., 2002): b-Glucuronidase (Gusb), Glyceraldehyde-3-

phosphate dehydrogenase (Gapdh), and Non-POU-domain-containing, octamer binding protein

(Nono) for liver; b-actin (Actb), Gapdh, and Gusb for skeletal muscle. Primer sequences are indicated

in Supplementary file 1.

Hormone and glycogen measurements
Protein extracts from total pancreas were prepared as described (Strom et al., 2007). Blood sam-

ples were collected in EDTA-coated tubes and plasma was separated by centrifugation. Insulin and

glucagon concentrations were measured using Ultrasensitive Mouse Insulin and Glucagon ELISA kits

(Mercodia, Sweden), respectively. Glycogen concentration was measured from the supernatatant of

homogenized liver tissue using a glycogen asssay kit (Sigma).

Immunoblotting
Liver samples were lyzed in radioimmumoprecipitation (RIPA) buffer with protease inhibitors

(Thermo Fisher Scientific, Waltham, MA). Protein concentration was measured using a BCA assay

(Thermo Fisher Scientific). Proteins were resolved on a TruPAGE gel (Sigma) and transferred to a

PVDF membrane. The membrane was blocked in Tris-buffered saline with 0.1% Tween containing

5% bovine serum albumin. Primary antibodies were rabbit anti-PEPCK (1:1500, Abcam, UK) and

mouse anti-tubulin (1:2500), both incubated overnight at 4˚C; secondary antibodies were horseradish

peroxidase-conjugated anti-rabbit (1:5000) and anti-mouse (1:5000). Proteins were detected using

ECL plus substrate (Thermo Fisher Scientific) and images were acquired on a LAS-4000 imager (Fuji-

film, Japan).

Statistical analyses
Data are presented as mean ± SEM. P values were calculated with GraphPad Prism 6 (GraphPad

Software, La Jolla, CA). The following statistical tests were applied: unpaired, two-tailed, Mann-Whit-

ney U test for two sample comparisons; one- or two-way ANOVA with post hoc Bonferroni correc-

tion for multiple comparisons; Log-rank (Mantel-Cox) test for survival analyses.
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