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Abstract Tactile information available to the rat vibrissal system begins as external forces that

cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the

fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal

ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact.

Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics

of contact. We used models of whisker bending to quantify mechanical signals (forces and

moments) at the whisker base while simultaneously monitoring whisker kinematics and recording

single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel

manual stimulation technique to deflect whiskers in a way that decouples kinematics from

mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly

encode mechanical signals when the whisker is deflected in this decoupled stimulus space.

DOI: 10.7554/eLife.13969.001

Introduction
Rats, like many rodents, rely heavily on tactile information from their vibrissae (whiskers) to explore

their world. Tactile signals are generated both during active whisker movement – when the rat

brushes and taps its whiskers against objects – and during passive contact. Deformations of the

vibrissae are transduced by mechanoreceptors in the follicle (Ebara et al., 2002), and the resulting

electrical signals are integrated by primary sensory neurons in the trigeminal ganglion (Vg). From the

Vg, signals are relayed to the brainstem trigeminal nuclei, thalamus, and primary somatosensory cor-

tex. Neurons in the Vg are thus the ’gatekeepers’ of tactile information for the vibrissal trigeminal

system (Jones et al., 2004a; Leiser and Moxon, 2006, 2007).

Several studies have demonstrated that rodents can use their vibrissae to localize objects with

high precision (Kleinfeld and Deschênes, 2011; Knutsen and Ahissar, 2009; Knutsen et al., 2006;

Krupa et al., 2001; Mehta et al., 2007; O’Connor et al., 2010; Pammer et al., 2013). Accordingly,

previous work has focused on quantifying the response of Vg neurons in terms of kinematic (geomet-

ric) variables of contact, including radial distance to an object, angular position, and angular velocity

(Gibson and Welker, 1983a, 1983b; Jones et al., 2004a, 2004b; Leiser and Moxon, 2007;
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Lichtenstein et al., 1990; Lottem and Azouz, 2009, 2011; Lottem et al., 2015; Shoykhet et al.,

2000, 2003; Szwed et al., 2003, 2006).

An alternative possibility is that Vg neurons relay a high fidelity encoding of whisker mechanics –

forces and moments at the base of the whisker – to be processed at later stages of the trigeminal

pathway. If Vg neurons were to encode kinematic variables, a transformation from mechanical varia-

bles at the base of the whisker into kinematic variables would have to occur within the follicle

(Whiteley et al., 2015) and/or through the primary afferent integration of mechanoreceptor

responses.

Here, we directly address the question of whether Vg neurons represent mechanical or kinematic

variables. It is challenging to disentangle these alternatives because the kinematics and mechanics of

contact are tightly coupled under most standard experimental protocols; this coupling is especially

strong during small angle deflections and when deflections occur near the whisker base. To date,

this intrinsic coupling and the absence of mechanical modeling have prevented a quantitative evalua-

tion of the extent to which Vg neurons respond to kinematic vs. mechanical inputs.

In the present study, we developed a novel manual stimulation technique that allowed us to

impose large angle deflections far from the whisker base, and thereby to systematically explore

large regions of the tactile input space in which mechanics and kinematics decouple. We recorded

from single Vg neurons in both anesthetized and awake animals, extracted the kinematics of contact

from high-speed video, and computed the mechanics of contact using a quasi-static model of whis-

ker bending. We then used Generalized Linear Models (GLMs) to quantify Vg responses in terms of

both sets of variables and investigate which description more accurately predicts Vg firing rate. We

found that only when the input space is large and kinematics are decoupled from mechanics does

mechanical information better predict firing activity for a majority of Vg neurons.

eLife digest Animals must gather sensory information from the world around them and act on

that information. Specialized sensory cells convert physical information from the environment into

electrical signals that the brain can interpret. In the case of hearing, this physical information consists

of changes in air pressure, and for vision, it is patterns of light bouncing off of objects.

Rodents rely heavily on touch information from their whiskers to explore their world. When a

whisker touches an object, it deforms and bends. The first neurons to respond to whisker touch – so

called primary sensory neurons – represent contact between the whisker and the object in the form

of electrical signals, but exactly how they do this is unclear.

One possibility is that primary sensory neurons encode the movement of the whisker itself.

Whenever a whisker touches an object, the whisker is deflected in a particular direction by a

particular amount and at a particular speed. These movement-related features are referred to as the

“kinematic” properties of whisker-object contact. Alternatively, these whisker sensory neurons might

be more concerned with the forces at the base of the whisker caused by object contact. These

forces are the “mechanical” properties of whisker-object contact.

Bush, Schroeder et al. set out to determine whether the electrical response of these whisker

sensory neurons mainly encode kinematic or mechanical information. However, these two types of

information are often closely related to each other: put simply, small whisker movements tend to

accompany small forces and vice versa. Bush, Schroeder et al. therefore devised a method to deliver

touch stimuli to the whiskers in a way that separates kinematic from mechanical information.

Mathematical models were then developed to compare how well the neurons represent each type

of information. The models showed that whisker sensory neurons generally encode mechanical

signals more directly than kinematic ones.

This information adds to our understanding of how animals learn about the world through their

senses. However, the analysis of Bush, Schroeder et al. relies on the long-standing simplification that

whisker motion is two-dimensional, whereas in reality whiskers move in three dimensions. Therefore,

a future challenge is to examine how sensory neurons represent information about touch, such as

the location or shape of an object, during three-dimensional whisker-object contact.

DOI: 10.7554/eLife.13969.002
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Figure 1. Example Vg recordings from both anesthetized and awake rats. Data from five neurons in the anesthetized animal (A–C) and two neurons in

the awake animal (D–E). Left: Heatmaps of isolated spike waveforms over all recordings of each neuron. Two waveforms in A and B indicate

simultaneously recorded neurons. Scale bars are 20 mV, 200 ms; width of waveforms is 1.5 ms. Right: Segments of bandpass filtered (300–6,000 Hz) raw

neural traces during periods of passive deflection in the anesthetized animal (A–C) or active contact in the awake animal (D–E). Gray shading indicates

periods of contact.

DOI: 10.7554/eLife.13969.003
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Figure 2. Mechanical and kinematic variables associated with contact. (A) Schematic of the kinematic variables of contact. The shape and position of

the whisker when at rest is in gray. The variable r indicates the straight-line distance from the basepoint to the contact point. During passive

deflections, the relevant angle is �deflection, the angle between the line segment that connects the basepoint to the current point of contact and the line

segment that connects the basepoint to the initial contact point. The velocity V , not shown, is the temporal derivative of �deflection. (B) Schematic of the

mechanical variables of contact: bending moment (M), and the transverse (Fy) and axial (Fx) components of the applied force (Fapplied). All variables are

computed at the whisker base. (C) Examples of mechanical and kinematic variables during six manually delivered passive deflections in the

anesthetized rat. Shading denotes contact episodes. The stimulations are similar but not identical to each other; this imparts a naturalistic variability to

the tactile inputs. Units for Fx and Fy are mN; M is in mN-m; r is in mm; � is in degrees; and V is in degrees/s. (D) In the awake rat, �deflection is no longer

well defined, and the relevant angle is �push, the angle swept out by the tangent to the whisker at its base as the whisker deflects against an object. The

velocity V is the temporal derivative of �push. The figure illustrates that �head, the angle between the tangent to the whisker at its base and the

midsagittal plane, is not a valid kinematic variable to explain neural responses because it varies independently of contact.

DOI: 10.7554/eLife.13969.004
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Results

Quantifying the kinematic and
mechanical variables of contact
We recorded high-speed video (300 fps) during

manual deflection of 18 single whiskers in anes-

thetized rats while simultaneously recording neu-

ral responses from 22 Vg neurons. Example

neural data are shown in Figure 1A–C. Whiskers

were deflected with a hand-held graphite probe

in two directions (rostro-caudal and caudo-ros-

tral), with amplitudes up to several mm. Stimula-

tion was delivered at variable radial distances

that ranged up to ~90% of the whisker length,

and at two speeds: ’fast’ and ’slow.’ Note that

manual stimulation caused radial distance of contact, velocity, and deflection amplitude to vary

across deflections. The two dimensional (2D) whisker shape was tracked in each video frame to

quantify the kinematic and mechanical variables of contact.

Kinematic variables are illustrated in Figure 2A and consist of the radial distance of contact (r),

the angular displacement (�deflection), and the velocity of deflection (V , the temporal derivative of

�deflection, not shown). Kinematic variables were extracted directly from the shape of the whisker, as

detailed in Materials and methods. During non-contact times, all kinematic variables are undefined.

The mechanical variables of contact were computed numerically based on the full tracked whisker

shape using a quasi-static, frictionless model of elastic beam bending (see Materials and methods;

[Birdwell et al., 2007; Quist and Hartmann, 2012; Solomon and Hartmann, 2008, 2010]). As illus-

trated in Figure 2B, in 2D the three mechanical signals at the base of the whisker are bending

moment (M), transverse force (Fy), and axial force (Fx). Because the mechanical model is quasi-static,

all mechanical signals are exactly zero during periods of non-contact.

Examples of both mechanical and kinematic variables are shown in Figure 2C, which shows the

signals evoked during six passive deflections of the whisker at two different radial distances. Shaded

regions indicate contact episodes. Notice that each deflection varies slightly from every other deflec-

tion, reflecting the naturalistic variability of manual stimulation.

In a separate group of animals we recorded high-speed video (1000 fps) while rats explored a ver-

tical pole (seven whiskers, nine neurons). Examples of neural data recorded in the awake animal are

shown in Figure 1D–E. Whisker shape was tracked, and the kinematic and mechanical variables of

contact were calculated. Video 1 compares examples of manually delivered deflections and active

whisking behavior.

The variables that describe active whisking are the same as those for passive contact, except that

the calculation of the angular position of contact must change. In the awake animal, the contact

point does not move with respect to the whisker basepoint, so �deflection is not well defined. Instead

the relevant angle is �push (Figure 2D, bottom left), the angle swept out by the tangent of the whis-

ker base from the time of contact onset to the current time (Bagdasarian et al., 2013;

Kaneko et al., 1998; Mehta et al., 2007; Quist and Hartmann, 2012; Solomon and Hartmann,

2006, 2011).

Given that the present work aims to compare the relative ability of mechanical and kinematic vari-

ables to describe Vg responses, which are strongly affected by contact, it is not appropriate to use

the angle of the whisker with respect to the midsagittal plane (�head) as a kinematic variable. The

angle �head contains no information about contact; note in Figure 2D that �head varies significantly

throughout the trial, while �push varies only during contact. If the variable �head were used as an input,

it would unfairly favor a mechanical explanation for Vg firing because it would add a variable with no

contact information to the kinematic hypothesis.

We have not included whisking phase (i.e. the relative value of �head within each whisking cycle) as

a potential explanatory variable for the response of Vg neurons. Although this variable is repre-

sented in Vg responses during non-contact whisking (Wallach et al., 2016) and is of clear impor-

tance in central trigeminal structures (Curtis and Kleinfeld, 2009; Fee et al., 1997), the present

Video 1. Comparison of active whisking with passive,

manual deflection. Two seconds of high speed video

(A) as an awake, body restrained rat whisks against a

peg, and (B) as the whisker is passively deflected using

manual stimulation in the anesthetized animal. Videos

are slowed by factors of ~16 and ~15, respectively.

DOI: 10.7554/eLife.13969.005
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Figure 3. Manual stimulation reliably decouples mechanical and kinematic variables. Mechanical and kinematic

variables of contact are shown across trials of active whisking (rows A and B, whiskers C1 and Gamma respectively)

Figure 3 continued on next page
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study is limited to an analysis of contact whisking, during which kinematic and mechanical coding

can be directly compared.

Manual stimulation decouples kinematic and mechanical variables of
contact
To determine the extent to which Vg neurons encode the mechanics or kinematics of contact, it is

essential to observe contact conditions under which these two sets of input variables are decoupled.

Figure 3 compares kinematic and mechanical variables computed for two whiskers during active

exploration (Figure 3A–B) to those observed during passive, manual deflection (Figure 3C–D).

Mechanical and kinematic variables are often tightly coupled during awake behavior (Figure 3A).

Although some degree of decoupling is possible in the actively whisking animal (Figure 3B), the

explored regions in input space depend on the animal’s behavior. It is challenging to reliably sample

a large, decoupled input space with the awake animal.

In contrast, manual stimulation offers a simple and reliable method to explore a large, decoupled

region of the input space (Figure 3C–D). Manual stimulation can involve large angle deflections (up

to 60˚) at large radial distances (up to 45 mm) more consistently than in the actively behaving animal.

Exploring these large regions decouples the kinematic and mechanical inputs, allowing us to address

the question of whether Vg neurons encode mechanics or kinematics.

Videos 2–5 show rotating views of three dimensional versions of the plots in Figure 3, now

including the radial distance of contact r as a third axis.

Follicle state in the awake and anesthetized animal
It is possible that the rigidity with which the whisker base is held during contact differs between the

awake and anesthetized animal. In the awake animal, capillaries at the level of the cavernous sinus

could increase hydrostatic pressure and thereby the rigidity of the whisker-follicle junction

(Rice, 1993). In addition, the activation of muscles surrounding the whiskers could increase the rigid-

ity of the follicle with respect to the mystacial pad. Either or both of these changes near the whisker

base could alter the whisker’s deformation in response to an applied force. Given that the follicle-

whisker junction has been shown to be rigid in the anesthetized animal (Bagdasarian et al., 2013),

blood-based hydrostatic changes are unlikely to be responsible for differences in rigidity between

awake and anesthetized states. Changes in muscle activation, however, are a potentially significant

effect that remains to be fully investigated.

In the anesthetized animal, we observed large translations and rotations of the follicle in the skin

when a force is applied to the stiff, proximal portion of the whisker (Video 6). Translations and rota-

tions were not observed during contacts at the more flexible, distal portion of the whisker; this rigid-

ity is similarly observed in the awake animal, where mystacial muscles prevent movement of the

follicle during contact.

We therefore restricted our analyses in the anesthetized animal to distal contacts ( >~ 40% of the

whisker length), where the apparent rigidity of the whisker-follicle-skin interface is significantly

greater than the rigidity of the whisker at contact and the follicle does not move appreciably during

contact.

Generalized linear models
We employed generalized linear models (GLMs) to determine the relative importance of kinematic

and mechanical variables in predicting neural firing. GLMs include linear combinations of the history

of various input variables, as well as the non-linear characteristic of biological neurons, to predict the

Figure 3 continued

and passive manual stimulation (rows C and D, whiskers B1 and D1 respectively). Awake trials were 3.02 s (A) and

12.9 s (B) in duration; passive trials were 64.67 s (C) and 114.53 s (D) in duration. Each point represents the

observed mechanical and kinematic inputs for a 1 ms time bin. The x-axis depicts the angular coordinate of

contact in degrees, the y-axis either the axial force (Fx, units of mN) or moment (M, units of mN-m). Color

represents the radial distance of contact in mm. During manual deflection, a larger input space is sampled. The

actual range spanned by the mechanical variables depends on whisker identity.

DOI: 10.7554/eLife.13969.006
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firing rate of a neuron given previously observed stimulus inputs and the resultant spiking patterns

(Pillow et al., 2008). The GLM approach lends itself to the analysis of both active and passive deflec-

tions. ’Full model’ GLMs were constructed using the three mechanical and the three kinematic varia-

bles (Fy; Fx; M; r; �; V ) as input variables (predictors) for the observed spike train at 1 ms

resolution.

We invoke a formulation of the GLM in which the predictors are convolved with a set of nonlinear

basis functions (’raised cosine bumps’) that cover a desired temporal window into the past over

which to consider the stimulus history (Pillow et al., 2008). Here, we choose the five dimensional

basis shown in Figure 4A. Each predictor thus gives rise to five ’convolved predictors’, each with the

temporal structure of the corresponding basis function. The basis functions extended 75 ms into the

past, to match the temporal extent of the cross-correlations between the observed spikes and the

various predictors while not being longer than the shortest inter-stimulus interval.

This procedure gives us a total of 30 ’convolved predictors’ (6 predictors * 5 basis functions) that

are the inputs to the model. The GLM then fits optimal coefficients (blj, 1�l�5, 1�j�6) for each of

the 30 convolved predictors, where l is the index of the basis function and j is the index of the pre-

dictor. The model includes one additional coefficient b0 for a constant term. These 31 coefficients

are used to construct a linear combination of the 30 convolved predictors; this linear combination is

the argument to a sigmoidal nonlinearity that outputs the instantaneous probability of firing at every

1 ms time bin.

Before convolving with the basis set, the predictors are whitened to have zero mean and unit

standard deviation. This allows us to compare b coefficients for different predictors that would oth-

erwise be on different scales. Figure 4B shows the mean absolute value of the b coefficients across

all neurons. Each set in this figure refers to a particular basis function; the coefficients labeled as b1
actually comprise all six coefficients b1j, 1�j�6, where the index j labels the predictors

(Fy; Fx; M; r; �; V ). The six coefficients labeled as b1 represent the weight of the most temporally

recent and precise time period as specified by the basis function b1; this period covers 0 to 4 ms

into the past with a peak time at 0 ms. The most recent time period is clearly the most important in

predicting spikes for all six predictors. Subsequent sets of coefficients represent the importance of

more distant past times, as specified by the corresponding basis functions shown in Figure 4A. The

very small values of the coefficients b5 associated with the basis function b5 indicate that there is no

Video 2. 3D visualization of mechanical and kinematic

relationships for one neuron recorded in the awake

animal. Rotating view of inputs to the neuron shown in

Figure 3A, active exploration. Radial distance is

represented along the third axis.

DOI: 10.7554/eLife.13969.007

Video 3. 3D visualization of mechanical and kinematic

relationships for a second neuron recorded in the

awake animal. Rotating view of inputs to the neuron

shown in Figure 3B, active exploration. Radial distance

is represented along the third axis.

DOI: 10.7554/eLife.13969.008

Video 4. 3D visualization of mechanical and kinematic

relationships for one neuron recorded in the

anesthetized animal. Rotating view of inputs to the

neuron shown in Figure 3C, manual deflection. Radial

distance is represented along the third axis.

DOI: 10.7554/eLife.13969.009

Video 5. 3D visualization of mechanical and kinematic

relationships for a second neuron recorded in the

anesthetized animal. Rotating view of inputs to the

neuron shown in Figure 3D, manual deflection. Radial

distance is represented along the third axis.

DOI: 10.7554/eLife.13969.010
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need to look much further than 25 ms into the

past. Among all predictors, moment M has the

largest coefficient b for the first four basis func-

tions; this indicates that on average, moment is

the most important predictor of firing activity.

As detailed in Materials and methods, it is use-

ful to obtain predictor specific filters aj, 1�j�6,

as a linear combination of the basis functions bl,

1�l�5, with the coefficients blj, 1�l�5, 1�j�6

obtained from the GLM fit. These predictor-spe-

cific filters, shown in Figure 4C for an example

neuron, illustrate the impact of each predictor on

the neuron’s firing. Note that the filters shown in

Figure 4C decay to zero after about 15 ms, and

that for this neuron, a change in moment from

negative to positive, a negative �, and a negative

Fy are the inputs that drive the cell to fire. An

alternative characterization of inputs relevant to

Vg firing follows from calculating spike-triggered

averages (STA) for each of the input variables. The STAs for the neuron depicted in Figure 4C are

shown in Figure 4—figure supplement 1.

Relative importance of predictor variables
Bending moment is not only the most important input to the example neuron in Figure 4C, but also

emerges as the most important input across all neurons in Figure 4B. However, all input variables

contribute to the GLM fits. Different neurons might respond strongly to different combinations of

input variables. To quantify whether kinematic or mechanical variables provide better predictions of

firing activity, we constructed separate GLMs that had access to only the kinematic variables or only

the mechanical variables. We refer to these models as ’subset models’. We calculated the coefficient

of determination (R2) between the predicted spiking probability given by these subset models and

the predicted spiking probability of the full model. Note that this metric is not a measure of how

well the models predict the neuron’s firing, but rather of how much of the information captured by

the full model can be accounted for by either of the two subset models.

Examples of the relationship between the subset model predictions and the full model predic-

tions are shown in Figure 5A. For neuron 24, the predictions of the mechanical subset model corre-

spond well to those of the full model (R2 = 0.88), while the predictions of the kinematic subset

model do not (R2 = 0.08). This result indicates that the information present in the mechanical varia-

bles accounts for most of the information that the full model uses to predict spike rates. The oppo-

site is true for neuron 8: the information present in the kinematic variables better accounts for the

information that the full model uses to predict spike rates.

The quality of the subset models is quantified over all neurons in Figure 5B, which plots the R2

values between the predictions of the mechanical subset model and those of the full model against

the R2 values between the predictions of the kinematic subset model and those of the full model. An

inverse relationship is apparent, indicating that if the predictions of one subset model account well

for the predictions of the full model, the predictions of the other subset model do not.

So far, our analysis has not addressed the quality of the full model predictions. To quantify the

accuracy of the full model, we computed the Pearson Correlation Coefficient (R) between the GLM

predicted rate and the observed spike rate, obtained by smoothing the spike train with a Gaussian

kernel (s ¼ 15 ms; see Materials and methods). In Figure 5B, data points are shaded red if their R is

above the median R value (0.3), and grey if their R is equal to or below the median R value. A major-

ity of the red markers (10/15) fall below the diagonal, suggesting that when the full model relies on

the information provided by the mechanical subset of input variables, the model performs better.

We next asked how well the full model and the subset models could predict the spike rate of

each neuron. The distribution of R values for the full model is shown in Figure 6A. The median R

value across all neurons is 0.30. There was no significant difference between active contact and pas-

sive deflections (Wilcoxon rank-sum test p=0.18).

Video 6. Comparison of distal and proximal contact in

the anesthetized rat. High speed video of distal and

proximal contacts (3 s per clip, slowed by a factor of

~5) highlights the movement of the follicle relative to

the skin when contact is made close to the whisker

base.

DOI: 10.7554/eLife.13969.011
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Figure 4. Optimal linear filters indicate that moment is the most important predictor of Vg neural firing. (A) The

non-linear basis of ’raised cosine bumps’. (B) Average absolute value of the GLM fit coefficients (b) across all

neurons. bl refers to the coefficient of lth cosine basis function, with b1 being the most recent and precise, and b5
being the most delayed and diffuse. Shading corresponds to the basis function plotted in (A). Two neurons have

been omitted from this aggregate analysis because their outlying coefficients b (order 1013) distorted the averages

reported here. (C) The linear combination of the basis functions bl plotted in (A) with the coefficients blj obtained

from the GLM fit allows us to obtain predictor specific filters aj, shown here as a function of time (truncated at 20

ms for visualization) for an example neuron. These filters quickly decay to zero, indicating that the majority of the

Figure 4 continued on next page
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We then asked how the accuracy of the subset models compares to that of the full model for

both active contacts and manual deflections. In Figure 6B we plot the distribution of the percent

error between the full model and each of the subset models. Percent errors near zero indicate that

the subset model performed as well as the full model; values below zero indicate that the subset

model performed better than the full model. The data shown in Figure 6B omit two points for which

the full model performs worse than both subset models. These points also exhibited the worst full

model performance, with R values smaller than 0.05. All subsequent analyses omit these two points.

Figure 4 continued

information important to the cell is contained in the preceding few milliseconds. For the cell shown here, moment,

transverse force, and angular displacement are important input signals, with moment being the most important.

DOI: 10.7554/eLife.13969.012

The following figure supplement is available for figure 4:

Figure supplement 1. Examples of spike-triggered averages of the six input variables for the cell shown in

Figure 4C.

DOI: 10.7554/eLife.13969.013

Figure 5. Comparison between full and subset models. (A) The firing rate prediction of each subset model is plotted against the prediction of the full

model. The predictions are probability of a spike in each 1 ms time bin. For neuron 24 in the first row, the mechanical model is well correlated with the

full model and the kinematic model is not; the opposite is true for neuron 8 in the second row. (B) The R2 between the firing rate predicted by the full

model and the firing rate predicted by each subset model (mechanical on the x-axis; kinematic on the y-axis). Each data point represents one neuron.

The triangles represent neurons recorded during active contact; the circles represent neurons recorded during manual deflections. Red markers

correspond to models that predict the cell’s spike rate better than the median accuracy (R>0.30). Gray markers indicate poor prediction accuracy

(R�0.30).

DOI: 10.7554/eLife.13969.014

The following source data is available for figure 5:

Source data 1. Summary data used to create Figure 5B are reported.

DOI: 10.7554/eLife.13969.015

Bush et al. eLife 2016;5:e13969. DOI: 10.7554/eLife.13969 11 of 23

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.13969.012
http://dx.doi.org/10.7554/eLife.13969.013
http://dx.doi.org/10.7554/eLife.13969.014
http://dx.doi.org/10.7554/eLife.13969.015
http://dx.doi.org/10.7554/eLife.13969


Figure 6. Mechanical models outperform kinematic models for manual deflections. Pearson correlation coefficients (R) between GLM predictions and

observed spike rate smoothed at 15 ms are compared between the full model and the subset models. (A) Histogram of Pearson correlations between

the spike rates predicted by the full model and the observed spike rates, for all neurons. (B) Percent error between the R value for the full model and

for each of the subset models is plotted for each neuron. Active contact responses are plotted as magenta triangles, manual deflections as cyan circles.

Values close to zero indicate that the subset model performed almost as well as the full model; values less than zero indicate that the subset model

performed better than the full model. Histograms indicate the distributions of the percent differences of each subset model for active contacts

(magenta), manual deflections (cyan), and the whole population (gray). For the data shown here (see text), results for the subset model trained on

mechanical data are significantly closer to zero for manual deflections but not for active contacts. (C) The R values for the two subset models are

plotted against each other. Points that lie below the diagonal indicate that the mechanical model better predicted the spike rate than the kinematic

model. Color and marker scheme same as in (B).

DOI: 10.7554/eLife.13969.016

The following source data is available for figure 6:

Source data 1. Summary data used to create Figure 6 are reported.

DOI: 10.7554/eLife.13969.017
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For the manual stimulation data, the median percent error for the mechanical subset models tend

to lie closer to zero than the median percent error for the kinematic models (Wilcoxon signed rank

test p<0.05); in contrast, there is no such trend for the active contact data (Wilcoxon signed rank

test p=0.43).

Finally, in Figure 6C, we compared the accuracy of the mechanical subset model versus that of

the kinematic subset model for both active contacts and passive, manual deflections. We found that

75% (15/20) of neurons recorded with passive stimulation lie below the diagonal (linear model slope

95% CI = [0.20 0.96], paired t-test p<0.05), while those neurons recorded with active touch lie closer

to the diagonal (6/9 above, 3/9 below; linear model slope 95% CI = [-0.42, 1.73], paired t-test

p=0.37). These results indicate that although the mechanical model better predicts firing during

manual stimulation, there is no evident preference for kinematic or mechanical models during active

touch.

The input space characterization in Figure 3 explains why it is not possible to distinguish between

subset models during active contact: in this scenario, the input space is relatively small and the kine-

matics and mechanics tend to be more tightly coupled than under manual, passive stimulation. If the

inputs to the two subset models are highly coupled – as they are in the active case – then these

models receive similar input information and neither can expected to predict Vg activity better than

the other.

Discussion
Neurons of the trigeminal ganglion are the gatekeepers of all available tactile information in the

rodent vibrissal system. The manner in which these neurons represent tactile information places

direct constraints on the processing performed by more central trigeminal structures, including thal-

amus and cortex. Understanding how information is encoded and transformed in Vg neurons is thus

essential to obtaining an understanding of vibrissal related responses in these central structures.

Kinematic and mechanical signals are coupled in standard passive
stimulation experiments
Historically, responses of neurons in the vibrissotrigeminal system have been described in terms of

whisker kinematics (Gibson and Welker, 1983b; Jones et al., 2004a, 2004b; Leiser and Moxon,

2007; Lottem et al., 2015; Moore et al., 2015; Shoykhet et al., 2000; Simons, 1978;

Szwed et al., 2003, 2006; Zucker and Welker, 1969). More recently, however, studies have sug-

gested that mechanics offer an alternative explanation for firing properties of neurons at multiple

levels of the trigeminal pathway (Campagner et al., 2016; Chen et al., 2015; Hires et al., 2015;

Xu et al., 2012).

The possibility that Vg neurons encode the mechanics of touch is not inconsistent with the body

of literature describing kinematic encoding, because mechanical and kinematic variables are often

inherently coupled. It is common to stimulate whiskers through small angles close to the base, so

that almost no bending of the whisker occurs (Gibson and Welker, 1983b; Jones et al., 2004a,

2004b; Lichtenstein et al., 1990; Zucker and Welker, 1969). Under these stimulation conditions

there is no room for mechanics and kinematics to decouple, making it impossible to distinguish

between these two coding possibilities. Campagner et al. (2016) elegantly demonstrate this cou-

pling during passive stimulation with a piezoelectric (piezo) bender. They show that during piezo

stimulation, curvature change and angle are tightly correlated; GLMs based on either of these varia-

bles therefore produce indistinguishable predictions. They further show that in the awake animal, in

contrast, curvature change and angle are decorrelated; they attribute this decorrelation to the awake

condition.

The novel manual stimulation paradigm of the present work demonstrates that kinematics and

mechanics are not necessarily coupled during passive stimulation, nor necessarily decoupled during

active contact (Figure 3). Decoupling is essential to distinguish between the two possible coding

schemes in the trigeminal ganglion.
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Decoupling mechanical and kinematic signals during contact reveals
that Vg responses are better predicted by mechanics than kinematics
The novel manual whisker stimulation protocol employed in the present work allows us to reliably

explore larger regions of input space in which the strong coupling between mechanics and kinemat-

ics breaks down (Figure 3). By working in this decoupled regime, the present study demonstrates

that Vg neurons more closely represent mechanical rather than kinematic variables during contact.

The optimal filters produced by the GLM more heavily weight the mechanics of contact; on average,

bending moment is the most important predictor in models that have access to both mechanical

and kinematic inputs (Figure 4B).

Furthermore, in cases where mechanics (rather than kinematics) account for most of the predictive

ability of the full model, the full model better predicts the spiking behavior of the neuron. The pre-

dictive accuracy of models with access to only mechanical inputs is frequently as good as that of

models with access to all inputs; this is less frequently the case for models with access to only kine-

matic inputs (Figure 6B). Finally, models with access to only mechanical inputs perform better than

those with access to only kinematic inputs (Figure 6C).

Importantly, the improved predictive accuracy attributed to mechanical variables is seen only for

experiments in which the kinematics and mechanics are decoupled and thus carry distinct informa-

tion. In our experiments, body-restrained awake animals only infrequently exhibited the type of

whisking behavior that would be required to sample a large input space and decouple kinematics

and mechanics. Accordingly, models of Vg responses in the awake animal based on mechanical vari-

ables rarely outperformed those based on kinematic variables, mirroring the null result observed by

Campagner et al. (2016) during passive stimulation when mechanical and kinematic information

were coupled.

It is worth emphasizing that our conclusions, as well as those of Campagner et al. (2016), regard-

ing the comparative ability of kinematic and mechanical variables to predict the firing of Vg neurons,

are based on a simple model of neural encoding: that Vg neurons respond to a linear combination

of relevant features of the stimulus, followed by a global static nonlinearity that accounts for the

Poisson statistics of the spike generation process. This is the conceptual framework that underlies

the choice of GLM models, whose ability to predict the firing of Vg neurons in response to passive

stimulation was first established by Bale et al. (2013). In asking which set of variables, kinematic vs

mechanical, are better predictors of Vg activity when used as inputs to a GLM model, we ask which

set of variables is more informative within the hypothesis of linear-non-linear (LNL) encoding.

Kinematic and mechanical variables as explanatory variables for Vg
firing
At first glance, some results of the present work may appear to contradict those of

Campagner et al. (2016). Our results show that mechanical models perform better than kinematic

models in anesthetized experiments but show little distinction in the awake animal. In direct contrast,

Campagner et al. (2016) find similar performance of mechanical and kinematic models in the anes-

thetized animal but that mechanical models perform better than kinematic models in the awake

preparation.

The fundamental reason for the apparent discrepancy is that in the awake animal

Campagner et al. (2016) use a kinematic variable (�head) that varies independently of object contact,

but a mechanical variable (change in curvature) that varies only with contact. Given that the response

of Vg neurons is strongly correlated with contact (Leiser and Moxon, 2007; Zucker and Welker,

1969), the mechanical variable will necessarily have a higher predictive value, especially at 100 ms

time scales that match the duration of a whisk.

The reason �head is independent of contact is that this angle is measured with respect to the mid-

line of the animal’s head. In contrast, change in curvature at the base (a proxy for bending moment)

is measured independently of the whisker’s position relative to the head. The angle �head and curva-

ture change will be decoupled in the awake experiments because contact with an object can occur

at different positions relative to the head. For example, a whisker can exhibit very similar curvature

changes regardless of whether it makes contact with a peg at �head = 70˚ or at �head = 110˚.
In Campagner et al. (2016) Figure 4G it is clear that if one were to account for the value of

�head at the initial contact with the pole, curvature change would be strongly correlated with an angle
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that would not be �head but �push – the angle used in the present work and in other studies of

mechanical coding of object location (Bagdasarian et al., 2013; Birdwell et al., 2007;

Kaneko et al., 1998; Pammer et al., 2013; Solomon and Hartmann, 2011). Campagner et al.

(2016) briefly address this point. Their results from the awake animal show smaller differences in per-

formance between models based on kinematic or mechanical inputs when �push is used as the kine-

matic variable, consistent with the present findings.

In the anesthetized experiments of Campagner et al. (2016), �head and curvature are always

strongly correlated because the whisker is trimmed (to 5 mm), angles of deflection are relatively

small (10˚), and the deflection is always applied at the same value of �head. Had these experiments

used large amplitude deflections and/or deflections further from the whisker base, �head would pre-

sumably have decoupled from curvature changes.

More subtly, the quantification of mechanical inputs differs between the present work and that of

Campagner et al. (2016). Forces and moments at the whisker base cannot be measured directly

because any sensor placed at the whisker base would interfere with the whisker’s mechanics.

Campagner et al., (2016) use curvature change at the base as a proxy for bending moment, an

approximation based on linear elastic beam theory (Beer et al., 2015). In contrast, we use a vali-

dated quasi-static model of whisker bending to compute the forces and moments at the base during

contact (Birdwell et al., 2007; Huet and Hartmann, 2016; Huet et al., 2015; Solomon and Hart-

mann, 2008, 2010). This model accounts for the full shape of the whisker and offers the advantage

of computing the axial and transverse forces in addition to bending moment.

A mechanical framework for interpreting primary sensory signals
during both contact and non-contact whisking
Our work and that of Campagner et al. (2016) agree that Vg neurons encode mechanical variables

more robustly than kinematic variables; we suggest that the consistency of this result across studies

helps interpret recent data demonstrating phase coding in Vg neurons during free air whisking

(Wallach et al., 2016). The work of Campagner et al. (2016) shows that during non-contact whisk-

ing, a GLM with access to angular acceleration can account for much of the Vg firing. With the

assumption that Vg neurons are mechanically sensitive, our analyses suggest that the phase encod-

ing described by Wallach et al. (2016) and the angular acceleration tuning described by

Campagner et al. (2016) both result from inertial forces on the follicle that occur during periods of

high angular acceleration (Boubenec et al., 2012; Quist et al., 2014).

Many Vg neurons are known to respond during both non-contact and contact whisking

(Leiser and Moxon, 2007; Szwed et al., 2003). Here we propose that the encoding of mechanical

signals provides a unified explanation for both phase tuning during non-contact whisking and

responses during contact. Ultimately, a dynamic model that describes inertial forces during non-con-

tact whisking will be required to verify this hypothesis. It remains unknown how downstream neurons

might distinguish Vg spikes that encode phase and hypothetically represent inertial forces from Vg

spikes that represent contact forces.

In this light, the results of all four recent studies (Campagner et al., 2016; Quist et al., 2014;

Wallach et al., 2016, the present study) provide strong support to the view that Vg neural responses

more generally represent the mechanical deformations that occur at the level of the follicle, and that

apparent correlations between Vg firing and kinematics are a result of inherent correlations between

kinematics and mechanics. This line of evidence suggests that previous results describing the encod-

ing of kinematic variables in the Vg correspond to scenarios characterized by strong correlations

between kinematic and mechanical variables. It remains possible that central brain regions take

advantage of this inherent correlation to extract behaviorally relevant information about object loca-

tion or features; there is support from both simulation (Solomon and Hartmann, 2011) and behav-

ioral (Bagdasarian et al., 2013; Pammer et al., 2013) studies indicating that rodents could use a

combination of Fx and M to determine the 2D location of a contact point.

Limitations of the current approach
Our models were unable to reach very high prediction accuracies (median R value = 0.30, max =

0.65); this performance is not as good as might be expected in view of previous evidence that Vg
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neuron responses are highly precise and repeatable given identical stimuli (Bale et al., 2015;

Jones et al., 2004a, 2004b).

We offer four explanations for these seemingly low correlation values.

First, we note that in the present study, R value is only computed during contact, in order to

avoid inflation of this statistic due to periods of non-contact when spiking is absent (anesthetized) or

sparse (awake). When correlation coefficients were computed to include both periods of contact and

non-contact in the awake animal, median R-values increased from 0.27 to 0.47 for kinematic models

and from 0.26 to 0.38 for mechanical models. Including periods of non-contact in model evaluation

will tend to inflate model performance; any variable that captures transitions between contact and

non-contact will easily predict the associated changes in Vg firing rate.

Second, the present work, as well as the majority of reports of Vg neuron firing activity in both

awake and anesthetized experiments, is based entirely on a 2D analysis, even though there is ample

evidence that the whisker moves in 3D (Hobbs et al., 2015, 2016a; Huet and Hartmann, 2014,

2016; Huet et al., 2015; Knutsen et al., 2008; Yang and Hartmann, 2016) and that Vg neurons

are directionally tuned in three dimensions (Jones et al., 2004a; Lichtenstein et al., 1990;

Minnery and Simons, 2003).

Third, the quasi-static models used to compute forces and moments at the base of the whisker

omit the effects of friction and whisker dynamics, including collisions and vibrations

(Boubenec et al., 2012; Jadhav et al., 2009; Quist et al., 2014; Ritt et al., 2008; Wolfe et al.,

2008; Yan et al., 2013). To predict spikes at high temporal resolution would require the use of a

dynamic model and the ability to track the whisker at spatiotemporal resolutions beyond the capa-

bility of the videographic approaches used here.

Lastly, our models are based on linear combinations of stimuli that vary over wide ranges. The

only nonlinearity in the model, a static nonlinearity applied to the linear combination as a whole,

accounts for the Poisson nature of spiking statistics. This type of simplified Linear-Nonlinear (LNL)

model offers strong mathematical advantages; in the case of a GLM, a guarantee that the fitting

function that determines the coefficients of the model is convex and has a unique solution easily

reachable by gradient methods. However, these models do not allow for linear combinations or non-

linearities that could be specific to some regions in the space of inputs. As our experimental meth-

ods sample wider regions of input space, it seems reasonable to expect that a single linearized

assumption over the full space followed by a single, global nonlinear transformation will prove to be

too simplistic. The relatively low quality of prediction achieved here thus might signal the limitations

of this type of GLM.

Another limitation of our approach is a time resolution of 15 ms, considerably less than the ms or

even sub-ms resolution exhibited by Vg neurons (Bale et al., 2015; Jones et al., 2004a). Temporal

resolution was similarly limited in the study of Campagner et al. (2016), who employed a 100 ms

window in contrast to our 15 ms Gaussian kernel. This limit is due in part to experimental constraints

in the temporal resolution of the kinematic and mechanical variables chosen as explanatory variables

for Vg activity and used as GLM inputs, as addressed in both Results and Materials and methods. As

discussed above, the quasi-static models used to compute forces and moments at the base of the

whisker further limit the achievable time resolution.

In addition, both our work and that of Campagner et al. (2016) use a similar single-trial modeling

approach. Trial averaging would have allowed us to predict spike timing with higher accuracy

(Bale et al., 2013), but would have required precise duplication of motor command across trials.

The variability of whisking behavior in awake animals prevents this duplication. As for the deflection

experiments in anesthetized animals, precise duplication could only be achieved by sampling within

a narrow region of stimulus space, an approach deliberately avoided here in order to achieve kine-

matic and mechanical decoupling.

Our work thus offers predictive accuracies as high as can be achieved within these experimental

and modeling limitations. The results point towards the conclusion that mechanics more accurately

predict primary sensory neuron firing than kinematics, within the hypothesis of linear-non-linear

(LNL) encoding, and when the two sets of variables are decoupled. A more stringent test of this

hypothesis would require a full 3D characterization of both kinematic and mechanical signals at

higher spatiotemporal resolution, a full dynamic model of the whisker for computing forces and

moments at its base, and possibly an increased level of modeling sophistication beyond GLMs.
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Ultimately, access to a large, decoupled input space is likely to be critical in understanding the

coding properties of Vg neurons during natural behavior. Body or head restrained animals tend to

generate relatively stereotyped, small angle whisking motions (Deutsch et al., 2012) that sample

the input space within the coupled regime (Figure 3). However, tactile information acquired through

whisking during exploratory behavior is varied and complex (Arkley et al., 2014; Carvell and

Simons, 1990; Grant et al., 2009; Hobbs et al., 2016a, 2016b; Mitchinson et al., 2007; Saraf-

Sinik et al., 2015; Schroeder and Ritt, 2016; Sellien et al., 2005; Towal and Hartmann, 2008;

Voigts et al., 2015). Neurons of the Vg must be able to encode the signals associated with the full

range of potential stimuli, including large angle deflections and very distal contacts. By adopting a

mechanical characterization of tactile information, we can quantify the large input space available

during tactile sensation in a manner that incorporates the true shape and deformability of the

whisker.

Materials and methods
All procedures involving animals were approved in advance by the Northwestern University Animal

Care and Use Committee. A total of fourteen female Long Evans rats (age 2–6 months) were used.

Surgical procedures
Animals were anesthetized with a ketamine-xylazine hydrochloride combination delivered intraperi-

toneally (60 mg/kg ketamine, 3.0 mg/kg xylazine, and 0.6 mg/kg acepromazine maleate). Four or

five stainless steel screws were placed in the skull over neocortical areas and covered in dental

acrylic. For anesthetized recordings this structure was affixed to the surgical bed; for chronic (awake)

recordings, it formed the base of the electrode implant.

A small (~1 mm diameter) craniotomy was then performed in order to allow access to the trigemi-

nal ganglion (Vg), at location ~2 mm caudal relative to bregma and ~2 mm lateral to the midline. A

single tungsten electrode (FHC, Bowdoin, ME; typical impedance 2–5 MW) was lowered to a depth

of ~10 mm until multi-unit responses to whisker deflections could be heard. The electrode was then

lowered more slowly until isolated single neuron responses to tactile stimulation of a single vibrissa

were obtained.

For chronic recordings, the electrode was then fixed in place using dental acrylic. In some ani-

mals, electrodes were bilaterally implanted in the Vg. Recordings from awake, chronically implanted

animals were started no sooner than four days after surgery and continued for up to three weeks. All

chronic implantation surgeries were performed in a sterile field.

Anesthetized recordings
Five animals were used to test the responses of Vg neurons to passive, manual deflection. After per-

forming the craniotomy described above, single tungsten electrodes (FHC ~1 MW) were lowered to

a depth of ~10 mm until a neuron that responded to the deflection of a single whisker was isolated.

We recorded video from a top-down view at 300 fps with an exposure time of 1 ms (Teledyne Dalsa

Genie HM640; Waterloo, Canada).

Neural signals were amplified on an A-M Systems (Sequim, WA) four channel amplifier (1000x

gain) with analog bandpass filtering between 10 Hz and 10 kHz before digital sampling at 40 kHz

using Datawave SciWorks (Loveland, CO). After acquisition, traces were digitally bandpass filtered

between 300 Hz and 6000 Hz before spike sorting. Spikes were identified and sorted offline, and

spike times were rounded to the nearest ms for comparison with video data. Examples of raw data

are shown in Figure 1A–C.

In order to robustly track the whisker in the high-speed video, the surrounding fur was removed

with depilatory cream (Nair; Church and Dwight, Ewing, NJ) and surrounding whiskers were either

trimmed or held back against the fur. Care was taken not to deform the whisker or the mystacial

pad during recordings.

Whiskers were deflected manually by pressing a 0.3 mm graphite rod against the whisker

(Video 1B). Between 20 and 40 deflections were applied at variable radial distances (up to 90% of

the whisker length), at two velocities and two directions (rostral to caudal, and caudal to rostral) for

a total of 80–160 deflections per whisker. Analyses were restricted to distal contacts (>40% of the

whisker length), where the follicle does not move appreciably during contact. Whiskers were also
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held in a deflected position for periods of about 3 s to test adaptation characteristics. All deflections

were on the order of several mm.

Awake recordings
Seven animals were gentled for 8–10 days prior to surgery. During gentling, rats were acclimated to

restraint in a V-shaped fabric bag that prevented body movement but permitted head and neck

movements.

Starting four days after surgery, on each day of testing we gently restrained the rat and again

confirmed that each neuron responded to tactile stimulation of one and only one whisker. All other

whiskers on that side of the rat’s face were trimmed to the level of the fur. Rats were then placed in

the fabric bag, and high-speed video (Photron FastCam, San Diego, CA; either 1024PCI or 512PCI)

was used to record the top-down view of the rat’s head as it whisked against a rigid vertical peg

(3 mm diameter). Video was taken at 1000 fps, with a shutter speed of 1/3000 s to reduce motion

blur.

Signals from Vg neurons were recorded with a Triangle Biosystems (Durham, NC) 8-channel pre-

amplifier (2x gain) and a custom-built amplifier (500x gain). Signals were analog band-pass filtered

between 0.33 Hz and 10 kHz before sampling at 40 kHz using Datawave SciWorks. Traces were then

digitally bandpass filtered between 300 Hz and 8000 Hz before spike sorting. Spikes were identified

and sorted offline, and spike times were rounded to the nearest ms for comparison with video data.

Examples of raw data are shown in Figure 1D–E.

Calculation of kinematic and mechanical variables
For both anesthetized and awake experiments, whisker shape was extracted from each video frame

using the software "Whisk" (Clack et al., 2012). The kinematic and mechanical variables of contact

were computed from the whisker shape; see Figure 2 of Results.

The kinematic variables of contact are: radial distance (r), angle of contact (�push or �deflection), and

angular velocity (V). The variable r is the linear distance between the basepoint and the contact

point. The variable �deflection is valid for manual deflection; as illustrated in Figure 2A, it is the angle

between two line segments: one that connects the initial point of contact to the whisker basepoint

and one that connects the current contact point to the whisker basepoint (Gibson and Welker,

1983a, 1983b; Lichtenstein et al., 1990; Lottem and Azouz, 2009, 2011; Shoykhet et al., 2000,

2003). The variable �push is valid for active whisking; as illustrated in Figure 2D, it represents the

angle swept out by the tangent to the whisker at its base from the time of contact onset to the cur-

rent time (Bagdasarian et al., 2013; Quist and Hartmann, 2012; Solomon and Hartmann, 2011).

The velocity (V) is the temporal derivative of either �deflection or �push.

The mechanical variables of contact are the axial force (Fx), the force parallel to the whisker axis

near its base, positive pointing out of the follicle; the transverse force (Fy), the force perpendicular

to the whisker axis, directed in the rostral direction; and the bending moment (M), the moment

about the vertical z-axis that passes through the whisker base. Mechanical variables were computed

using a quasi-static model of whisker bending (Birdwell et al., 2007; Quist and Hartmann, 2012;

Solomon and Hartmann, 2008, 2010).

All mechanical and kinematic data were median filtered to eliminate point outliers. Variables com-

puted from video acquired at 300 fps were linearly interpolated to 1000 Hz for comparison with

spike times on the 1 ms scale. Velocity was calculated using a central difference approximation of

the angular component of contact and low pass filtered at 85 Hz.

The spike train was smoothed with a Gaussian kernel with standard deviation s to find the rate

r tð Þ:

r tð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p

XN

j¼1
e
� t�tjð Þ2

2s2 ; (1)

where N is the total number of spikes, s is the standard deviation of the kernel, and tj is the time of

spike j. The standard deviation s of the Gaussian kernel was varied between 1 ms and 500 ms to

observe the effect of temporal smoothing on the quality of predictions. An optimal kernel width of

s¼ 15 ms was chosen for all subsequent analyses. This was the smallest value of s; below which we

observed a sharp decrease in the quality of predictions.
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Generalized linear models
Each GLM is of the form:

p tð Þ ¼ f
XK

j¼1

Xt

t0¼0
aj t

0ð Þ xj t� t0ð Þ
� �

: (2)

Here p tð Þ is the probability that the neuron emits a spike in the 1 ms time interval centered at

time t, f is a logistic nonlinearity, and j sums over all the predictor variables. Each one of these varia-

bles xj, 1� j�K, contributes to the argument of the logistic nonlinearity through its current value

and its values in the preceding t time bins, weighted by the filter parameters aj t
0ð Þ; 0� t0 � t: Full

models used (r, �, V, Fx, Fy, M) as predictor variables (K ¼ 6), while subset models had access to

either kinematic variables (r, �, V) or mechanical variables (Fx, Fy, M), so that K ¼ 3:

Since the neural response is quantified as a spike either present or absent in each 1 ms time bin,

the statistics process being modeled is Bernoulli and the nonlinearity is sigmoidal (McCullagh and

Nelder, 1989):

f uð Þ ¼ 1

1þ e�u
: (3)

The GLM finds the filters aj t
0ð Þ

� 	

; 0� t0 � t; 1� j�K that maximize the likelihood of the observed

spiking activity. To enforce continuity of the filters as a function of time and reduce the number of

coefficients needed to specify the model, it is convenient to introduce a basis of ’raised cosine

bumps’ bl tð Þ; 1� l� L (Pillow et al., 2008). Here we used the L¼ 5 basis shown in Figure 4A. The

functions peak at 0 ms (l¼ 1Þ, 1 ms l¼ 2ð Þ; 3 ms l¼ 3ð Þ, 8 ms l¼ 4ð Þ, and 17 ms l¼ 5ð Þ; the basis cov-

ers 75 ms into the past.

The expansion of each filter in terms of this basis, namely

aj t
0ð Þ ¼

XL

l¼1
bl t

0ð Þ blj ; (4)

results in an interesting reformulation of the GLM:

p tð Þ ¼ f
XK

j¼1

XL

l¼1
blj ~xlj tð Þ

� �

; (5)

where the input variables to the model ~xlj tð Þ are now ’convolved predictors,’ the filtered versions of

the original input variables, namely:

~xlj tð Þ ¼
Xt

t0¼0
bl t

0ð Þ xj t� t0ð Þ : (6)

In this formulation, the problem of fitting the parameters of the GLM is reduced from that of find-

ing the filters aj t
0ð Þ; 1� j�K; 0� t0 � t ; to that of fitting a smaller number of parameters: the coeffi-

cients blj; 1� l� L; 1� j�K:

To evaluate each GLM we implemented ten-fold cross-validation, using 90% of each neuron’s

dataset to fit the coefficients blj. The fitted GLM was used to predict the spike rate on the remaining

10% of the data. This procedure was repeated ten times, so that the entire neural response was

eventually predicted from a model whose coefficients were fit on independent data. This method

prevents overfitting and allows the model to be evaluated based on how well it generalizes to new

data.

The quality of each GLM was quantified through the correlation coefficient between the pre-

dicted rate p tð Þ of Equation 5 and the rate r tð Þ obtained from Equation 1.

Data for non-contact periods were omitted in calculations of correlation coefficients. Given that

Vg neurons do not fire during non-contact, a precise prediction of no activity during these periods

would have unduly inflated model performance. Predictions were tracked only during contact

periods.

The percent difference between the subset models and the full model was calculated as 100 �
Rfull� Rsubsetð Þ

Rfull
where R is the Pearson Correlation Coefficient between the observed spike rate r tð Þ and

the predicted spike rate p tð Þ obtained with either the full model or one of the two subset models.
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